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ONE-DIMENSIONAL POLYMERS IN RANDOM ENVIRONMENTS:
STRETCHING VS. FOLDING

QUENTIN BERGER, CHIEN-HAO HUANG, NICCOLO TORRI, AND RAN WEI

ABSTRACT. In this article we study a non-directed polymer model on Z, that is a one-
dimensional simple random walk placed in a random environment. More precisely, the law
of the random walk is modified by the exponential of the sum of “rewards” (or penalities)
Bwz — h sitting on the range of the random walk, where (wg)zez are i.i.d. random variables
(the disorder), and where 5 > 0 (disorder strength) and h € R (external field) are two
parameters. When 8 = 0, h > 0, this corresponds to a random walk penalized by its range;
when 8 > 0, h = 0, this corresponds to the “standard” polymer model in random environ-
ment, except that it is non-directed. In this work, we allow the parameters 8, h to vary
according to the length of the random walk, and we study in detail the competition be-
tween the stretching effect of the disorder, the folding effect of the external field (if & > 0),
and the entropy cost of atypical trajectories. We prove a complete description of the (rich)
phase diagram. For instance, in the case 8 > 0, h = 0 of the non-directed polymer, if w, ha
a finite second moment, we find a transversal fluctuation exponent £ = 2/3, and we identify
the limiting distribution of the rescaled log-partition function.

2010 Mathematics Subject Classification: 82D60, 60K37, 60G70

Keywords: Random Polymer, Random walk, Range, Heavy-tail distributions, Weak-coupling
limit, Super-diffusivity, Sub-diffusivity

1. INTRODUCTION

We study here a simple symmetric random walk on Z¢ placed in a time-independent
random environment [20]. The interaction with the environment occurs on the range of the
random walk, i.e. on the sites visited by the walk. This model can therefore also be seen
as a random version of random walks penalized by their range (in the spirit of [16] [10]).
One closely related model is the celebrated directed polymer in random environment model
(see [13] for a review), which has attracted interests from both mathematical and physical
communities over the last forty years, and can be used to describe a polymer chain placed
in a solvent with impurities.

1.1. The model. Let S := (S,)n=0 be a simple symmetric random walk on Z¢, d > 1,
starting from 0, whose trajectory represents a (non-directed) polymer. Let P denote its law.
The random environment is modeled by a field w := (wy ) eyza of i.i.d. random variables. We
let P denote the law of w, and £ the expectation with respect to P (assumptions on the
law of w are detailed in Section below).

For 8 > 0 (the disorder strength, or the inverse temperature) and h € R (an external
field), we define for all N € N the following Gibbs transformation of the law P, called the
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polymer measure:

dP% 1
7ﬂvh P
s x€Z4

where Ry = {So, S1,...,Sn} is the range of the random walk up to time N, and

(12)  Z§{pp = E[GXP ( > (Bws — h)]laceRN)} = E{eXp (5 D) wp— h!RN\)}

zeZd TER N

is the partition function of the model, and is defined so that PR spisa probability measure.

Let us stress the main differences with the standard directed polymer model: (i) here, the
random walk does not have a preferred direction; (ii) there is an additional external field
h € R; (iii) the random walk can only pick up one weight Sw, — h at a site € Z¢, and
returning to an already visited site does not bring any reward or penalty (in the directed
polymer model, the environment is renewed each time).

We now wish to understand the typical behavior of polymer trajectories (So,...,Sn)
under the polymer measure P%; B Two important quantities that we are interested in are

e the end-to-end exponent &, loosely defined as EE%’57h|SN| ~ N¢;
e the fluctuation exponent x, loosely defined as |log Zy g5 — E[log Zn g.]| &~ NX.

In view of , there are several quantities that may influence the behavior of the
polymer: the energy collected from the random environment w; the penalty h (or reward
depending on its sign) for having a large range; the entropy cost of the exploration of the
random walk S. If 8 =0 and h > 0, then we recover a random walk penalized by its range.
This model is by now quite well understood: the random walk folds itself in a ball of radius
NY(d+2) (¢ = ﬁ), see [16}, 28], 10} 4, 15] (these works mostly focus on the case of dimension
d>2). If B =0and h <0, then we get a random walk rewarded by its range: the random
walk “stretches” to obtain a range of order N. If § > 0 and h = 0, then we obtain a
model for a non-directed polymer in the random environment, the environment being seen
only once by the random walk (in the same spirit as the excited random walk [3], or more
generally the cookie random walk [29]). In general, disorder should have a ”stretching”
effect, the random walk is trying to reach more favorable regions in the environment. We
will see that it is indeed the case in dimension d = 1, where we find that the random walk
stretches up to a distance N2/3 (¢ = 2).

1.2. Setting of the paper. In this article, we focus on the case of the dimension d = 1:

the behavior of the model is already very rich, and we are able to obtain sharp results.
Our main assumption on the environment is that w, is in the domain of attraction of some

a-stable law, with a € (0, 2], a # 1. More precisely, we make the following assumption.

Assumption 1. If a = 2 we assume that E[wg] = 0 and E[wi] = 1. If a € (0,1) u (1,2)
we assume that P(wo > t) ~ pt=® and P(wy < —t) ~ qt=* ast — o0, withp+q =1 (and
p > 0). Moreover, if a € (1,2), we also assume that Ewy] = 0.

Let us stress that Assumption [1| ensures that:

e if & = 2, then wj; is in the normal domain of attraction, so that (ﬁ D Wi)u<0<w

converges to a two-sided (standard) Brownian Motion.
e if € (0,1) U (1,2), then w; is in the domain of attraction of some non-Gaussian

stable law and (ﬁ Zfﬁun wi)u<o<o converges to a two-sided a-stable Lévy process.
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We leave the case v = 1 aside mostly for simplicity: indeed, to obtain a process convergence
as above, a non-zero centering term is in general needed (even in the symmetric case p = ¢,
see [I8, IX.8], or [5]); however most of our analysis applies in that case.

Henceforth we refer to (X¢)wer as the two-sided Brownian motion if @ = 2 and as the
two-sided Lévy process defined below if a € (0,1) U (1,2).

Definition 1.1. We denote by (Xi)ier (with Xo := 0) either a two-sided (standard) Brow-
nian motion if a = 2 or a two-sided (stable) Lévy process with no drift, no Brownian
component and Lévy measure v(dz) = a(pliz=0; + qliz<op)|z|™'* dz, if a € (0,2).

Remark 1.1. We couple the discrete environment (wg)zez with the process (Xi¢)ier by
using an extended version of Skorokhod representation theorem [21], Corollary 5.12], which
guarantees that nll/oz o wi converges P-a.s. to X, — Xy, for all u < v. This coupling is
used to obtain an almost sure convergence in our results.

In the present paper, we allow 8 and h to vary with the size of the system, giving rise to
a large diversity of possible behaviors. Before we go into these details, let us already state
how are results translate in the case of fixed parameters S, h.

Let us define M;\’, = maxo<p<N Sn = 0 and My := ming<,<n Sp < 0 the right-most and
left-most points of the random walk after N steps. In particular, the size of the range is
M]’\L, — M. Also, for a doubly indexed process (Y,u)u<o<o sSuch that Y* := sup, <<, Yup <
+00, we define for any € > 0

M (Y) = {(u,v) eR™ xR", sup Ysi = Y*}.
s<0<t
[s—ul<e,|t—v|<e
The set M(Y) = (.ogM:(Y) is called the set of quasi-mazimizers of Y (using the termi-
nology of [24]).

Theorem 1.1. (1) Case a € (1,2].
(a) If =0 and h > 0. Then, for any € > 0, we have that

. 1 _ 2,1
A}@@H’v,ﬁ,h(‘ﬁ(ﬂﬁ? —My)—msh™s

(b) If 8> 0 and h = 0. Then considering quf)b) = Yf{,(Rz) = B(X, — Xy) — I(u,v)
for u < 0 <, with I(u,v) = 3(|u] A [v| + v —u)?, we have

> 6) =0, P-a.s.

1
lim ———logZy 3, = sup {Y(RQ)} € (0, +0), P-a.s.

N—ow N2a-1 u<0<v Y
Additionally, for any e > 0,
1
lim P (—— (My, M) ¢ M (YP))) =0, Pras
Nlinoo N,B,h Nﬁ( N My) & Me( ) a.s
(¢) If =0 and h <0. Then for any € > 0, we have that
1 2l —1
. w 1 et -1
A, PNﬁﬁ(’N'SN' 2R 1
(2) Case a € (0,1). Let >0 and h € R. Then considering the doubly indexed process
Yu(,ljd) = Yuéf;)(Rd) = /B(Xv - Xu) - O()]]-{|u\/\\v|+v7u>1} fO’f’ u <0< v, we have

‘ > 5) =0, P-a.s.

1
lim —rlog Z5, = sup {V(E e (0,4%),  P-as.

u,v
N—>w Nz u<0<v ’
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Additionally, for any e > 0,

e (1
lim P g, (N(MN,M;) ¢ ME(Y(R3))) ~0, P-as

Remark 1.2. The sets M (Y 52) and M. (Y 53)) are e-neighborhoods of the (random)

. .o .o R R
sets of quasi-maximizers of the variational problems sup,<o<, ijﬂf) and Sup,<o<y Yu(ﬂ,?’)

respectively: since the variational problems are almost surely positive and finite (as shown
below), the sets M. (Y 52)) and M. (Y F8)) are (with high probability) bounded away from
(0,0) if € is small enough. When the sets of quasi-mazimizers M(Y (F2)) and M(Y (F3))
are reduced to one point (which is a.s. true when o = 2, see [25], or when « € (1,2) with
qg=01n Assumption see [24] ), this shows that P-a.s., (My, My;), when properly rescaled,
converge in PR 5 1 = probability to this (unique) mazimizer.

In particular, when o € (1,2], the end-to-end distanceﬂ of the polymer is:

(a) of order NY3 if h >0 — folded phase, this is included in Theorem '
(b) of order No/@e=1) irh =0, B> 0 — extended phase, this is included in Theorem'
(¢) of order N if h <0 — extended phase, this is included in Theorem .

On the other hand, in the case a € (0,1), the end-to-end distance is always of order N,
whatever h € R — exatended phase, this is included in Theorem[3.3 below.

Let us now turn to a more general setting, where we allow 8 and h to vary with the size
of the system

(1.3) By:=BN"", and hy:=hNC,

where v, € R describe the asymptotic behavior of By, hy, and B > O,fL € R are two
fixed parameters. Let us stress that we will mostly focus our exposition on the case h > 0:
the case h < 0 has a less of a rich behavior and is somehow simpler, see Remark and
Section [3.3] below.

In order to observe a transition between a folded phase (h > 0,3 = 0) and an unfolded
phase (h = 0,5 > 0, or h < 0), a natural idea is to consider parameters § and h that depend
on the size of the system, i.e. 8 := By and h := hy. There are then some sophisticated
balances between the energy gain, the range penalty and the entropy cost as we tune Sy and
hx. Our main results identify the different regimes for the behavior of the random walk: we
provide a complete (and rich) phase diagram (see Figures below), and describe each
phase precisely (end-to-end and fluctuation exponents, limit of the log-partition function).

Remark 1.3. We could consider a slightly more general setting, adding some slowly varying
function in the asymptotic behavior of Bn or hy (or P(wy > t), if « < 2). We chose to
stick to the simpler strictly power-law case, to avoid lengthy notation and more technical
calculations. It also makes the phase diagram clearer.

2. SOME HEURISTICS: PRESENTATION OF THE PHASE DIAGRAMS

In this section, we only deal with the case h = 0; the case h < 0 is considered in Section|3.3
In analogy with the directed polymer model in a heavy-tailed random environment [6] [7],
the presence of heavy-tail (Assumption 1)) strongly impacts the behavior of the model: there
will be different phase diagrams according to whether o € (1,2], a € (3,1) and a € (0, 3).

1See Definition below for a proper definition.
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Let us denote £ the typical end-to-end fluctuations exponent of the random walk under the
polymer measure P%; 5 -, namely EEY, 5,  [maxi<n<n [Sh|] ~ N¢  (see Definition
below for a proper definition), and let us derive some heuristics to try to determine £ € [0, 1

First of all, thanks to Lemmas in Appendix, we have

—N%E-L O if g
—N% o if ¢

<n<N

(2.1) logP(|Rn| ~ N%) ~ 10gP<1maX |Sh| ~ Ng) A {

If £ > 1/2, this corresponds to a “stretching” of the random walk, whereas when ¢ < 1/2,
this corresponds to a “folding” of the random walk: we will refer to as the entropic
cost of having end-to-end fluctuations N¢.

Then, if the end-to-end fluctuations are of order N¢ (|Ry| ~ N¢), we get under Assump-

tion |1} and in view of (1.3]), that
(2.2) By Y wex Na7T, hy|Ry| ~ NEC.

IEE'RN
We refer to the first term as the “energy” term, and to the second one as the “range” term
(recall that we focus for now on the case h > 0 so the “range” term is always with a minus
sign). All together, if end-to-end fluctuations are of order N¢, we have that

N1=2€ if £ < 1/2,
N%E-L ife>1/2.

In (2.3)), there is therefore a competition between the “disorde” (first term), the “range”
(second term), and the “entropy” (last term). We now discuss how a balance can be achieved

between these terms depending on v and ¢ (and how they determine £). There are three
main possibilities:

(2.3) logZ%ﬂNﬁW,zjvi_W——Aﬁ_C—~{

(i) there is a “disorder”-“entropy” balance (and the “range” term is negligible);

(ii) there is a “range”-“entropy” balance (and the “energy” term is negligible);
(iii) there is a “range”-“disorder” balance (and the “entropy” term is negligible).

To summarize, all three regimes can occur (depending on v,() if o € (1,2]; on the other
hand, regime (iii) disappears if a € (0,1), and regime (i) disappears if o € (0,%). We now
determine for which values of ~, ( one can observe the different regimes above: we consider
the three subcases a € (1,2], a € (3,1) and a € (0, ) separately.

9

2.1. Phase diagram for « € (1,2]. Instead of looking for “disorder”-“entropy”, “range”-
“entropy” or “range”-“disorder” balance, we will find conditions to have the “disorder” term
much larger, much smaller, or of the order of the “range” term.

Case I (“disorder”>» “range”). This corresponds to having £/a —~v > £ — (. In that case,
the random walk should not feel the penalty for having a large range, so we should have
¢ > 1/2. The competition occurs only between energy and entropy, one could achieve a
balance if {/a — v = 26 — 1, that is if

(2.4) ¢ = o 2a—1)¢—(a—1)

2O[_l(l—w) when 7 < - ,
where the condition on «y derives from the fact that {/a—~ > £ — ( in the regime considered
here. However, since £ < 1, we should have £ = 1 when v < —O‘T_l. Thus, we have

1 -1
and’y<C—L.
@

(2.5) £=1 when fyg—a_
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Also, since £ = 1/2, we should have £ = 1/2 when v > i Thus, we have

1 1 -1
(2.6) 525 when ’y>%and7<g“—a2a

Case II (“disorder” « “range”). This corresponds to having {/a—~ < £ — (. In that case,
the random walk feels the penalty for having a large range, and we should have { < 1/2.
The competition being only between range and entropy, one could achieve a balance if
&—(=1-2¢, that is if
a+1)¢—(a—1)

3 ’
where the condition on «y derives from the fact that {/a—~ > £ — ( in the regime considered

here. Since & € [0,1/2], it is similar to (2.5)-(2.6) that

(27) =118

when ~ >

(2.8) &=0 when (< —-1land~vy>(,
and
1 1 a—1
. = — 2 — -
(2.9) 1S 5 when ( 5 and v > ( 5

Case III (“disorder” ~ “range” > “entropy”). This corresponds to having {/a—~v = £ —,
that is

(2.10) ¢ =

«

(=)

In this regime, the entropy cost should be negligible compared to the disorder gain, and we
should therefore have that {/a — v >1—-2if £ < 1/2 and {/a—~v > 2§ — 1 for £ > 1/2:
after some calculation (and using (2.10))), we find the following condition on ~y

20— 1) — (a—1 2 DE—(a—1

Ra-1¢—(a=1) ___(Qa+1(—(a=1)

Q 3a

a—1

(2.11)

Moreover, since & € [0, 1], we must have

a—1

(2.12) ¢ — <v<¢

@

To summarize, for a € (1,2], we have identified six different regimes according to the
value of v, (: they are represented in the ({,~y)-diagram in Figure [1| below.

To be precise, the different regions are described as follows:

R1:{£:%a7>i) C>%}7

Ry = {§ = 204011 (1 - '7)7 ITTO[ <7< (2(171)2;(0171) A i}’

R3:{£:17’7<_QT_177<C_QT_1}7
Ra={g= 227 — ), Besliclo) | (¢ ant) < < Casiitoct) )

—1 a 3a

R5:{§:TC’7>M, _1<C<l}7

= Q

3a 2
R6={€=O, 7>C7 C<_1}'
Note that when a = 1, the four lines v = @a—l)e=(a=1) v = Qatlle=(a=b) " 4nq v =,

67 3a

v = ¢ — 21 all merge to the line v = (.
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Rl:fzé Y

Ry:§= Qaa_l(]-*f}/) Ry
R35£=1 R5 L1
RLﬁIﬁ(C—V) Caaces
R5:§=7 /)
Re:e—o° —1

_ Qo+1)¢—Aa-1)

FIGURE 1. Phase diagram in the case a € (1,2]. The region R: and the dashed line
y=_(— 0‘2—;1 are the thresholds that split the regions of super-diffusivity and sub-diffusivity.

2.2. Phase diagram for a € (0,1). Let us simply highlight the main difference with the
case a € (1,2]: the region Ry no longer exists when o < 1, and the region Ry also disappears
when a < 1/2. Indeed, region Ry corresponds to the case “disorder”~“range”, in which we
have £ = 72 (v —(): it is easy check that for a € (0,1) there is no ~y that can satisfy (2.12),
which suggests that there is no “disorder”-“range” balance possible. For the same reason,
when o € (0, 3), there no v that satisfy =2 < y < 5= (see the definition of Ry above),
which suggests that there is no “disorder”- entropy” balance possible: region Ro no longer
exists. We also refer to Section (Comment 2) for further comments on the reasons why
regions R4 and Ry disappear precisely for a < 1 and o < 1/2.

All together, for a € (%, 1) we obtain the ((,~)-diagram presented in Figure [2| below. To
be precise, the different regions are described as follows:

={¢=3 v>5 ¢>3},
R2:{£:2a 1(1_7) 1= a<7<
Ry={¢=1, y<2 y<(-21},
o= {& = 35, (2000 0 (o) <, 1 <c < B,

9 W

/\2a

(2a—1)¢—(a—1) L}

(67

Re=1{6=0,v>(¢— (<5 —2}.
On the other hand, for a € (0, %) we obtain the ({,7)-diagram presented in Figure
below. To be precise, the different regions are described as follows:

SEIT
R3:{£:17 ,7<%047 7<C_%}a
Ro={e= 5, 12 n (- 25 <o, —1<¢< B,
Rﬁ—{f—o v>(— CY,C<f—2}.
Remark 2.1. In the case h < 0, one can conduct similar computation as in (12.4) —(2.12])
and obtain a different phase diagram than those of Figures[I{H3, see Figures[{] and[5 below

(note that regions Ry, Ra, Rg are unchanged, since the range term is negligible in these
regions). Let us stress that when h < 0, the “disorder” and “range” terms both play in
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Y Ry
R1 252%
Ry:€=32(1-7) y = (2a—1);—(a— (%’i)
R3:§=1 R5 RQ
i 0, 15)
Rg:£=0 Rg
Sl ¢
R
(-1.&-2) ’

FIGURE 2. Phase diagram in the case o € (1/2,1). Compared to Figure |1, the region R4
no longer exists.

7 R
R1:§:% 1
R3:§:11 1 1—«
Rs: &= ¢ Rs > a)
flo:6=0 (0, 452)

Rg
v FC— et
R3
(_175_2
¢

FIGURE 3. Phase diagram in the case a € (0,1/2). Compared to Figure |3} the region Ra
no longer exists.

the same direction and encourage exploration, resulting in a much simpler diagram: only
end-to-end fluctuations exponents & = 1/2 are possible, see Section below.

3. MAIN RESULTS

Our main results consist in proving the phase diagrams of Figures [1H1213] with a precise
description of the behavior of the polymer in each region. In order to state our results, let
us introduce some definitions.

Definition 3.1. If (tn)n>0 is a sequence of positive real numbers, we say that (Sp)o<n<N
has end-to-end fluctuations of order ¢y under P%; B b if for any € > 0 there is some n
such that for N large enough

PR sy.hn <  max |Sn| € [n, %] tN) >1—¢  with P-probability larger than 1 — ¢ .
If (Sp)o<n<n has end-to-end fluctuations of order N¢ under PR y.ny: then we say that
the end-to-end exponent is &.
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3.1. Statement of the results. We now prove six different theorems, corresponding to
the six possible regions in the phase diagram. We will specify when the results are specific
or not to the case h > 0; the case h < 0 will be discussed in Section Note that the case
h =0 or § =0 can be recovered by taking ¢ = +00 or v = 400 respectively.

Theorem 3.1 (Region 1). Assume that (1.3) holds with h € R and

{7>21a and (>3,  if ae(3,1)u(1,2],

7>1?T°‘ and(>%, if aE(O,%).

Then, (Sn)o<n<n has end-to-end fluctuations of order v/N under P 5, = (i.e. £ = ),
and we have the following convergence in P-probability
P
(31) ZJL‘\JIWBN,hN E:g’ 1.
Additionally, for every continuous bounded function F' : R — R, we have the convergence

in probability B 5 [F(ﬁSN)] N E[F(Z)], where Z ~ N(0,1).

Theorem 3.2 (Region 2). Assume that (1.3|) holds with B>0,heR and

%<7<%Ai and a€(3,1)u(1,2].

Then (Sp)o<n<n has end-to-end fluctuations of order N® with § = 52~ (1—7) € (3,1) under
PR gy hys and we have the following convergence

N—w NE_V u<0<v

1
(3.2) lim ——log Zy g, ny = W, i= sup {Yu(fj”?)} € (0, +00), P-a.s.,

where Yu(ﬁz) = YUB,Q,(RQ) = B(Xy — Xy) — I(u,v) is as defined in Theorem . Addition-
ally, for any € > 0, we have

o 1 .
Jim Py gy <ﬁ(MN7MzJ\7) ¢ M. (Y 2))) =0, P-as

Let us stress that the case a = 2, § = By = 6 > 0 and h = 0 corresponds to the case
v =0 and ¢ = +o0: we find in that case that the end-to-end fluctuation exponent is & = %

We recall also that the set of quasi-mazimizers M(Y (2)) = M__, M. (Y F2)) is reduced to
one point when o = 2, see [25], or when « € (1,2) with ¢ = 0 in Assumption (1} see [24].

Theorem 3.3 (Region 3). Assume that (1.3|) holds with B>0,heR and
< (=) A (E2) and ae(0,1)u(1,2].

o

Then (Sn)o<n<n has end-to-end fluctuations of order N under Py, 5, = (i.e. £ =1), and
we have the following convergence

: 1 R
(3.3) i 108 785, i = Wrs i sup. {Ylgvs)} €(0,+%), P-as.
where Yu(f}”’) = Yf{,(RS) = B(X, — X,) — 0L fjufnJv| +v—u>1} B8 as defined in Theorem .
Additionally, for any € > 0, we have

1
lim P (- (My MF) ¢ MA(YE)) =0, Peas.

N—oo
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Also here, the set of quasi-mazimizers M(Y (%)) = (__, M. (Y#3)) is reduced to one
point when a = 2, see [25], or when a € (1,2) with ¢ = 0 in Assumption |1} see [24].

Theorem 3.4 (Region 4). Assume that ) holds with >0, h >0 and
(7(20‘71%7(&71)) v(¢- O‘T_l) <7< (7(20‘H)C )A¢ and we(1,2].

« 3a

Then (Sn)o<n<n has end-to-end fluctuations of order N¢ with § = =2<(C—~) € (0,1) under
P Bnihy and we have the following convergence

1
(3.4) h_r)noo NEC log ZN g5 by = Wry = ui%gv {Yu(ﬁ"*)} € (0, +00), P-a.s.,
where Y(R4) YR = B(X, ) — h(v —u). Additionall
0,0 Xy . y, for any € > 0, we have

. w 1 + (R4) _
jvllinooPNm(Ng(M MZ) ¢ M(YE)) =0, P-as,

Also here, the set of quasi-mazimizers M(Y () = (__, M. (YF3)) is reduced to one
point when a = 2, see [25], or when a € (1,2) with ¢ = 0 in Assumption |1} see [24].

Theorem 3.5 (Region 5). Assume that (1.3) holds with 3> 0, h > 0 and

> Qetilazl) - gng 1< ¢ <}, if ae(l,2],
7>(%)A(C—%l) and —1<¢<1i  if ae(3,1),
v> (52 A (C-25L) end —1<(<}, if ae(0,3).

Then (Sp)o<n<n has end-to-end fluctuations of order N& with & = 1;7( € (0,%) under
PR sy.hy: and we have the following convergence in probability

1 w P 3 a 2/3 - ~ 7"-2
(35) m 10g ZNyBthN m —§(h7r) = i;%) —hr — — .

Additionally, for every e > 0, we have P‘]IJV,,BNth(‘ﬁ(M;\} - My) — W%ﬁ_%‘ >¢e) — 0 in

P-probability.
Theorem 3.6 (Region 6). Assume that (L.3)) holds with >0, h >0 and

v >, cmd (< —1, if ae(1,2],
v>(— 1, and ¢ < —1, if a€(0,1).

Then we have the following convergences in probability (implying & = 0)

¢ L, 9
(36) PN BN, hN(|R | = 2) Now ]., and N log Z]u\}faﬂthN N oo 2h.
3.2. Some comments on the results (case h > 0). Let us now make some observations
on our results.

Comment 1. Our results describe the transition from folded trajectories (§ < 1/2) to
stretched trajectories (£ > 1/2), this transition being induced by the presence of disorder.
Let us illustrate this fact, in the case « € (1, 2] for simplicity: we refer to the phase diagram
of Figure |1l If Sy = B >0and hy = h > 0, that is v = ¢ = 0, we find that the trajectories
are folded, with end-to-end exponent { = 1/3.
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Now, if we keep Ay = h > 0 (i.e. ¢ = 0) fixed, and increase the strength of disorder,
that is decrease v (take v < 0), we realize that we have transitions between the following
regimes:

(i) if v > 122, the random walk is folded with end-to-end exponent & = 1/3 (disorder

is not strong enough);

(ii) if 3—“ >~y > 129 then the random walk is still folded, with end-to-end exponent
1/3 <& =~a/(1 —a) < 1/2 (disorder makes the random walk less folded);

(iii) if 12—;“ >y > %, then the random walk is stretched, with end-to-end exponent
1/2 < ¢ =~va/(1 — a) < 1 (disorder is strong enough to stretch the random walk);

(iv) if vy < 1?70‘7 then the random walk is completely unfolded, and has end-to-end expo-
nent & = 1.

Analogously, if we keep Sy = 3 > 0 (i.e. v = 0) fixed, and decrease the penalty for the
range, that is increase ¢ (take ¢ > 0), we have transitions between the following regimes:

(i) if 0 < ¢ < ﬁ, then the random walk is still folded with end-to-end exponent
1/3<¢é&=(1+¢)/3<a/(2a+1)(< 1/2) (and it does not feel the disorder);

(i) if 2= < ¢ < %1, then the random walk is still folded with end-to-end exponent
a/2a+1) <€ =C(a/(a—1) < 1/2 (and disorder plays a role);

(iii) if O‘O} < (< 20(‘;_11, then the random walk is stretched, with end-to-end exponent
12<é=va/(l—a) <a/(2a—1) (< 1);

(iv) 1f ¢ > £=L then the random walk is stretched and has end-to-end exponent 2/3 <

= a/(2a — 1) < 1 (it does not feel the penalty for the range anymore).

Comment 2. Let us now comment on the limiting distributions for the log-partition
function in regions Ry, R3, R4. For simplicity, we will restrict ourselves to the case where
= 0 in the variational problems —— (which corresponds to considering the
case of a random walk constrained to stay non-negative): the variational problems become,
respectively
(3.7)  Whg, :=sup {BXU — %1}2}, WR3 = B sup {X,}, Wg, :=sup {BXU — lAw}
v=0 vel0,1] v=0

a) The variational problem WRg is clearly always finite. In the case a = 2, (Xy)i>0 is
a Brownian motion, and it is standard to get that WRg has the distribution of 3 |Z|, with
Z ~ N(0,1). In the case a € (0,2), (X¢)i>0 is a stable Lévy process, and we get that WRB
is a postitive a-stable random variable (see [8, Ch. VIII], and also [22]).

b) The variational problem W& is finite only when o > 1: when « € (0,1), then X,
grows typically as v¥/® » v as v — o0, and we therefore have Wrg, = +. This explains
in particular why there is no energy-range balance possible if a € (0,1), and why region Ry
no longer exists in that case. If a = 2, (X;)¢>0 is a Brownian motion, and it is standard to
get that Wg, is an exponential random variable (here with parameter 2h/82). If o € (1, 2),
(X¢)e=0 is a stable Lévy process, and (BXt —ﬁt)tzo is also a Lévy process: the distribution of
its supremum WR4 has been studied intensively, going back to [2], but the exact distribution
does not appear to be known (we refer to the recent papers [12], 23]).

c) The variational problem WRQ is finite only when o > 1/2: when « € (0,1/2), then X,
grows typically as v'/® » v? as v — o0, and we therefore have Wpg, = +00. This explains in
particular why there is no “energy”-“entropy” balance possible if « € (0, %), and why region
Rs no longer exists in that case. In the case o = 2, that is when (X¢);>0 is a standard
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Brownian motion, then WR4 has appeared in various contexts, and its density is known (its
Fourier transform is expressed in terms of Airy function, see for instance [14] 19]). In the

case v € (£,2), we are not aware whether the distribution of WR4 has been studied.

29

Comment 3. We chose in this paper not to treat the cases of the boundaries between
different regions of the phase diagrams, mostly to keep the paper lighter. These boundary
regions do not really hide anything deep: features of both regions should appear in the limit,
and “disorder”, “range” and “entropy” may all compete at the same (exponential) scale.
Let us state for instance the limiting variational problems that one should find in some the
most interesting boundary cases, in the case o € (1,2] (we refer to the phase diagram of
Figure :

e Line between regions Ry and Ry: v = % and ¢ € (0,3). Then one should

2
have £ = O‘Q(;:? and

d ~ ~
N26-1 log Z]u\)f,BN,hN - ui%zv {B(Xv — Xu) — h(v—u) — I(u, v)} .

e Line between regions Ry and Rj: v = (20‘“)3(% and ¢ € (—1,3). Then one should
have £ = 1;:—4 and

1 d A A T
Nz 108 Z ey~ D {B(X, = Xu) = b =) - S u)2} .
where the last term inside the supremum comes from the entropic cost of “folding” the
random walk in the interval [uN¢, vN¢] (see Lemma [A.3)).

e Line between regions Rs and R3: v = —(aw — 1)/ and ¢ > 0. Then one should have
& =1and

1
T 08 ZR e s {B(X0 = X0) = sul A fol + v = w)}
where (t) := 3(1+t)log(1 +¢) + 3(1 —t)log(1 —t) for t € [0,1] (k(t) = +oo for ¢t > 1) is
the rate function for the large deviations of the simple random walk, see Lemma

e Line between regions R3 and Ry: v = ( — (o — 1)/ and ¢ < 0. Then one should have
& =1and

1 . .
V2T 108 2y g~ D {B(X0 = Xa) — h(v —w) = w(ful A o] + v~ )}

Comment 4. In region R, the disorder term does not appear in the variational formula.
In the case f = 0 and h > 0 (i.e. v = 00, ¢ = 0) corresponding to the random walk penalized
by its range with no disorder term, the behavior of the random walk is well understood:
it is confined in a segment of length (ﬂ%fz_%)N 1/3 with a random center, see [27] for the
continuum limit of the process. In our model, we have shown that trajectories are still
confined in a segment of length (ngf%)N /3. However, disorder should appear in the
fluctuations of the log-partition function and in particular we believe that, depending on
the strength [y of the disorder interaction, the center of this segment should be determined
so as to maximize the amount of potentials in that segment; in particular, it should not be
random anymore (under P% 5, ., for almost every realization of w). We leave this as an
open problem.

3.3. Complements on the results: the case h <.
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3.3.1. The phase diagram. In the case h < 0, the same type of “energy” vs. “range” vs.
“entropy” heuristics as in Section [2| can be carried out. The main difference is that the
“range” term is now a reward rather than a penalty, and thus plays in the same direction
as the “disorder” term and encourages stretching: the end-to-end exponent will always be
¢ > 1/2. Recall that for a polymer with typical end-to-end distance N¢, the “range” term is
of order N¢=¢ | the “disorder” term is of order N¢/®~7 and the entropy term is N26—1 (since
¢ > 1/2). In a similar fashion than in Section [2| we find that there are two cases that need
to be considered.

Case I (“disorder”>» “range”). As mentioned in Remark regions Ry, Ry, R3 are un-
changed when h < 0: we refer to —— for the determination of £ in these three
regions.

Case II (“disorder” < “range”). The balance between range and entropy is achieved if
€ — ¢ =26—1 (with € € [$,1]), which gives £ = 1 — ¢ when ~ > 2=Dlozl) - Atgo we
havef=1when§<0and7>§—°‘7fl, andwehave§=1/2WhenC>1/2and'y>i.

To summarize, we can identify different regimes according to the values of «, (: there are
five regimes when « € (%, 2], see Figure || below; there are four regimes when « € (0, %), see
Figure [5] below.

0l Ry
Fiié—3 (3 25)
R2:€: 20?_1(1_7) - ?
Ry:6=1 N Ry (2a—1)¢—(a=1)
E42§=1—C R5
R5Z€=1 R2
¢
= (—a=L 0. 1=
v=(— % ;22) Rs

1 Ry =
Ry:&=3 X
Ry:€=1 ~ (0,1=9) (3,1=9)
~ R « 27 o
Ry:€=1-¢ ’
R5:£:1 ’yzg_aT_l R3
¢

FIGURE 5. Phase diagram for h < 0, in the case a € (0,1/2).

3.3.2. Statement of the results. We only state the results in regions }~24 and }~25, since the
regions Rj, Ro and Rj3 are treated in Section see Theorems and (respectively).

Theorem 3.7 (Region ]§4). Assume that (1.3]) holds with B>0,h<0 and
20—1)( — (aa—1 1-— 1
’Y>(a folaml), ® ¢y

leY a 2
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Then (Sp)o<n<n has end-to-end fluctuations of order N& with € = 1 — ( € (%,1) under
PR syhn and we have the following convergence in probability

1 r 1. )
3.8 —_log 2% SN {h — ) = I(u, }
( ) NEC 08 4N 8 by Noowo 2 ui%gv ‘ |(U u) (u U)

Additionally, for every e > 0, we have PY 5 (|ﬁ|SN| — |ﬁ|| > 5) — 0 in IP-probability.
Before we state the result in region Rs (which is somehow degenerate), let us state a

result in the case ¢ = 0, that is at the boundary of regions R4 and Rs.

Theorem 3.8 (Boundary }~24—]§5). Assume that (1.3)) holds with B >0, h<0 and with
(=0,v> —O‘T_l. Then we have the following convergence in probability

1 w P e2lhl _ - -
(8.9) 108 Z§ 5,y ——— log (<5=) —[h| = sup {|h|(vfu)f/£(|u|/\|v|+vfu)}.

—0 u<0<v

€2|?‘—1
e2lhl 41

Additionally, for every e > 0, we have PR 5 (’%]SN] — } > ) — 0 in P-probability.

To conclude, we state the result in region Rs.

Theorem 3.9 (Region ﬁi5) Assume that (1.3]) holds with B>0h<0and ¢ <0,
v>(— O‘T_l Then

— P ¢-1 P 7
PTVyBNth(’SN| = N) —)N_>Oo 1, and N logZK/v:ﬁN,hN NTOO) ‘h| .

Comment 5. Notice that in Theorems and [3.9] the disorder term disappears
in the limiting variational problems, and the displacement of Sx under PR sy ny 18 given
by a (non-random) law of large number. Analogously to our Comment 4 above, disorder
should appear in the fluctuations of the log-partition function and in the second order term

for the displacement of Sy. For simplicity, let us comment further the case where 5 > 0,
h < 0 are fixed (namely ¢ = 0,7 = 0) and « € (1,2], i.e. Case 1.(c) of Theorem (or

Theorem . In that case, the polymer has a (non-random) velocity vy, := % But
randomness should have the effect of stretching (or at least moving) further the polymer.
One can check that moving the random walk further from v, N by tN¢ (with ¢t € R) has an

additional entropic cost of roughly %n” (v, )t2 N2~ (the range variation —htN¢ is canceled by
K (v, )tN¥), whereas the energy gain is roughly (tN¢)V/®. This suggests that under P% sn
one should have |Sy| ~ v, N + VN® with { = 5%+, and where V is the location of the

a—1"
maximum of the variational problem sup,eg {8X; — 3" (v)t?}. This goes beyond the scope

of this article and we leave this as an open problem.

3.4. Organisation of the proof, and useful notation. We prove our results for Re-
gions R; to Rg (and ]§4 to 1§6) in the order listed above, by making our heuristic analysis
for (2.3 rigorous. The results in Regions Re, R4 and Rs; (and }~?4) involve competitions
between “energy”, “range” or “entropy” (but all have the same scheme of proof), while
Regions Ry, R3 and Rg (and _§5) are extreme cases where only one factor is significant and
hence are much simpler.

In the rest of the paper, to lighten the notations, we will drop the dependence on By
and hy: we write P% instead of P%,Bwvhw and ZY% instead of Z]‘*\’,75N7hN. We also use the
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convenient notation Z% (E) for the partition function restricted to trajectories (Sy)nen in E;
more precisely,

(3.10) Z5(E) =B exp (Y] (Bxws — hn)Laery ) 1 |
zeZd

This way, we have that P{ (E) = Z{(E)/Z%.
Denote also

J —1
(3.11) OF = > we, Q= > w, forj=0.
z=0

r=—j
(with the convention that €2y = 0), and let
(3.12) Q7 := sup |Q;]+ sup |Q+|

o<yt o<yt

Recall that we set M;\} = maXo<n<N Sp = 0 and My 1= ming<,<n Sp < 0 the right-most
and left-most points of the random walk after N steps; denote also M} := maxo<n<n |Sn| =

max(My;, —My). With these notations, notice that we have DRy Wz = Q+ —I—Q:M, Let

us state the following (standard) lemma, that we prove in Appendix for completeness.

Lemma 3.10. Let QF defined as in (3.12). Then, under Assumption (ece (0,1) U (1,2]),
there exists a constant ¢ € (1,+00) such that for any T > 0 and any ¢ we have

(3.13) P(Q; >T)<clT .

4. PROOF OF THE MAIN RESULTS
4.1. Region R1: Proof of Theorem [3.1] Recall that in Region R; we have

{’y>2 and (>3, if ae(3,1)u(L,2],

1 1 1
y>—9—= and C>7, if ae(0,5).

Let us note that we always have v > 5-, since === > % when o < 1/2.

Convergence of the partition functz’on. Fix A (large), and split the partition function
in the following way

(4.1) 7% = Z% (MY < AVN) + Z% (M > AVN).

Upper bound. 1t is easy to see that, recalling the definition (3.10)) of the restricted partition
function, since hy = 0 we have

(4.2)  Z{(My < A\ﬁ) exp (BN 7QA\F> ( A\/>> exp <BN 7QA\ﬁ>
By Lemma we get that
(4.3) P(Z;{, (M} < AVN) > e€> p (ﬂN 0y > ) < CE’QBO‘AN(%"”).

Therefore, since in Region 1 we have that v > 5, we get that ( is bounded above by e®
with P-probability going to 1 as IV goes to 1nﬁn1ty

It remains to show that the second term in (4.1)) is small, with high P-probability. In this
case the computations for the case a € (0,1/2) and a € (1/2,1) U (1, 2] are different and we
present them separately.
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Case av € (1/2,1) u (1,2]. We have the following upper bound

z% (Mj\k, > A\/N) < i VAT (M;; e (2" 14V/N, 2kA\/N])
k=1

(4.4) < i exp (BN—mgk B W)P(M]’f, > 261 AV/N)
k=1

Then, it is standard to get that P(M3 > z) < 2exp(—%) for any x > 0 and N € N (
thanks to Lévy’s inequality and a standard Chernov bound), so that

(4.5) P(Mf > 27 AVN) < 2exp (—22%7242)
and
©
z% <Mj’\‘, > A\/N) <Y 2exp (BN*’YQ; . m) P
We therefore get, by a union bound, t}li;tl
—A

IP<2 exp (ﬂAN*VQ;kA\/N>e*2%_3A2 > ¢ )

]P(Zf{,(Mj'\‘,>A\/N)>e’A> < S

(4.6)

D8 T8

<

~

A A=Y (O 2k—4 42

IP(ﬁN 0, > 2 A)
k=1

where for the last inequality A is chosen large enough so that e=427% x %exp (22’“*3142) >

exp(22F=4A2) for all k > 1. Using Lemma we get that

(4.7) IP(Q;"k AN
1

Summing over k, and using that a > 3, we finally obtain that for A sufficiently large,

< 3—1221c—4A2N7) < CBoc2—k(2a—1)N(%—a7)A1—2a‘

(4.8) P(Z (MF > AVN) > e4) < car-2onGo.

Note that this goes to 0 as NV — o0, since v > i

Case a € (0,1/2). Let us consider the following decomposition
(4.9) Z% (M > AVN) = 2% (M5 € (AVN,N¥)) + 25 (M € (N*/4, ).

We then bound the first term as above, see (4.4):

logo N1/4
(4.10) 2% (Mj; e (AVN, N3/4)) < Y e (5N—m;k ., ﬁ)P(M]’(, > 261 AV/N)
k=1

and the second one similarly:

log, NY441

Z%(Mjf, € (N3/4,N]) - ) Z;’,(Mj‘\‘, e (275 1N, 2"“N])
k=0

logy NV/441

(4.11) < Y exp(BNTIOf )P (M = 27N,

k=0
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Let us observe that as in (4.5)), we get that
P (M > 27 AVN) < 2exp (—2%7042) | P(MF > 27FIN) < 2exp (—27 %N

Combining (4.9) to (4.11)), we get that, analogously to (4.6)), by a union bound

10g2N1/4
1 -
]P(Z]u\)[(M]tf > A\/N) > €7A> < Z ]P( BN~ QQ’CAW > 2k+1 _A422k 3A2>
k=1

logo NY441 1
+ D) IP( INTU oy —e‘A”f%fSN).
k=1
Using again Lemma as in (4.7) (with A fixed sufficiently large and N large enough), we
get that the above is bounded by a constant times

log, N1/4 logy NY4+1
Z Baz—k(Qa—l)N(%—a'y)Al—Za_i_ 2 Bazk(2a—1)N1—a(l+’y) )
— k=1

Since a < 1/2, we therefore get that
(4.12) IP(Z]“\’, (M} > AVN) > e_A) <y sl NG-

w|R

—ary) + C% Nl_a(1+7)7

11—«

and both terms go to 0 as N goes to infinity, using that v > =% and a < % for the first
term, and vy > 1?70‘ for the second term.

All together, we have proved that in both cases a € (1,1) U (1,2] and a € (0, 3), for any
e > 0 and A sufficiently large, with IP-probability going to 1, we have Z§ < e + e~

Lower bound. To achieve the lower bound, we use that
(413) 2% > Z9 (M} < AVN) = exp( AN~ mAfoAi}N%—C) p (M;’;, < A\/N).

Using that P(M} < AVN) = (1 - —A? /2) and the last upper bound in (4.3)), we get that
with P-probability going to 1 as N goes to infinity, the right-hand-side of (4.13) is larger
than
e—a—2AﬁN1/2*4(1 o 26_A2/2) > 6—25(1 o 2€_A2/2)
the last inequality being valid for N large enough, using that ¢ > % We then get that
]P(Z;;’, <e(1- 2e—A2/2)) — 0.
N—0

Combined with the upper bound, this concludes the proof, since € and A are arbitrary.

End-to-end fluctuations. From the calculation above, we directly have that, for A large,
P4 (M} > AVN) = Z%(M3 > AV/N)/Z% is bounded by a constant times e~4, with
P-probability going to 1 as N goes to infinity. It remains to show that if n is small then
P% (M} < nv/N) is small, with high P-probability. Since Z% LN 1, it is sufficient to show
that Z% (M7 < nV/N) is small, with high P-probability. But we have the following upper
bound, identical to (4.2):

(4.14) Z5%(ME < npVN) < exp (BN‘VQ: m) P(M]*V < n\/ﬁ).
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n\/N) < e/,
1) goes to 0 as

Then, standard arguments (in the spirit of Lemma|A.3) show that P (M
On the other hand, using again Lemma [3.10, we get that IP(BN_VQ*W

N — o (using again that v > %) This shows that Z4 (M3 < nv/N) < el=¢/m* with
probability going to 1 as N — c0.
All together, this shows that (S,)o<n<ny has end-to-end fluctuations of order v/N un-

der P%;.

<
=

3

Convergence in distribution of LNS ~- In this regime the presence of the disorder and
the range disappear and the central limit theorem that we get is the same as a simple random
walk (S, P).
We bound the difference between the characteristic functions: let A > 0, then
SN SN 1 _
B[] - B ]| < EHZ%GZMN eI v |
(4.15)
Z% (M7 > AvVN
+P(M}; > AVN) + My o vN)
ZN
As in (LF), we have P(M} > AVN) < e°4* and by ([@.8) and [@.12), for A sufficiently

large we have

IP<Z;¢(M,*V > AV/N) < e_A) 0
Z% N—w

Moreover, for any € € (0,1) we let
.AL}JV’s = {5NQZ\/N<E’ 1_5<Z]U<[ < 1+5}.

Then, by (3.1) and (4.3), P(AR ) — 1 as N — +o0. Note that on the event {M} < AN}
we have that hy|Ry| < 2AhnyV N — 0 because ¢ > %, so that on A‘]"Vﬁ it holds that

L Scr v Bvwa—hn Rl
EHZR)TG Ry PN NI|/YN _]“:H‘{M;{}SA\/N}] < ce.

Therefore, for any ¢ € (0,1) and A sufficiently large, with P-probability going to 1, (4.15)
is smaller than ce + 2e~4. Hence, the left-hand side of (4.15]) converges to 0 as N — o,
in P-probability. This concludes the proof since E[exp(it\/—ﬁS ~N)] converges to E[exp(itZ)]

with Z ~ N (0,1), by the central limit theorem.

4.2. Region R2: proof of Theorem We prove that in region Ry the end-to-end
fluctuations are of order N¢ with & = 5o-7 (1 — 7). Recall that in Region Ry we have

25—1:§—y>§—< with ae(3,1) u(1,2],

and that region Rz does not exist when a < 1/2.

Convergence of the log-partition function. We fix some A large, and split the partition
function as

(4.16) 7% = 7% <Mj\‘, < ANf) o (M;’\‘, > AN5) .

The proof of the convergence is divided into three steps: (1) we show that after taking
logarithm and dividing by N2~1, the first term converges to some random variable W}%Q as
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N — o0; (2) we show that the second term is small compared to the first one; (3) we let
A — o0, and observe that W% converges to Wr,.
Step 1. We prove the following lemma.

Lemma 4.1. In Region R, we have that IP-a.s., for any A € N,

li 71
Nl—r>noo N26-1

with (Xt)ter from Deﬁnition and I(u,v) = $(Ju| A [v| + v —u)?.
Proof. Let us fix § > 0, and write

log 7% (M;*V < AN5> —WA = sup {B(Xv X)) — I(u,v)} :

—A<u<0<v<A

[A/5] [A/d]

(4.17) ZNS o= Z5 (M < AN®) = >0 3 Z%(ka, ko, 6),
k1=0 ko=0

where we define

(4.18) Z% (k1 ko, 0) := Z% (M]; e (—(ky + 1)ONS, —kySNE], My € [kad NS, (ks + 1)5N€))

recall the definitions My := ming<p<n Sp, and M3 := maxg<p<n Sp). Since there are at
most (A/8)? terms in the sum, we easily get that
(4.19) max log Z% (ki ka2, 0) < log ZiS < 2log(A/8) + max log Z¥ (k1, k2,9) .

Ok ko<% O<kika<4
Upper bound. As an upper bound on log Z% (k1, k2, d), we have

log Z% (1, k2, 6) <Bn (kal el + U sve J) + BN RS (K1, k20)

(4.20) \
+ |h|(ky + ko + 2)6NSC + pd (K16, kad),

where for u,v = 0 we defined
(4.21) Ry (u,v) := roaf

Q. —QF max ‘
uNE<j<(v+8)NE—1 1 7 loN¢]

max ‘ ‘ +
uNé+1<j<(ut)NE—1 | 7 luN¢]

)

and
(4.22) P (u,v) :=log P <M]\_, e (= (u+ 6N —uN*|, My, € [oNS, (v + 5)N§)> .

Write u = k10, v = koo and set Us = {0,6,26, ..., A}: using that 26 — 1 = {/a — 7, we get
that

(4.23)
IOgZ%(kl,k'Q,(s) R n ASar—E 55
(o TR < g {ANE (O + Yo + AN R (w00)

+ 1R (u + v + 20) NE=O=6=1) 4 N=C6=D0 (y, v)} .

It is easy to see that the third term in the maximum goes to 0 uniformly in u,v, since
u+v+20 < 34 and we have £ — ( < 26 — 1 in Region 2. Note that we have that

(N—ﬁ/an’qu)ue[O’AM] and (N_g/an;)Ngj)Ue[O,A‘i‘é] converge to two independent Lévy pro-

cesses (Xt(tl))ue[o, A+s) and (Xéz))ve[o, A4s] (with no drift, no Brownian component and Lévy
measure v(dr) = a(pli=op + ¢l{z<0}) |z|~17* dz if a € (0,1)U(1,2), or standard Brownian
motions if a = 2).
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Note also that thanks to Lemma[A.1] (see (A.2))) we have

1
lim N~ Vpy(u,v,8) = —J(u,v), with J(u,v):= i(u/\v+u+v)2, u,v=0.

N—o

Since the maximum is over a finite set (and recall the definition (&.21]) of R%/), we readily
have that the upper bound in (4.23)) converges to
(4.24)
ng ;= max {B(X&l) + Xf)) + 3 sup |X$2t ] + 3 sup |Xv+t X£2)| — J(u, v)}
0<t<6 0<t<6
Lower bound. On the other hand, we have the following lower bound on log Z%; (k1, k2, 6):
5N( aone] + s ) — BN R (K18, ka8) — || (ko + K1 + 2)SNE + pdy (K18, kod).
and thus, setting u = k19,v = kod and Us = {0, 9, ..., A} as above, we obtain
(4.25)

].OgZ]u\'}(kl,kQ,(S) R n Sar—& 158
oy i 2 i (AN (e + Uoe) — ANTE R0

— |R|(u+ v + 26)NE=O=(26-1) | N—(%- 1)pN(u,v)}.

We get as above that the lower bound in (4.25)) converges towards
(4.26)
Wﬁf = max {B(X( )+ X@) — B sup ]X — X =3 sup |X UH 1()2)|—J(u,v)}.

u,veUs 0<t<6 0<t<é

Conclusion. By Skorohod’s representation theorem, we have realized the upper bound
and the lower bound on the same probability space, and they are a.s. upper and lower
bounds for limsup N~(¢=1 log Z0'S and lim inf N~(¢=1) log Z%'S respectively. Notice that,
by a.s. cad-lag structure of trajectories of Lévy process (continuity in the case of Brownian
motion), we clearly have that

mWi? = lim Wil = sup {5(X§1>+X§2>)—J(u,u)},

10 10 u,ve[0,A]
which is exactly Wﬁg, defining X; = — (t) ift <0 and X; = ( Vif ¢ > 0, and I(u,v) =
J(—u,v). Letting N — o0 and then ¢ | 0, this concludes the proof of Lemma, O

Step 2. Next, we prove the following result.

Lemma 4.2. In region Ro, there is some Ag > 0 and some constant C' = CB such that, for
all A = Ay,

IP(N% plog Z (M5 > AN®) = —1) < ',
(Recall that o > 1/2 in region Ry.)

Since a > 1/2, this proves that almost surely, there exists some A = A(w) such that the
second term in (4.16|) is small compared to the first one, thanks to Lemma using also
that WﬁQ > 0 (by taking u = 0 = v).
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Proof. Let us write

0
797 = 7% (Mj‘{, > AN5> -3z <Mj(, e (281 ANE, 2kANf])
k=1

18

4.27 < Nexp (BNTYQE ve + [RINTC2FHINE) P (M = 281 ANE)
2k ANE N

k

and note that P (M]"\‘, > 2]"_1AN§) < 2exp (—22k_3A2N25_1). Therefore, thanks to a union
bound, we get

1

A o2k—4 42 N26—1 1 a2

18

> 261
]P<Z]°§ >e N ><

k=1

18

(4.28) < D P (BN e > 2 TTAINET)

Bl
Il

1

where for the first inequality, we use the fact that 2k+1|B|N§_C < 224 A2 N1 for large
enough N since £ —( < 26 — 1 in Region 2; the last inequality holds provided that A is large
enough. Then, using Lemma and the fact that 26 — 1 + v = £/a, we get that

P (BN*WQ;MN& > 22k74A2N2§71> < cfro1-20)k y1-2a
Summing this inequality over k, since « > 1/2, we conclude the proof of Lemma O

Step 3. Let us note that, by monotonicity in A, we have that Wg, = limay WﬁZ is well
defined (possibly infinite) and non-negative. We prove the following lemma:

Lemma 4.3. If a € (3,2], we have that Wg, := supugoév{B(XU — Xu) — I(u,v)} is P-a.s.
positive and finite.

Combined with Lemmas this readily proves that N ~(2¢=1) Jog Z' converges almost
surely to Wg, as N — 0.

Proof. To show that Wg, > 0 almost surely, notice that taking u = 0 we have
Wg, = sup {BXU — 2.
v=0

1/a
n

Then, almost surely, we can find some sequence v,, | 0 such that X, > vy~ for all n (cf.

[1, Th. 2.1]): we then get that Wg, > suanO{vall *— IvZ} > 0 since a > 1/2.
To show that Wg, < 40 a.s., notice that I(u,v) = 3(Ju| A [v]| + v —u)? = F|u? + L|v[%
we therefore get that

Wr, < sup {3Xu — 1u?} + sup {BXU — 12
u<0 =0

Each term is clearly a.s. finite. Indeed, if we consider the second term we have that almost
surely, BX,— %112 < 0 for v large enough: this is a consequence of the fact that for any € > 0,
a.s. X, < v(1+9/% for v large enough, cf. [26, Sec. 3]. Therefore, 53X, — Fv% < Bote)/a
%UQ < 0 for all v large enough, provided that e is small enough so that (1 + ¢)/a < 2.

Similarly a.s. BXH — %uQ < 0 for all uw large enough, which concludes the proof. O
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End-to-end fluctuations. Notice that Lemma shows that the polymer (S,)o<n<n
has end-to-end fluctuations at most of order N¢ under P%;. We can actually deduce from
Lemmas and . that it also has end-to-end ﬂuctuatlons at least of order N¢. Indeed,
we can show that P (M3 < nN £) is small, with high P-probability: we have that

log P (M3 < nN®) = log Z§ (M3 < nN®) — log Z§,
and so, by Lemma we get that N~(Z-1]og PS (M5 < nN¢) converges a.s. toward
Wi, —Wr,. We therefore get that PR (M7 < nN¢) goes to 0 if log PY (M3 < nN¢) — —oo,
which happens with probability P(Wy, — Wg, < 0). Since W, goes to 0 almost surely as
1710 (both X;, — X, and I(u,v) tend to 0), we get that P(W} — Wr, < 0) goes to 1 as

1 | 0. This concludes the proof that the polymer (S, )o<n<n has end-to-end fluctuations of
order N¢ under P¥,. O

Convergence of (My,My;). Let us define, for £,¢" € (0,1)

Z/l;’j= {(u,v)eR_ x RT: sup {3(Xt—Xs)—I(s,t)}2WR2—5’}’
(s,t)eBe (u,v)

where B (u,v) is the closed ball of center (u,v) and of radius € > 0. Let us observe that U5
nay not be closed, but it is bounded: we know that a.s. the supremum outside a compact
[—A(w),0] x [0, A(w)] is smaller than —1 < Wg, — &/, see Lemma We now prove that

for any £,&’ € (0,1) , we have limy_o P{(5e (My, M) € L{;’j) = 1 almost surely.
To simplify the notation, we denote the event {ﬁ(M N M) ¢ Z/{;jj} by Ai’f}h. We have

log PR (AY g,) = log Zi (A ,) — log Z§ .

From above, we have that N1 Jog Z'5 converges almost surely to Wg,, so we only
have to prove that limsupy_,., N~(3~1 log Z%(AY R,) < Wr, as. Thanks to Lemma

we only need to estimate Z% (M} < AN¢; ?VE;%Z) For any § > 0, we perform a similar
decomposition as (4.17) to get

|A/8) | A/5]
(4.29) Zy~( NRy) = Zn (MY < ANS; NR2 Z Z Z§ k1, k2, 0 AN R,
k1=0 kg=0
where we defined Z% (k1, k2, 9; Af\’f}b) as
(4.30) 2% (M;, € (— (k1 + 1)SNE, —kiSNE], My € [kaONE, (kz + 1)IN); AS )
By definition of A?\?i%y we get that
< 4 A 2
(4.31) Zy~ (AR, < (5> max  Zy(k1, k2, 0),
(k17k2)€U§7’;2

where Ussy, = {(ki, k2) : k1, kad € Us, (—(k1 + 1)8, —k18] x [k26, (k2 + 1)8) ¢ U5}, with
Us = {0,0,20,...,A}, and the maximum is 0 if U;’EI is empty.
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Now, by the same argument as in Step 1, we have that

(4.32)
1 / A
lim sup lim sup —-— N — log Z9S( f\ng) < sup {ﬁ(XU - X)) — I(u,v)} < Wg, — ¢,
0—0 N—0 (u ’U)$U§’El

by definition of U}’ <" This concludes the proof that P% % (AN R, ) — 0 a.s.
At this stage, We show that for any £ > 0, there is a.s. some &’ (that depends on w) such
that Uy is included in M., the interior of Mo, := Mo (Y (B2)). Then, since M. < Ma.

we have a.s.

M Py <N5

Let us proceed by contradiction: if for any ¢’ > 0, Z/{;’j is not contained in Mo, we can select

(M, M )¢M25)=0.

a subsequence (x)gen such that zj € Z/{5 Y k\/\/lgg. Then, by compactness, we can suppose
35/ 2,e

that the sequence (zg)reny converges to a limit x,. We claim that z, € ﬂe U

M < Moz indeed, for any k large enough we have that |z — z4| < /8, so that

B () © Bszjo(24). But by assumption, since Mo, is open, we have x, ¢ Mo, which is a
contradiction.

4.3. Region R3: proof of Theorem We show that in Region R3, we have & = 1.
Recall that in this region
y<(—29Ll and 7<1?T°‘,

with a € (0,1) U (1,2]. First, we prove the convergence in (3.3)).

Convergence of the log-partition function. First of all, notice that we can reduce to
the case hy = 0. Indeed, we have the bounds

—|hNIN lhNIN

w w w
ZN By hy=0 X € < ZN gy hN<ZN5NhN:oX€

Since hy ~ hN"¢ with ¢ > v + @ —, we have that N~(G=)|hy|N — 0. In the following,

we therefore focus on the convergence of N™ (a )log ZN gy hy=0- We write for simplicity
Z% for Z% 5 p o o
For any § > 0, we can write
[1/5] |1/9]
(4.33) Z% =Y, D, Zi(k, ks, 0),
k1=0 ko=0
with Z (k1, k2, d) as in with £ = 1. Let us stress right away that since there are at
most N steps for the random walk, we can have My < —k10N and M ; > koON only if
5(/6’1 Ako+ k1 + k‘g) < 1.
Hence, writing u = k16, and v = ks, and Us = {0, 0,20, ...,1} we have

(4.34) max  log ZN(%,%,0) <log Z% < —2logé + max log ZN (%, §,0).
1LAv1i—u+(1§)<1 u/\v+u+v<1
For the upper bound, we have
(4.35)
Lo _1 _1
max N7 logZN(% $,0) < ax B( e N ‘”Qf;NJ + N aR%(u,v)) ,

uAv+ut+v<l uAvt+ut+v<l
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where, analogously to (4.21)), we set

(4.36) R (u,v) := max ’Q._ - Q

+ max ‘Q* - Qf
uN+1<j<(utd)N—11 7 WVJ)

oN+1<j<(v+o)N—11 7 U’NJ’ ’

As in the previous section, we get that the right-hand side in (4.35)) converges toward

(4.37) )7\/\%3 = max {B(X(l) +X1()2)) +B sup ]XI(LIJZt—qul)\ +B supale(,i)t—qug)ﬂ}.

u
u,veUg
unvtut+v<l OStS(S OStS

For the lower bound, we have

1 A ar— Ll 1.
max N""olog Zn(%,5,0) = max {ﬁ (N oy + N anUNJ)
(438) unvtut+v<l uAvt+u+v<l

— N"a R (u,v) — AN — N4 Jog 2} ,

where we used that any non-empty event of (Sy,)o<n<ny has probability at least 2=V, Now,
since v < ¢ + é —1land v < é — 1, the last two terms go to 0: we get that the right-hand

side of (4.38]) converges toward

(4.39) Wh, = max  {BXD + XP) -8 sup XY, - x| B sup X7, - X2},

v
w,veUs
wavbuto<l 0<t<é 0<t<$

Then, we can conclude in the same manner as in the proof of Lemma[4.1} letting N — oo
1

and then ¢ | 0, we get that N7 2 log Z converges almost surely to

I8 VA 5 1 2

VR = PR = e B X

unvtut+v<l

where the limit holds thanks to the a.s. cadlag property of trajectories of the Lévy process
(or the a.s. continuity of the Brownian motion), and is exactly the variational problem Wg,
defined in Theorem (by setting X; = —X(_lt) ift <0and X; = Xt(2) if t > 0). Together
with the (trivial) fact that Wg, € (0, +00) a.s., this concludes the proof of Theorem

End-to-end fluctuations. It remains to show that (S,)o<n<n has fluctuations of order at
least N under P, since we already know that maxo<p<n |Sn| < N. we proceed as in the
previous section. For > 0 we can write

log PR (My < nN) = log Zy(My < nN) —log Z ,

and so, by Lemmawe get that NV T—a log PX (MR, < nN) (by astraightforward adaptation
of the above proof) converges toward W%S — Whr,, where

Wp, = sup {B(Xl(tl) + X£2))}.

—NSU,vSN
uArv+utv<l

We therefore get that P% (M3 < nN) goes to 0 with probability P(W, — W < 0). Since
W]gg goes to 0 almost surely as n | 0, we get that ]P(VVZ3 — Wg, <0) goes to1asn | 0.

This concludes the proof that the polymer (S, )o<n<n has end-to-end fluctuations of order N
under Pg;. O
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Convergence of (M, M]J\;) The proof follows the same strategy as in Region 2, so we
only give a sketch. Let us define the counterpart of Z/{;’j in Region 3 by
Z/l;j ={(u,v)elR* x RY5|ul A o] +v—u<1, sup (B(X; — X))} = WRg—a}

s<0<t,(s,t)EBe (u,v)
[s|Alt[+t—s<1

Then we denote the event {+(My, My;) ¢ U;’j} by A?\f}%g' By the same procedure as in
Region 2, we can first show that a.s.

1 1

limsup —— log Z5 (AY ) <Wg, andso limsup—— log P (AS NR ) <0.
N—w Na N—w Na 3
We then deduce as done in Region 2 that P-a.s.,
1
(4.40) lim P, ( (Mg, M) M25> ~1,
—00

which completes the proof.

4.4. Region R4: proof of Theorem We prove that in Region Ry, we have £ =
~%7(¢ — 7). Recall that in region R4 we have

(Bomlelanh)y | (¢ — azl) <y < (Lotlozl)y ¢ with ae (1,2],

@ 3o

and that { — ( = §/a—v > (2§ — 1| (£ € (0,1)). Recall also that region R4 does not exist if
a <1

Convergence of the log-partition function. For any A > 0, we first write
(4.41) 7% = 7% (MN < AN ) o (Mj\‘, > ANf) .

The strategy is similar to that in Region Rs, and we use analogous notation. We proceed
in three steps: (1) after taking logarithm and dividing by N¢~¢, we show that the first term
converges to some limit Wﬁ4 when N — 00; (2) we show that the second term above is small

compared to the first one; (3) we show that W§4 — Whg, as A — o0, with Wg, € (0, +0)
almost surely.

Step 1. We prove the following lemma.

Lemma 4.4. In Region R4, we have that IP-a.s., for any A€ N,

]\}li)noo N§ ¢ log VA (MN AN5) = )/\/j.%4 = —Agsz(?gvsfl {B(Xv — X)) — h(v— u)} )
with (X¢)tew from Definition[1.1]
Proof. For fixed 6 > 0, we write (cf. (4.18
|A/8] |A/5]
(4.42) 795 = 7% (Mjf, ) 3 Z 2% (ky, ks, 6)
k1=0 ko=

Since the number of summands above is finite, we have

(4.43) max log Z5(k1,ka,0) < log Z]“\},’\ 2log(A/d) + max , log Z5(k1, k2, 0) .

0<ky, k2<% 0<ky, k2<%
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Upper bound. We write u = kid,v = koo and set Us = {0,9,20,...,A}. Recall that
£ —(=¢&/a—7, so we get that

IOgZ]“\)[(k‘l,kQ,é) < {A _£ _

A€ s
NEC u,veUs +Q+ )+5N OL"R]V(uﬂ})

max loNE|

(4‘44) OSkl,kQS?

— h(v +u) + Np (u, U)} :
Note that (N_ﬁ/anuNEJ)ue[(LAJFJ] and (N_g/aQ[ZNéj)’UE[O,AJ:—&] converge to two independent
Lévy processes (Xﬁl))ue[o, A+s] and (X52))ve[0, A+s] (with no drift, no Brownian component
and Lévy measure v(dz) = a(pliz=oy + qliz<o}) |z| 717 dx, if a € (1,2), or standard
Brownian motions, if a = 2). Also note that limpy_,4 Nf_cpgg) (u,v) = 0, thanks to Lemma
and Lemma since we have £ —( > |2 — 1|. Since the maximum is over finite terms,
then the upper bound in (4.44)) converges a.s. to

(4.45) V/\jgf ‘= max {B(Xftl)—le(f)—i— sup |X£1Jzt—X£1)|+ sup |X£i)t—X52)]>—iz(v+u)}.
u,veUs t€[0,6] t[0,6]

Lower bound. On the other hand, we may bound log Z¥ (k1, k2, d) from below by

B (W) + Urpae ) — BV R0, 20) = oy (z — ki + 2)5NE + iy (k1 6, k).

Thus, setting u = k16, v = kod and Uy = {0,9, ..., A} as above, we obtain

logZﬁ(k‘l,kg,é) {A e 3 & s
= ma N 2 (Q + Q"F _ AN~ <R u, v

— h(u+ v +20) + NE_ij;V(u,v)} .
Hence, analogously to (4.45]), the lower bound in (4.46)) converges a.s. to
(4.47)
V\\jﬁ"s ‘= max {B(Xq(}) +X? — sup ]Xl(LlJr)t — x|~ sup ]Xﬁ)t —x® |> —h(v+u+ 25)}.
o uwels t€[0,6] t€[0,6]

Conclusion. The upper and lower bounds (4.45))-(4.46]) are almoste sure upper and lower
bound for limsup N¢~¢ log Z;),’g and lim inf NS¢ log Z;),’g. By the a.s. cad-lag property of
trajectories of Lévy processes (or continuity of the Brownian motion), we have

CVSAS i THAS 5 (v (1) @) _ 3
(4.48) 161?8 Wk, 161&)1 Wk, u,'US;E(I)),A] {ﬁ <Xu + X, ) h(v + u)} ,

which is exactly Wp°, defining X, = —X') if ¢ < 0 and X, = X{” if 2 > 0. The
convergence in Lemma is therefore achieved by letting N — oo and then § — 0. g

Step 2. Next, we prove the following lemma.

Lemma 4.5. In region Ry, there is some Ag > 0 and some constant C = CB such that

for A= Ao,

7iL’

1 w -«

(Recall that oo > 1 in region Ry.)
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Since o > 1, this proves that almost surely, there exists some A = A(w) such that the
second term in (4.16|) is small compared to the first one, thanks to Lemma using also
that Wz, = 0.

Proof. First, let us write

18

797 = 7% (Mj’\‘, > AN€> =N 7% (Mj’{, e (251 ANE, 2kAN€])

x>
Il
—

/A
M 8

exp (BN 710y ye — ANTC2TTANE).

T
)

By a union bound, we therefore get that

0
_ A —Cok—1 3 1 _
P (797 = N < Z P (PN U aye hN 2 AN S o NE¢
N 9k+1
k=1

0
(4.49) < D P (BN e = h2F2ANG )

where the last inequality holds provided that A has been fixed large enough (we also used
that £ —( = > — ). Then Lemma gives that

P (50 4ye = W2 2ANE) < ofrimoghi=o g1
Summing this inequality over k, since a > 1, this concludes the proof of Lemma O

Step 3. By monotone convergence, Wﬁ4 converges a.s. to Wg,: we only need to show that
W, is positive and finite. Combining this with Lemma [£.4] and Lemma this completes
the proof Theorem

Lemma 4.6. If a € (1,2], we have Wg, := supugogv{B(Xv —X,)—h(v—u)} is a.s. positive
and finite.
Proof. The proof is analogous to the proof of Lemma To show that Wg, > 0, we use
that Wg, > supv>0{ﬁX — hv}. By [IL Th 2.1]), there is a.s. a sequence v, | 0, such that
Xy, = n/ for all n. Hence, for large enough n, Wg, > Bv}/a - iLvn > 0, since o > 1.

To show that Wg, < o0, we use Wg, < Supugo{BXu—i-iLu}+Supv>0{BXv—ﬁv}. By [26], we
have that for any € > 0, a.s. X, < v(1*9)/® for v large enough. Therefore, if ¢ is sufficiently
small so that (1+¢)/a < 1 (recall @ > 1), we get that BX —hw < fo+9/a _ hy < 0 for all

v sufficiently large. Similarly we also have that BX + hu <0 for all u large enough. This
concludes the proof. O

End-to-end fluctuations. We prove that the end-to-end fluctuations are of order N€.
Lemma already shows that the end-to-end fluctuations are at most N¢. On the other
hand, the fact that Wg, > 0 a.s. ensures that the end-to-end fluctuations are at least N¢.
Indeed, we have thanks to Lemma [£.4] that for n > 0,
1
A}l_r)noo NE=C log P4 (M} < nN®) = Wi, —Whg, P-a.s.

Hence, P% (M} < nN¢) — 0 with probability P(Wg, —Wr, < 0): since W} goes to 0 as
n | 0, we can make this probability arbitrarily close to 1 by choosing 1 small. This concludes
the proof that (S, )o<n<n has end-to-end fluctuations of order N under PY,. 0
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Convergence of (My, M ]J\;) As in previous sections, we define

L{;’j = {(u,v) eR™xR*:  sup {B(X;—X,) —h(t—s)}=Wg, — g/}7
(s,t)€Be (u,v)
and the event Ai\’,‘iﬁ = {qe(My,M}) ¢ Ll;’j}. Then, in an identical manner as in Regions
2 and 3, we have that

1 !/ 1 ’
li]r\lfa sip NE=¢ log Z%(A;’f&) <Wg, andso li}r\? S})lop NE=—C log P‘]’JV(.A?\fm) <0,

from which one deduces that

1
(4.50) lim P (ﬁ(MJg, M) e MQE) 1, Pas.

4.5. Region R5: proof of Theorem In this region, we prove that the end-to-end
fluctuations of order N¢ with & = %C € (0,1/2). Note that in Region 5, we have

1
1—2§=§—C>£—’y and —1<(<-—.
« 2
Convergence of the log-partition function. We fix some constant A > 0 (large), and

we split the partition function as
4.51 7% = Z% (M} < AN®) + z% (MF > AN¢®).
N N N N N

The strategy of proof is similar to that in Region Ry, but with only two steps: (1) we
show that for A large enough, after taking logarithm and dividing by N'=%, the first term
converges to some constant (independent of A if A is large enough) in probability; (2) we
show that if A is large enough, the second term is negligible compared to the first one.
Step 1. We prove the following lemma.

Lemma 4.7. In Region 5, we have that for any A >0, as N — 0,

1 P . _
—log Z% <M*<AN§>—> su {—hv—u —Iu,v},
N1-2g 8 AN (TN N—o —ASuS(?Sv<A ( )= Iu.)
where I(u,v) = 7T72(1)—u)_2 foru <0 <wv. By a simple calculation, the supremum is %(im)
25 1 L . 251
for any A = 2w3h™3, since it is achieved at v —u = w3h™3.

2
3

Proof. For any fixed A, we have the following upper and lower bounds
(4.52) log Zt — BNTYQ% e < log Z%, (M]’(, < ANf) <log Zf + BNTYQH e

where 2]’3 = E[exp(—hN|RN|)]l{M;§<AN§}].
Since in Region 5 we have 1 — 2¢ > g — ~, we get that N—(1728) « BN‘VQ:M goes to 0
in probability. Hence, we only need to prove that
1 N . _

lim —— log Z4 = su {—hv—u —Iu,v}

N—owo N1-26 BN —AéuégévéA ( ) ( )
(there is no disorder anymore). But this is quite standard, since we have by Lemma
that I(u,v) is the rate function for the LDP for (N~¢My, N~¢M;;), more precisely

. 1 _
(4.53) —I(u,v)=A}1_r)noomlogP<MNZUNE;M;\’,SUNg).
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This is enough to conclude thanks to Varadhan’s lemma. O

Step 2. Next, we prove the following lemma.

Lemma 4.8. In region Rs, for any constant T > 0, there is some Ap > 0 such that for
A= AT

. 1 w * 3 _

Combining this result with Lemma [4.7 readily yields Theorem

Proof. We consider two cases: (i) a € (1,2] and ( € (—1,1/2) or aw € (0,1) and ¢ € (—1,0];
(ii) @ € (0,1) and ¢ € (0,1/2). The strategy of proof is different for each case and we present
them separately.

Case (i). We write Zy~ = Z% (M} > AN®). Then

logy N1—¢
Z5m < > 7% <M]’(, e (2’“_1AN5,2’“AN5])
k=1
4.54
( ) logy N1—¢
< ) exp (5N—Wﬂ;k e — h2’f—1ANf—<> .
k=1

Recall that in Region R5 we have that £ — ( =1 — 2£. By union bound we obtain that

log, N1—¢

_ A 7 ok— - 1 -
P (Z]o\J[,> > 6,TNl 25) < Z P (exp (BNiwgzkANé) e—hgk 1ANE—C > 2Tce,TNé C)
k=1

log, N1—¢
< Y P (BN e 2 25 2hAN),
k=1

where the last inequality holds for sufficient large A (depending on h, T). Then by Lemma
we get that

\Y

logy N'1—¢ I ATE—a(E—CHy)
]P (Zw,> e_TNl—ZE) < C Z Qk(l_a)Nf—Oé(g—C'f"Y) < C N 17(‘1 7) lf [0 RS (1, 2] s
iz C'NeUZ"H7) if ae (0,1).

To get that this upper bound goes to 0 when N — o0, we use that £ —( > % —~ in the case
a € (1,2], and that v > ¢ + =2 for ¢ < 0 in the case a € (0,1).

Case (ii). In that case, we have ¢ € (0, 3) and £ € (0,1). Hence, we can write

(4.55) Z% (M} > AN®) = Z{ (M% € (ANS,N'™¢]) + Z§ (M} e (N7, N]).
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For the first term on the right-hand side of (4.55)), using that £ —( = 1 — 2¢, we get by a
union bound that

]P(Z%(Mj‘{, e (ANE,N']) > %e*TN”f)

logy N1—6-¢
< Y P (Z;(,(M]"\‘, e (21 ANE, 28 ANE]) > Qkﬂle—TN§*<>
k=1
(456} logy N1=67¢ N P ok—1 A NE—C £—¢
< 2 I (exp <ﬁN‘“’Q’2",€AN5> eTh2TTANTTE o leﬂ e TN ) )
k=1
log, N1-€=¢
< Y P (BN e = A2 AN
k=1

where the last inequality holds for sufficient large A (depending on h, T). Using Lemma
we therefore get that the left-hand side term of (4.56|) is bounded by a constant times

logy N1=6=¢
(457) Z 2k(1—o¢)N£(1—a)+a(C—'y) < CNl—a-‘r(Zoc—l)C—ow,
k=1

Since we have v > W for ¢ € (0,3), we get that (£56) goes to 0 as N — o0.
For the second term on the right-hand side of (4.55]), we use a union bound to get that

1?(2;(,(]\4]*V e (NI, N]) > %e—TNE’C)

logo N¢
w * —k —k+1 1 —TN&¢
(458) S kz_:l ]P(ZN(MN € (2 N,2 N]) > Skf1€ )
logy N¢
< 3 P (exp (BN ) e TN s e TN
k=1

where we have use that P(M3, > z) < 2exp(—?/2N) for the simple random walk. Now,
since for all k < log, N¢ we have 272N > N172C and that 1 — 2¢ > ¢ — (, we get that for
N large enough, the left-hand side of (4.58)) is bounded by

logy N¢ logy N¢
ST P (ANI0] 4y 5 2N) e ] et et
k=1 k=1

where we used Lemma for the last inequality. If o € (0, %], this is bounded above by a
constant times (log N)N'=*(1+7) and this goes to 0 as N — o0, since v > leO‘ Ifae (%, 1),
this is bounded above by a constant times N¢(Ze—D+1-a—av  which goes to 0 as N — o0

since v > W for ¢ € (0,%). This concludes the proof of the lemma. O

End-to-end fluctuations. Lemma [1.§ already shows that end-to-end fluctuations are at
most of order N¢. On the other hand, Lemma shows that for any n > 0 we have that
N2 log Z% (M7 < nN¢) converges to SUP_,<y<o<v<yl—R(v —u) — I(u,v)} in probability.

Since the supremum is strictly smaller than (iwr)% = limy o0 N% Llog Z% if n < %w%ﬁ_%,
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we get that P§ (MR, < nN €) — 0 for such 7, which shows that end-to-end fluctuations are
at least of order N¢.

-

Convergence of MX, — My . Let us define ¢; := 5k 3, set € > 0, and define the event

NRs = {’Nf (M3, — My) —cﬁ‘ >5}.

As in the previous sections, since log PX(AY z.) = log Z§N (AR p,) — log Z§, using the
convergence (13.5)) we simply need to show that there is some d. > 0 such that

. 1 3 -
(4.59) ]&E)nw]P‘(]Vl 5% log Z§ (Aiv ,) < =5 (hm)?° 65) ~1
But this is simply due to the fact that analogously to Lemma [£.7, we have that
P s - 3 -
V1% log Z§ (A%,) Y sup {—h(v—u)—[(u,v)} < —§(h7r)2/3,

u<0<w,lv—u—cj|>¢

where the inequality is strict since the supremum in Lemma [£.7)is attained for v —u = ¢;,.

4.6. Region R6: proof of Theorem Note that in Region Rg, we have ( < (—1) A7y
if e (1,2] and ¢ < (=1) A (y+ 21) if a € (0,1). Let us note that in all cases, v > (. We
split Z%; in two parts

(4.60) 7 = 7% (Rl = 2) + 2% (IRl > 3).
It is clear that
Z% (|RN| _ 2) — 672FLN_C <€BN_’7(L4}0+(U1)27N + GBN_’Y(UJ0+L071)27N)

)

so that N¢log Z% (|Rn| = 2) converges in probability to —2h (we use here that ¢ <~ and
¢ < -1).

We now prove that N¢log Z% (|Ry| = 3) is stricly smaller than —2h with P-probability
going to 1: this will imply that the second term in is negligible compared to the first
one, and as a by-product prove that P§ (|Ry| = 2) converges to 1 in probability.

We fix A large, and split
(4.61) Z% (RN =23) =ZN (|IRN| = 3, My < A) + Zy (M3, > A) .
For the first term, we simply use the upper bound
Z% ([Ry| = 3, M < A) < =3V exp (BN—mjz,) .

Using the fact that v > ¢, we get that N¢~7Q% goes to 0 in probability, and thus N¢ log Z% (|Rn| =
3, M{; < A) < —%h with probability going to 1.
For the second term in (4.61]), we have

logy N logy N .
Z5% (M > A) = Y 7% (MN e (2514, QkA]) M e BTN o (5N—m;k A).
k=1 k=1
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Then, as in the proof of Lemma (see the proof of Case (i)), a union bound gives that
for any T' > 0 (we will pick T' = gh) we can choose Ar so that for any A > Arp,

logy N

P(Zn(My > A) 2 ™) < 3 P(ANTh, > 207 2hAN)
k=1
(4.62) log, N
<ec Z BaiL—OcAl—ozzk(l—a)Na(C—’y)7
k=1

where we used Lemma for the last inequality. If a € (1,2] this is bounded above
by a constant times N*(¢=7): this goes to 0 as N — oo, since v > (. When a € (0,1),
this is bounded above by a constant times N1~®+(=7): this goes to 0 as N — o0, since
(<~v+ % Therefore, the right-hand-side of converges to zero as N — 00, which
shows that N¢log Z% (M} > A) < —T with probability going to 1, and concludes the
proof. O

4.7. Region ]§4: Theorem In this region, we prove that the end-to-end fluctuations
of order N¢ with ¢ =1 — ¢ € (1/2,1). Note that in this region we have

2{—1=§—C>é—’y and 0<C<1.
« 2

The proofs are identical to what is done in regions Rs-Rg, so we give much less detail.
We fix some constant A > 0 (large), and we split the partition function as

(4.63) 79 = 7% (M}(, < ANf) - Z8 (Mj\‘, > ANE) .
Step 1. We have the following lemma, analogous to Lemma [4.7]

Lemma 4.9. In Region }§4, we have that for any A > 0 the following convergence in
probability

log Z% (MN ANf)—> sup {]ﬁ\(v—u)—[(u,v)},

N—o© _A<ug0<v<A

N2§ 1

~

By a simple calculation, the supremum is %ﬂz for any A = |h|, and it is attained at (u,v) =
(07 |h’) or (’U,, U) = (_’h"vo)

Proof. Since in Region R4 we have 26 —1> g — ~, for any fixed A we get that N—(26-1) x
BN 7Y e goes to 0 in probability. Therefore we only need to prove that

lim log Z% (M AN£)= su {il v— U —Iu,v}

Nooo N2£ 1 g LN N = 7A<u<(I))<U<A ‘ |( ) ( )
This follows by Varadhan’s lemma, since we have by Lemma that I(u,v) is the rate
function for the LDP for (N~SMy, N~SMy). O

Step 2. To conclude the proof of the convergence (3.8)), it remains to show the following.

Lemma 4.10. In region §4, for any constant T > 0, there is some Ar > 0 such that for
A> AT

lim P

( —log Z§ (MN > ANf) > T) ~0.
N—0
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The steps are identical as in the proof of Lemma and the calculations are very similar:
the main difference is that in we have to take into account the entropy contribution
of the random walk P(M3 > 2F"1AN¢). We omit the details.

Convergence of the trajectories. For € > 0, denote the events

Ay = e My M) € [e. €] < (1] — . [h] +<1}

N,R4 Nf
Aj\},—m - {Nf (M M+) [—Iﬁ! —8,—]3\ + €] x [—5,5]}.

As in the previous sections, since the supremum in in the variational problem of (3.8) is
achieved at (u,v) = (0, |h|) or (u,v) = (—|h|,0), one can easily prove that for any ¢ > 0, we

have limpy i 1y P% (AN+R A€ 5,) = 1 in P-probability.

Then, since .A;’[t and AE’ 5, are disjoint for sufficiently small € > 0, one can also prove
4 7 4

that P“Z(,(./élj\’[j;§4 N {mSN > |h| — 2¢}) — 3 in P-probability by symmetry (it has an extra
entropic cost for the random walk to backtrack), and analogously for ./46 . All together,
one concludes that P“](,(ﬁ|SN| € [|h| — 2¢,|h| + 2¢]) — 1 in PP- probabﬂlty.

4.8. Boundary region R4—R5 Theorem -. The proof is similar to that for region
Ry: one even only needs the analogous to Lemma [4.9, Replacing the rate function I(u,v)
for (N=¢My, N=*M;;) by the rate function x(|u| A |v| +v—u) of (NT*My, N"IM}), see
Lemma we get that

sup {|ﬁ|(v—u)—ﬁ(\u| /\|v]+v—u)}.

1
N log Zy N—® —1<u<0<v<1
Then, using that (¢) = 3(1+¢)log(1+t)+3(1—t) log(1—#) if 0 < t < 1 and (t) = +o0if t >
1, a straightforward calculation finds that the supremum is attained at (u,v) = (0, ezlzlﬁ)
and (u,v) = (— z:z:i 0), and equals log(“— il 1) —|hl.

Then, as above, one can easily deduce that N _I(M]Ql, M3;) is with high P%-probability

2|h| _q e2lhl 1

(and high P-probability) close to one of these meximizers, i.e. ( ,e2lh|+1) r (=< L ,0)
One can then deduce from it that P (|5 |Sn| — ez:g_l\ > ¢) — 0 in P-probability. Details
el +1

are left to the reader.

4.9. Region Rs: Theorem We observe that {|Sy| = N} = {|Rn| = N}, and thus

(4.64) e PNTIORINT 9N < 2 (1Sn| = N) < PN TR

Now, we have SN¢~ 1_79* L, 0 since v > (- %: using also that { < 0 we get that
N¢1log Z% (|Sn| = N) converges to —h.

It therefore remains to prove that P{ (]Sny| = N) — 1 in P-probability. Analogously to
[4-64) above, we clearly have that log Z%(|Rn| < 2N) < —(2 +2)hN'~¢ with P-probability
going to 1 as N — co. Hence, we get that
) < iR <3N

Z%(IRn| = N)

P‘]"V(IRN\ < %N
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in probability. Now, we can split the event |Ry| > %N according to whether M ;\} > %N or
My < —%N. Hence, we only have to prove that P%(%N < M}, < N—1) — 0 in probability,
and similarly for M. The proof will therefore be complete if we show that

ZY(3N < M < N —1)
Z%(ISn| = N)

1-
(4.65) < Cexp <ZhN_<)
with [P-probability going to 1. Notice that iiLN_C — —oo since ¢ < 0 and h <0, and that
the order N—¢ comes after many cancellations between the numerator and denominator.
Notice that Z§(Sy = N) = 2~ NefvQy—hnN - Hence, using that if MY, = k we have
My > —3(N—k)so |Rn| < §(N+k), we get that for N < k < N —1, after simplifications

2
of the numerator and denominator,

Z%(M]—\i} — k> 3 * 1 N + _
m < exp (BNi_;rlwz +/8NQ%(N_k) + hN§(N— k))z P(MN =k).

N

Denoting QF = OF + S.upé?:0 | 2izj11 wil, we therefore get that for j € {1,...,logy N — 1}

Zy¥(N — My e [271, %))

BN=YQ* +hAN—629-1 N 41 i
< J 2 P(Sy >N -2
TGy = V) e 2 (SN )

where we used that P(My; > N — 27) = 2P(Sy = N — 27) — 1 by the reflection principle.
Then P(Sy = N —2/) < 2/(P(Sy = N —2/) + P(Sy = N — 1 - 27)) < 2~ N(}) (,7),
by a simple counting argument. Note that 27 (é\;) (2]211) < 2(CN)? < exp(2/-2|h|N~C) for
N large enough (uniformly for j > 1), so we end up with

Zy{(N — My e [271, %))
Z{(Sn = N)

(4.66) < exp (BN*VQ;J- n BN*<2H> .

Summing this over j on the event that BN_V(NZ’Q"j < 231_3|lA1|N_C for all 1 < j < logy N, we
therefore get that (3.9)) holds. It remains to show that this event has a probability going to
1: by a union bound, its complement has a probability smaller than

log, N logy N
> (AN 2 2N ) < Y e 20 N0,
j=1 j=1

where we used Lemma This is bounded by: a constant times N~(—0« (which goes
to 0 as N — ) if a € (1,2]; a constant times N(1=®)=(=Oa (which goes to 0 as N — oo,
recall v > ( —21) if o € (0,1). Hence, we conclude that holds and hence P (|Rn| =
N) — 1 with P-probability going to 1.

APPENDIX A. TECHNICAL ESTIMATES

A.l. Estimates on deviation probabilities. Let us present here some results on large
deviation probabilities for the simple random walk that are needed throughout the paper.
Recall the notations My := ming<,<n S, and M;Q ‘= MaxXo<n<N On-
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Stretching. Our first lemma deals with the super-diffusive case: we estimate the probability
that My > vN® and My < uN® when £ € (%,1), for u < 0 < v. The one-sided large
deviation are classical, using e.g. explicit calculations for the simple random walk (see [17,
Ch. IIL7]): we get that if £ € (3,1)

lim ———— log P(M3 > vN§)= lim ————log P(Sy > vN¢) = =02

N T v2e1 08 (My = vN*¥) N T v2e1 08 (Sy = vN*) SV -
The case where both the minimum and maximum are required to have large deviations is
an easy extension of the result, and we omit its proof. Let us simply mention that the
best strategy for the random walk to have My < uN® (u < 0) and My > vN¢ (v > 0)
consists in traveling to either uN¢ or v N¢ (whichever is the closest) and then go in the other
direction to reach vN¢ or uN¢. In other words, the random walk must travel a distance at
least (|u| A |v| +v —u)N¢, and we thus have log P(My < uN%; My = vN¢) ~ log P(M}; >
(Ju| A [v| + v — u)N¥).

Lemma A.1. If% <& <1, then for any u < 0 < v we have that

. 1 _ 1
(A.1) Jim. —ngP@wN < uN&; M > UN€> = 5(ul A o] + v —w?.
As an easy consequence of this lemma, we get for that for any § > 0, for any u < 0 < v,

. 1 _ 1 2
(A2) lim ——s logP(MN € [u— 0, u]lNS; Mib € [v,v+ 5]N€) = Sl Aol +v—u)”
We also state the large deviation result in the case £ = 1 (it is not needed in this paper).

We do not give the complete proof of the following statement, but as above, it derives from
the fact that log P(My < ulN; My = vN) ~logP(My = (|u| A [v] + v —u)N).

Lemma A.2. For any u < 0 < v, we have that

. 1 _
]&@w—ﬁlogP<MN < ulN; My > vN) = k([u A Jv] +v—u),
where k : Ry — Ry is the LDP rate function for the simple random walk, that is k(t) =
T(1+t)log(l+t) + 5(1—t)log(1 —¢t) if 0 <t <1 and K(t) = +o0 if t > 1.

Folding. Our second lemma deals with the sub-diffusive case: we estimate the probability
that My < vN® and My > uN® when € € (0, 3), for u < 0 < v. The result follows from
classical random walk calculations, leading to explicit expressions of ruin probabilities (see
Eq. (5.8) in [I7, Ch. XIV]); one may refer to [1I, Lem. 2.1] and its proof for the following
statement.

Lemma A.3. If0<¢ < %, then for any u < 0 < v we have that

1 2
im — = €. Af+ €) = ‘
(A.3) ]\}lm NI % logP(MN = uN>; My < vN ) 20— )

As an easy consequence of this lemma, we get that for any 6 > 0 and any © < 0 < v,

. 1 - + m?
(Ad)  lim ——log P(My € [u,u+ ]N% M € [v — 6, 0]N¢) = o
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A.2. Proof of Lemma First of all, notice that the bound is trivial if /T~% > 1: we
assume that /T~ < 1. Using Etemadi’s inequality (see [0, Thm. 2.2.5]) we get that

P(Q;>T) < 3k€I{Ii?}.(7€}IP(|Q;€F| >iT) + 3keI{I{?.}.{,e}P<|Q’;| > 1T).

Let us detail the bound for P(|€| > 4T), the same bound holds for P(|Q; | > £T). The
case @ = 2 is a consequence of Kolmogorov’s maximal inequality, and the case a € (0,2)
(a # 1) follows from the so-called big-jump (or one-jump) behavior. Let us give an easy
proof: define w; := wy 1y, |<T}, 0 that

k
P(0f| > 4T) SPEO <z <k, fwl > T) + P(| Y @ > &7)
=0

< (k+1DP(jwo| > T) + % ((k + D)E[(@0)?] + k(k + 1)E[@o]2) ;

where we used a union bound for the first term and Markov’s inequality (applied to (Z;Iz:o wz)?)
for the second. Now, the first term is clearly bounded by a constant times kT~ thanks
to Assumption For the second term, we use again Assumption [I} to get that if a €
(0,1) U (1,2), E[(@0)?] < ¢T?>™® and E[wo] < ¢T!™® (when « € (1,2) we use for this last
inequality that E[wg] = 0). Therefore, we end up with the bound

P(IQf| > T) < clT™* + T2 < 20T,
where we used that /T~ < 1. O
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