
HAL Id: hal-02481196
https://hal.science/hal-02481196

Submitted on 25 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Super short operations on both gene order and
intergenic sizes

Andre Oliveira, Géraldine Jean, Guillaume Fertin, Ulisses Dias, Zanoni Dias

To cite this version:
Andre Oliveira, Géraldine Jean, Guillaume Fertin, Ulisses Dias, Zanoni Dias. Super short oper-
ations on both gene order and intergenic sizes. Algorithms for Molecular Biology, 2019, 14 (1),
�10.1186/s13015-019-0156-5�. �hal-02481196�

https://hal.science/hal-02481196
https://hal.archives-ouvertes.fr

Oliveira et al. Algorithms Mol Biol (2019) 14:21
https://doi.org/10.1186/s13015-019-0156-5

RESEARCH

Super short operations on both gene order
and intergenic sizes
Andre R. Oliveira1*  , Géraldine Jean2  , Guillaume Fertin2  , Ulisses Dias3  and Zanoni Dias1 

Abstract 

Background:  The evolutionary distance between two genomes can be estimated by computing a minimum length
sequence of operations, called genome rearrangements, that transform one genome into another. Usually, a genome
is modeled as an ordered sequence of genes, and most of the studies in the genome rearrangement literature consist
in shaping biological scenarios into mathematical models. For instance, allowing different genome rearrangements
operations at the same time, adding constraints to these rearrangements (e.g., each rearrangement can affect at most
a given number of genes), considering that a rearrangement implies a cost depending on its length rather than a unit
cost, etc. Most of the works, however, have overlooked some important features inside genomes, such as the pres-
ence of sequences of nucleotides between genes, called intergenic regions.

Results and conclusions:  In this work, we investigate the problem of computing the distance between two
genomes, taking into account both gene order and intergenic sizes. The genome rearrangement operations we
consider here are constrained types of reversals and transpositions, called super short reversals (SSRs) and super short
transpositions (SSTs), which affect up to two (consecutive) genes. We denote by super short operations (SSOs) any SSR
or SST. We show 3-approximation algorithms when the orientation of the genes is not considered when we allow
SSRs, SSTs, or SSOs, and 5-approximation algorithms when considering the orientation for either SSRs or SSOs. We also
show that these algorithms improve their approximation factors when the input permutation has a higher number of
inversions, where the approximation factor decreases from 3 to either 2 or 1.5, and from 5 to either 3 or 2.

Keywords:  Genome rearrangements, Intergenic regions, Super short operations, Approximation algorithms

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Given two genomes G1 and G2 , one way to estimate their
evolutionary distance is to compute the minimum num-
ber of large scale events, called genome rearrangements,
that are needed to transform G1 into G2 . The minimality is
required due to the commonly accepted parsimony prin-
ciple, while the allowed genome rearrangements depend
on the model, i.e. on the classes of events that supposedly
happen during evolution.

Prior to counting rearrangement events, one needs
to model the input genomes. Previous works [1–3]
have defined genomes as ordered sequences of ele-
ments (genes). Variants within this setting can occur. For
instance, each gene may appear either once or several

times in a genome. In the latter case, genomes are mod-
eled as strings, while in the former case they are modeled
as permutations. Besides, genomes modeled as permuta-
tions may be signed or unsigned (the sign of an element
represents the orientation of that gene in the DNA strand
it lies on).

Concerning genome rearrangements, the most com-
monly studied events are reversal, which consists in tak-
ing a continuous sequence in the genome, reversing it,
and putting it back at the same location [4], and trans-
position, which consists in taking a continuous sequence
in the genome and putting it back in a different location
[5]. A more recent and general type of genome rearrange-
ment is the DCJ (Double-Cut and Join) [3], that cuts a
genome between adjacent genes a and b, and adjacent
genes c and d, and joins either a to c and b to d, or a to d
and b to c.

Open Access

Algorithms for
Molecular Biology

*Correspondence: andrero@ic.unicamp.br
1 Institute of Computing, University of Campinas, Campinas, Brazil
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-0568-1859
http://orcid.org/0000-0002-1534-2682
http://orcid.org/0000-0002-8251-2012
http://orcid.org/0000-0002-4763-3046
http://orcid.org/0000-0003-3333-6822
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-019-0156-5&domain=pdf

Page 2 of 17Oliveira et al. Algorithms Mol Biol (2019) 14:21

Since the mid-nineties, a very large amount of work
has been done for computing distances between pairs
of genomes, depending on the genome model and the
allowed set of rearrangements. We refer the reader to
Fertin et al. book [6] for a survey of algorithmic aspects.

In populations where the number of rearrangement
events that affect a very large portion of the genes are
rare, we can restrict events to span at most k genes, for
some value of k [7, 8]. During an analysis with closely-
related pairs of bacterial genomes, the number of short
inversions (inversions affecting up to three genes) was
discovered to be very high, especially inversions of a
single gene (which we call 1-reversal) [9]. There are also
other works showing the prevalence of short inversions
in bacterial genomes [10] and eukaryotes genomes [11,
12].

As previously mentioned, most of the works have
assumed that a genome is an ordered sequence of genes.
It has been argued that this model could underestimate
the “true” evolutionary distance, and that other genome
features should be taken into account to circumvent this
problem [13, 14]. Indeed, genomes carry more infor-
mation than just their ordered sequences of genes. In
particular, consecutive genes are separated by DNA
sequences called intergenic regions, each having different
lengths in terms of number of nucleotides. These lengths
may be used along with gene order to generate a more
realistic model for genomes.

This recently led some authors to model a genome as
an ordered sequence of genes, together with an ordered
list of its intergenic sizes, and to consider the problem
of computing the DCJ distance, either in the case where
insertions and deletions of nucleotides are forbidden
[15], or allowed [16].

Biller and coauthors [13] used the intergenic regions
to define what they called fragile regions, regions where
rearrangements are more likely to act. After identify-
ing these fragile regions, practical tests showed that
considering rearrangements on non-fragile regions can
yield incoherent distance estimations. When using the
equiprobable model (i.e., rearrangements can occur in
any position with the same probability), practical tests
[16] showed that statistical properties of the inferred sce-
narios for DCJs using intergenic regions are closer to the
true ones than scenarios which do not use them.

In this work, we also consider genomes as ordered
sequences of genes together with their intergenic sizes, in
cases where the gene sequence is an unsigned or signed
permutation and the considered rearrangement opera-
tions are super short reversal (or SSR, i.e. a reversal of
(gene) length at most two), super short transposition (or
SST, i.e. a transposition affecting only two genes), or both
(super short operation or SSO). In this context, our goal is

to determine the minimum number of SSRs/SSTs/SSOs
that transform one genome into another.

This paper is organized as follows. In Section 2 we pro-
vide the notations that we will use throughout the paper,
and we introduce novel ideas that will prove useful for
studying the problem. In sections 3-7 we derive lower
and upper bounds on the sought distance for five dif-
ferent variants, which help us design an approximation
algorithm of constant factor for each of these five prob-
lems. Section 8 presents a practical analysis of the five
algorithms on simulated instances. Section 9 concludes
the paper.

Definitions
We represent a genome G with n genes as an instance
with (i) an n-tuple and (ii) n+ 1 intergenic regions. If
there is no duplicated genes, the n-tuple is a (possi-
bly signed) permutation π = (π1π2 · · · πn−1πn) , with
|πi| ∈ {1, 2, ..., (n−1), n} , for 1 ≤ i ≤ n , and |πi| = |πj| if,
and only if, i = j . If gene orientation is known, each ele-
ment from π has a + or − sign that indicates the gene
orientation it represents, and we say that π is a signed
permutation; π is an unsigned permutation otherwise.

We denote by ι the identity permutation, in which all
elements are in ascending order and with positive signs.
The extended permutation is obtained from π by adding
two new elements: π0 = 0 and πn+1 = (n+1).

The intergenic region rπi is located before element πi
from the extended permutation π , for 1 ≤ i ≤ n+ 1 .
We denote by ℓ(rπi) the length of intergenic region rπi  ,
i.e., the number of nucleotides in rπi  , with ℓ(rπi) ∈ N for
1 ≤ i ≤ n+ 1 . Let rπ = (ℓ(rπ1), ..., ℓ(r

π
n+1)) . An instance

here is then formed by (π , rπ).
A reversal ρ(i, j, x, y) applied over an instance (π , rπ) ,

with 1 ≤ i ≤ j ≤ n , 0 ≤ x ≤ ℓ(rπi) , 0 ≤ y ≤ ℓ(rπj+1) , and
{x, y} ∈ N , is an operation that generates (π ′, rπ

′
) by (i)

reversing the order and the orientation of the elements
in the subset of adjacent elements {πi, ...,πj} ; (ii) revers-
ing the order of intergenic regions in the subset of adja-
cent intergenic regions {rπi+1, ..., r

π
j } when j > i + 1 ; (iii)

cutting two intergenic regions: rπi after x nucleotides
and rπj+1 after y nucleotides such that ℓ(rπ ′

i) = x + y and
ℓ(rπ

′

j+1) = (ℓ(rπi)−x)+ (ℓ(rπj+1)−y).

A reversal ρ(i, j, x, y) is also called a g-reversal, where
g = (j − i)+ 1 . A super short reversal is a 1-reversal or a
2-reversal, i.e. a reversal that affects only one or two ele-
ments from π.

A transposition τ (i, j, k , x, y, z) applied over an instance
(π , rπ) , with 1 ≤ i < j < k ≤ n+ 1 , 0 ≤ x ≤ ℓ(rπi) ,
0 ≤ y ≤ ℓ(rπj) , 0 ≤ z ≤ ℓ(rπk) , and {x, y, z} ∈ N , is an oper-
ation that generates (π ′, rπ

′
) by (i) exchanging subsets of

adjacent elements {πi, ...,πj−1} and {πj , ...,πk−1} ; (ii) mov-
ing subsets of adjacent intergenic regions {rπj+1, ..., r

π
k−1}

Page 3 of 17Oliveira et al. Algorithms Mol Biol (2019) 14:21

and {rπi+1, ..., r
π
j−1} to start at positions (i + 1) and

(i + k − j + 1) , respectively; (iii) cutting three intergenic
regions: rπi  , rπj  , and rπk such that ℓ(rπ ′

i) = x + ℓ(rπj)−y ,
ℓ(rπ

′

i+k−j) = ℓ(rπi)−x + z , and ℓ(rπ ′

k) = ℓ(rπk)−z + y.
A transposition τ (i, j, k , x, y, z) is called a g-transposi-

tion, where g = k − i , and we say that a g-transposition is
super short if g = 2.

Figure 1 shows a sequence of two super short rever-
sals and one super short transposition that transforms
the permutation π = (1 3 4 2 5) with rπ = (3, 5, 2, 1, 2, 8)
into ι = (1 2 3 4 5) with rι = (3, 2, 6, 4, 5, 1).

Given an instance (π , rπ) , a pair of elements (πi,πj)
from π is called an inversion if πi > πj and i < j , with
{i, j} ∈ [1..n] . We denote the number of inversions in a
permutation π by inv(π) . For the example in Fig. 1a, pairs
(3, 2) and (4, 2) are the only inversions, thus inv(π) = 2.

Given two instances (π , rπ) and (α, rα) representing
genomes G1 and G2 respectively such that π and α have
the same number of elements, (ℓ(rπi)− ℓ(rαi)) is the
imbalance between intergenic regions rπi and rαi  , with
1 ≤ i ≤ m.

Given two instances (π , rπ) and (α, rα) such
that (i) π and α have the same number of ele-
ments and (ii)

∑m
i=1 ℓ(r

π
i) =

∑m
i=1 ℓ(r

α
i) , let

�j(r
π , rα) =

∑j
i=1(ℓ(r

π
i)− ℓ(rαi)) denote the cumu-

lative sum of imbalances between intergenic regions
of π and α from positions 1 to j, with 1 ≤ j ≤ m . Since ∑m

i=1 ℓ(r
π
i) =

∑m
i=1 ℓ(r

α
i) , we have that �m(r

π , rα) = 0.

From now on, we will consider that (i) the target per-
mutation α is such that α = ι ; (ii) π and ι have the same
number of elements; and (iii)

∑m
i=1 ℓ(r

π
i) =

∑m
i=1 ℓ(r

α
i) .

By doing this, we can compute the distance of π , denoted
by d(π) , that consists in finding the minimum number of
super short operations that sorts π and transforms rπ into
rι.

Let (π , rπ) and (ι, rι) be two instances such that
π and ι have the same number of elements and ∑m

i=1 ℓ(r
π
i) =

∑m
i=1 ℓ(r

ι
i) . The intergenic graph, denoted

by I(π , rπ , rι) = (V ,E) , is such that V is composed by
two sets of vertices: intergenic vertices (one for each
rπi ∈ rπ ), and permutation vertices (one for each πi of
the extended permutation π ). The set E is composed by
inversion edges: an edge e = (rπi , r

π
i+2) ∈ E if there is a

j = i such that (πi,πj) or (πj ,πi+1) is an inversion, with
1 ≤ i ≤ n−1 and 1 ≤ j ≤ n.

We divide vertices of an intergenic graph I(π , rπ , rι)
into components. A component starts and ends with per-
mutation vertices. Besides, the first component starts
with the permutation vertex π0 , and the last compo-
nent ends with the permutation vertex πn+1 . Consecu-
tive components share exactly one permutation vertex,
i.e., the last permutation vertex πi of a component is the
first permutation vertex of its adjacent component to the
right.

If a component c starts with vertex πi and ends with
vertex πj , with i < j , then rπk ∈ c for i < k ≤ j and πk ∈ c

a

b

c

d
Fig. 1  A sequence of two super short reversals and one super short transposition that transforms π = (1 3 4 2 5) , with rπ = (3, 5, 2, 1, 2, 8) into
ι = (1, 2, 3, 4, 5) , with rι = (3, 2, 6, 4, 5, 1) . Intergenic regions are represented by rectangles, whose dimensions vary according to their sizes. The
1-reversal ρ(5, 5, 2, 7) applied in a transforms π into π ′ = π , and it cuts π after position 2 at rπ5 and after position 7 at rπ6  , resulting in ℓ(rπ

′

5) = 9 ,
ℓ(rπ

′

6) = 1 , and rπ
′
= (3, 5, 2, 1, 9, 1) . The 2-reversal ρ(3, 4, 1, 5) applied in b transforms π ′ into π ′′ = (1 3 2 4 5) , and it cuts π ′ after position 1 at

r
π ′

3 and after position 5 at rπ
′

5  , resulting in ℓ(rπ
′′

3) = 6 , ℓ(rπ
′′

5) = 5 , and rπ
′′
= (3, 5, 6, 1, 5, 1) . Finally, the 2-transposition τ(2, 3, 4, 0, 4, 1) applied in c

transforms π ′′ into ι , and it cuts π ′′ in position 0 at rπ
′′

2  , after position 4 at rπ
′′

3  , and after position 1 at rπ
′′

4  , resulting in ℓ(rπ
′′

3) = 6 , ℓ(rπ
′′

5) = 5 , and
r
π ′′

= (3, 5, 6, 1, 5, 1) . as shown in d 

Page 4 of 17Oliveira et al. Algorithms Mol Biol (2019) 14:21

for i < k < j . Besides, any two intergenic vertices that
are connected to each other by an inversion edge must
belong to the same component. Thus, if c ends with πj ,
then e = (rπj , r

π
j+2) �∈ E.

The idea is that components break (π , rπ) according
to I(π , rπ , rι) into smaller pieces, where it is possible to
make a local redistribution of intergenic regions and ele-
ments from π (with no need to exchange them between
components) transforming (π , rπ) into (ι, rι) . This
requires that any component c starting with πi and end-
ing with πj must have

∑j
k=i+1 ℓ(r

π
k)− ℓ(rιk) = 0.

Formally, given an intergenic graph I(π , rπ , rι) , a com-
ponent c is a minimal set of vertices from V in which:
(i) any two intergenic vertices that are connected to each
other by an inversion edge must belong to the same com-
ponent, (ii) if (rπi , r

π
j) ∈ g , with i < j , then {πi−1,πj} ∈ c

and for any i < k < j {rπk ,πk} ∈ c , and (iii) the sum of
imbalances of its intergenic regions from rπ with respect
to rι is equal to zero, i.e.

∑
∀ k s.t. rπk ∈c

ℓ(rπk)− ℓ(rιk) = 0.
A component with one intergenic vertex is called

trivial, and is called non-trivial otherwise. The number
of intergenic vertices in a component c is denoted by
cr . A component c is odd if cr is odd, and it is even oth-
erwise. The number of components in an intergenic
graph I(π , rπ , rι) is denoted by C(I(π , rπ , rι)) , the num-
ber of odd components is denoted by Codd(I(π , r

π , rι)) ,
and the number of even components is denoted by

Ceven(I(π , r
π , rι)) . Figure 2 shows three examples of inter-

genic graphs.
In the next two lemmas, we analyze the impact of

applying super short operations on the number of
components.

Lemma 1  Given an instance (π , rπ) and a tar-
get instance (ι, rι) , let (π ′, rπ

′
) be the resulting

instance after applying a 1-reversal. It follows that
C(I(π ′, rπ

′
, rι)) ≤ C(I(π , rπ , rι))+ 1.

Proof  Recall that a 1-reversal ρ(i, i, x, y) is applied over
intergenic regions rπi and rπi+1 , with 1 ≤ i ≤ n . Besides,
since 1-reversals do not create nor remove inversions
from π , intergenic graphs I(π ′, rπ

′
, rι) = (V ′,E′) and

I(π , rπ , rι) = (V ,E) satisfy E = E′.
If rπi ∈ c and rπi+1 �∈ c , this 1-reversal is applied over

two different components, which means that rπi is the last
intergenic region of c, so �i(r

π , rι) = 0 . If x + y �= ℓ(rπi) ,
we have that C(I(π ′, rπ

′
, rι)) = C(I(π , rπ , rι))− 1 , as

shown in Fig. 3a.
Consider now that {rπi , r

π
i+1} ∈ c . If i < n and

(rπ
′

i , rπ
′

i+2) ∈ E′ , or i > 1 and (rπ
′

i−1, r
π ′

i+1) ∈ E′ , then
C(π ′, rπ

′
, rι) = C(π , rπ , rι) . Otherwise, we have two cases

to consider: C(π ′, rπ
′
, rι) = C(π , rπ , rι) , if �i(r

π ′
, rι) �= 0

(as shown in Fig. 3b); and C(π ′, rπ
′
, rι) = C(π , rπ , rι)+ 1

if �i(r
π ′
, rι) = 0 (as shown in Fig. 3c). � �

a

b

c
Fig. 2  Intergenic graphs I(π , rπ , rι) , I(π ′ , rπ

′
, rι) , and I(ι, rι , rι) , with π = (3 1 2 4 5 7 6) , rπ = (15, 6, 4, 12, 8, 13, 9, 2), π ′ = (1 3 2 4 5 7 6) ,

r
π ′

= (10, 6, 9, 12, 8, 13, 9, 2) , ι = (1 2 3 4 5 6 7) , and rι = (10, 15, 8, 7, 5, 9, 13, 2) . Black squares represent intergenic vertices, and the number inside
it indicate their sizes. Rounded rectangles in blue represent components. Note that in (a) there are three edges in I(π , rπ , rι) , and C(I(π , rπ , rι)) = 2 ,
and Codd(I(π , rπ , rι)) = 2 since there are five intergenic vertices in c1 and three intergenic vertices in c2 . We also have in (a) all values for
(ℓ(rπ

i
)− ℓ(rι

i
)) and �i(r

π , rι) , with 1 ≤ i ≤ 8 . The instance (π ′ , rπ
′
) is the result of applying ρ(1, 2, 8, 2) to (π , rπ) . In (b) we can see that compared to

I(π , rπ , rι) , I(π ′ , rπ
′
, rι) has one more component, and e1 was removed. In (c) we can see that when we reach the target instance (ι, rι) the number of

components is equal to the number of intergenic regions in ι (i.e., C(I(ι, rι , rι)) = n+ 1 = 8)

Page 5 of 17Oliveira et al. Algorithms Mol Biol (2019) 14:21

Lemma 2  Given an instance (π , rπ) and a target
instance (ι, rι) , let (π ′, rπ

′
) be the resulting instance after

applying either a 2-reversal or a 2-transposition. It follows
that C(I(π ′, rπ

′
, rι)) ≤ C(I(π , rπ , rι))+ 2.

Proof  If a 2-reversal or 2-transposition is applied
to intergenic regions of two different components
in I(π , rπ , rι) , then we are necessarily creating a
new inversion, and the graph I(π ′, rπ

′
, rι) has either

C(I(π ′, rπ
′
, rι)) = C(I(π , rπ , rι))− 2 (as shown in Fig. 4a)

or C(I(π ′, rπ
′
, rι)) = C(I(π , rπ , rι))− 1 (as shown in

Fig. 4b).
Consider now that this operation is applied to inter-

genic regions of a same component in I(π , rπ , rι) , and
exchanges elements πi and πi+1 , with 1 ≤ i < n− 1 .
If the intergenic graph I(π ′, rπ

′
, rι) = (V ′,E′) has

(rπ
′

i , rπ
′

i+2) ∈ E′ , then C(I(π ′, rπ
′
, rι)) = C(I(π , rπ , rι)) .

Otherwise, we have three cases to consider:

1.	 C(I(π ′, rπ
′
, rι)) = C(I(π , rπ , rι)) , if �i(r

π ′
, rι) �= 0

and �i+1(r
π ′
, rι) �= 0 (as shown in Fig. 4c);

2.	 C(I(π ′, rπ
′
, rι)) = C(I(π , rπ , rι))+ 1 if either

�i(r
π ′
, rι) = 0 or �i+1(r

π ′
, rι) = 0 (as shown in

Fig. 4d);
3.	 C(I(π ′, rπ

′
, rι)) = C(I(π , rπ , rι))+ 2 otherwise (as

shown in Fig. 4e).� �

In the following sections, we will explore five differ-
ent problems concerning super short operations but also
considering intergenic regions, namely Sorting by Super
Short Reversals (SbSSR), Sorting by Super Short Trans-
positions (SbSST), Sorting by Super Short Reversals and
Super Short Transpositions (SbSSO), Sorting by Signed
Super Short Reversals (SbSigSSR), and Sorting by Signed
Super Short Reversals and Super Short Transpositions
(SbSigSSO). Table 1 summarizes our results concerning
general permutations (GP), permutations with nℓ inver-
sions for some ℓ ≥ 1 ( ℓIP), permutations with at least n
inversions (1IP), and permutations with at least 2n inver-
sions (2IP).

Sorting by Super Short Reversals
In this section, we analyze the version of the problem
when only super short reversals (i.e., 1-reversals and
2-reversals) are allowed to transform (π , rπ) into (ι, rι) .
First, we state that if a non-trivial component c of an
intergenic graph I(π , rπ , rι) has no edge (i.e., there is no
inversion inside c), then it is always possible to split c into
two components with a 1-reversal.

Lemma 3  If a component c of an intergenic graph
I(π , rπ , rι) with cr ≥ 2 contains no edge, then there is
always a pair of consecutive intergenic regions to which we
can apply a 1-reversal that splits c into two components c′
and c′′ such that c′r + c′′r = cr.

a

b

c
Fig. 3  Example of intergenic graphs for all possible values of C(I(π ′ , rπ

′
, rι)) with respect to C(I(π , rπ , rι)) where (π ′ , rπ

′
) is the resulting

instance after applying a 1-reversal to (π , rπ) . When the 1-reversal is applied over two components at the same time and rπ
′

i
�= r

π
i

 ,
C(I(π ′ , rπ

′
, rι)) = C(I(π , rπ , rι))− 1 , as shown in a. Otherwise, we have that C(I(π ′ , rπ

′
, rι)) = C(I(π , rπ , rι))+ k , k ∈ {0, 1} , as shown in b and c 

Page 6 of 17Oliveira et al. Algorithms Mol Biol (2019) 14:21

Proof  Let pi be the index in rπ of the i-th intergenic
region inside component c. The last intergenic region
of c is at position pcr . By definition of a component, and
since c contains no edge, for any p1 ≤ j < pcr we have
that �j(r

π , rι) = 0 . Note that since cr > 1 we have that
�p1(r

π , rι) = (ℓ(rπp1)− ℓ(rιp1)) �= 0.
If �p1(r

π , rι) > 0 , let pi = p1 and let k be the index of
element from π located right after rπp1 . Apply the reversal
ρ(k , k , ℓ(rιp1), 0).

Otherwise, we have that �p1(r
π , rι) < 0 , and we need to

find two intergenic regions rπpi and rπpi+1
 for 1 ≤ i < cr such

that �pi(r
π , rι) < 0 and �pi+1(r

π , rι) ≥ 0 . Since, by defi-
nition of a component, �pcr (r

π , rι) = 0 , such pair always

exists. Let k be the index of element from π located right
after rpi . Apply the reversal ρ(k , k , ℓ(rπpi),−�pi(r

π , rι)).
In both cases, the resulting permutation π ′ has

�pi(r
π ′
, rι) = 0 , �pi+1(r

π ′
, rι) = �pi+1(r

π , rι)+�pi(r
π , rι) ,

and for any i + 2 ≤ j ≤ cr we have that �pj (r
π ′
, rι) =

�pj (r
π , rι) ; thus, as before, all intergenic regions from rπ ′

pi+1

to rπ ′

pcr
 must belong to the same component.

This 1-reversal splits c into two components: c′ with all
intergenic regions in positions p1 to pi , and c′′ with all
intergenic regions in positions pi+1 to pcr .� �

a

b

c

d

e
Fig. 4  Example of intergenic graphs for all possible values of C(I(π ′ , rπ

′
, rι)) with respect to C(I(π , rπ , rι)) where (π ′ , rπ

′
) is the resulting instance

after applying a 2-reversal or a 2-transposition to (π , rπ) . When the 2-reversal or 2-transposition is applied over two components at the same time
C(I(π ′ , rπ

′
, rι)) < C(I(π , rπ , rι)) , as shown in a and b. Otherwise, we have that C(I(π , rπ , rι)) ≤ C(I(π ′ , rπ

′
, rι)) ≤ C(I(π , rπ , rι))+ 2 , as shown in c–e 

Page 7 of 17Oliveira et al. Algorithms Mol Biol (2019) 14:21

Let �odd(r
π , rι) =

∑n+1
i=1, i (mod 2)=1(ℓ(r

π
i)− ℓ(rιi))

denote the cumulative sum of imbalances of intergenic
regions from π and ι in odd positions only. Using Lem-
mas 1, 2 and 3, we show in the following two lemmas the
minimum and maximum number of super short reversals
needed to transform π into ι and rπ into rι.

Lemma 4  Let (π , rπ) be an instance, (ι, rι) be the target
instance, m the number of intergenic regions in rπ and rι ,
and let ϕr = 0 if �odd(r

π , rι) = 0 and ϕr = 1 otherwise. It
follows that d(π) ≥ max{m−C(I(π ,rπ ,rι))

2 , inv(π)+ ϕr}.

Proof  In order to sort π , we need to remove all inver-
sions, and since a 2-reversal can remove only one inver-
sion, we have that d(π) ≥ inv(π) . Besides, since 2-rever-
sals exchange material between intergenic regions of
same parity only, then d(π) ≥ inv(π)+ ϕr , with ϕr = 1
if �odd(r

π , rι) = 0 (in this case we will need at least one
1-reversal to exchange material between an intergenic
region located at an odd position and an intergenic
region located at an even position), and ϕr = 0 otherwise.

On the other hand, by Lemmas 1 and 2, we can increase
the number of components by at most two with a super
short reversal, so to reach m trivial components we need
at least m−C(I(π ,rπ ,rι))

2 super short reversals. � �

Lemma 5  Let (π , rπ) be an instance, (ι, rι)
be the target instance, and let m be the num-
ber of intergenic regions in rπ and rι . We have that
d(π) ≤ inv(π)+m− C(I(π , rπ , rι)).

Proof  While π = ι , π has at least one pair of con-
secutive elements (πi,πi+1) that is an inversion. Sup-
pose that we first remove all inversions from π using
inv(π) 2-reversals of type ρ(i, i + 1, ℓ(rπi), 0) i.e., without
modifying its intergenic regions lengths. Let π ′ be the
resulting permutation, that has rπ ′

= rπ . The number
of components in I(π ′, rπ

′
, rι) cannot be smaller than

C(I(π , rπ , rι)) , since any 2-reversal removing an inver-
sion is applied inside a same component. By Lemma 3,
we can go from C(I(π ′, rπ

′
, rι)) to m components using

m− C(I(π ′, rπ
′
, rι)) 1-reversals, which results in no more

than m−C(I(π , rπ , rι)) 1-reversals.� �

Finally, using Lemmas 4 and 5, we prove that it is pos-
sible to obtain 3-approximation for this problem.

Theorem 1  Let (π , rπ) be an instance, (ι, rι) be the
target instance, and let m = n+ 1 be the number of
intergenic regions in rπ and rι . The value of d(π) is
3-approximable.

Proof  Let k = C(I(π , rπ , rι)) , and let ϕr = 0 , if
�odd(r

π , rι) = 0 , or ϕr = 1 otherwise. If m−k
2 ≥ inv(π)+ ϕr

then, by Lemma 4, d(π) ≥ m−k
2  , and, by Lemma 5,

d(π) ≤ m− k + inv(π) ≤ m− k + m−k
2 ≤ 3m−k

2  . Oth-
erwise, m−k

2 < inv(π)+ ϕr , so m− k < 2inv(π)+ 2ϕr .
By Lemma 4, d(π) ≥ inv(π)+ ϕr , and, by Lemma 5,
d(π) ≤ m− k + inv(π) ≤ 2inv(π)+ 2ϕr + inv(π) ≤

3inv(π)+ 2ϕr . � �

Algorithm 1 describes a 3-approximation algo-
rithm that transforms an instance (π , rπ) into (ι, rι)
using super short reversals. Computing inv(π) takes
O(n log n) and it takes up to O(n2) to build I(π , rπ , rι) .
Computing �i(r

π , rι) and C(I(π , rπ , rι)) take O(n), and
it takes constant time to update them. The while loop
in line 5 (resp. line 14) iterates up to O(n2) times, so the
overall complexity of Algorithm 1 is O(n2).

Let δn denote the set of all permutations π with n ele-
ments, and let δn,k denote the number of all permutations
π ∈ δn such that inv(π) ≤ k . For n = 12 there are 762,007
permutations in δ12,12 , which corresponds to 0.16% of the
12! permutations from δ12 , and for n > 12 the number
of permutations in δn,n never corresponds to more than
0.05% of the n! permutations from δn [17]. Besides, for
n > 18 the number of permutations in δn,2n never exceeds
0.03% of the n! permutations from δn [17].

Page 8 of 17Oliveira et al. Algorithms Mol Biol (2019) 14:21

Algorithm 1 has a better approximation factor when
the number of inversions is at least n, as explained in the
following theorem.

Theorem 2  Let (π , rπ) be an instance, (ι, rι) be the target
instance, and let m = n+ 1 be the number of intergenic
regions in rπ and rι . If inv(π) ≥ n , Algorithm 1 has an
approximation factor of (1+ 1

ℓ
) , where ℓ = inv(π)

n ≥ 1.

Proof  Let k = C(I(π , rπ , rι)) , and let ϕr = 0 if
�odd(r

π , rι) = 0 and ϕr = 1 otherwise. Suppose now that
inv(π) = nℓ for some ℓ ≥ 1 . Since m−k

2 < n , by Lemma 4
we have that d(π) ≥ nℓ . Algorithm 1 applies nℓ 2-rever-
sals and up to m− k < n 1-reversals, which results in no
more than nℓ+ n− 1 < n(ℓ+ 1) super short reversals. �

Corollary 2.1  Let (π , rπ) be an instance, (ι, rι) be
the target instance, and let m = n+ 1 be the number
of intergenic regions in rπ and rι . If inv(π) ≥ n (resp.
inv(π) ≥ 2n ) Algorithm 1 has an approximation factor of
at most 2 (resp. 1.5).

Sorting by Super Short Transpositions
In this section, we analyze the version of the problem
when only Super Short Transpositions are allowed. First,
we investigate how 2-transpositions split non-trivial
components from an intergenic graph I(π , rπ , rι).

Lemma 6  If a component c of an intergenic graph
I(π , rπ , rι) with cr > 2 (resp. cr = 2 ) has no edge, then we
can apply two 2-transpositions that split c into three com-
ponents c′ , c′′ , and c′′′ such that c′r + c′′r + c′′′r = cr (resp.
two components c′ and c′′ such that c′r = c′′r = 1).

Proof  Note that any 2-transposition will increase or
decrease the number of inversions by one. By Lemma 2,
a 2-transposition that removes an inversion can increase
the number of components by at most two units, and a
2-transposition creating an inversion cannot increase the
number of components. Since there is no inversion in c,
for each 2-transposition removing an inversion from c we
have a 2-transposition creating that inversion before.

Now we explain how to increase the number of com-
ponents by two units when cr ≥ 3 . Let pi be the index
in rπ of the i-th intergenic region inside component c.
If there is no intergenic region rj inside c in which the
cumulative sum is negative, apply τ (p1, p2, p3, x, y, 0)
in such a way that x = min{ℓ(rιp1)+ ℓ(rιp2), ℓ(r

π
p1
)}

and y = ℓ(rπp2)+ ℓ(rιp1)+ ℓ(rιp2)− x . Now apply
τ (p1, p2, p3, ℓ(r

ι
p1
), 0, 0) . These two 2-transpositions split c

into three components: c′ with rp1 , c′′ with rp2 and c′′′ with

the remaining intergenic regions from c. Note that c′ and
c′′ are odd, and c′′′ has the same parity as c.

Otherwise, we can find a pair of consecutive intergenic
regions rpi and rpi+1 inside c such that �pi(r

π , rι) < 0
and �pi+1(r

π , rι) ≥ 0 , and since �pcr (r
π , rι) = 0 ,

such pair always exists. If cr is even or if cr is odd
but pi is even, apply τ (pi−1, pi, pi+1, x, y, 0) such that
x = ℓ(rπpi−1

) and y = ℓ(rπpi)+�pi−1(r
π , rι) , followed

by τ (pi−1, pi, pi+1, x
′, 0, y′) such that x′ = ℓ(rιpi−1

) and
y′ = ℓ(rιpi).

If cr and pi are odd, apply τ (pi, pi+1, pi+2, x, y, 0) such
that x = ℓ(rπpi) and y = ℓ(rπpi+1

)+�pi(r
π , rι) , followed

by τ (pi−1, pi, pi+1, x
′, 0, y′) such that x′ = ℓ(rιpi) and

y′ = ℓ(rιpi+1
) . These two 2-transpositions split c into three

components so if cr is even then we will end up with two
odd components and one even component, and if c is
odd we will end up with three odd components due to
the choice of the position defined above.

If cr = 2 and p1 > 1 we apply τ (p1 − 1, p1, p2, x, y, 0)
such that x = ℓ(rπp1−1) and y = ℓ(rπp1) , followed by
τ (p1 − 1, p1, p2, x

′, 0, y′) such that x′ = x and y′ = ℓ(rιp1) .
If cr = 2 and p1 = 1 we apply τ (p1, p2, p2 + 1, ℓ(rπp1), 0, 0)
followed by τ (p1, p2, p2 + 1, ℓ(rιp1), 0, 0) . These two trans-
positions transform c into two trivial components. � �

The following lemma gives the number of transposi-
tions needed to transform a permutation π and its inter-
genic regions rπ into ι with its intergenic regions rι when
inv(π) = 0.

Lemma 7  Let (π , rπ) be an instance, (ι, rι) be the
target instance, and let m = n+ 1 be the number of
intergenic regions in rπ and rι . If inv(π) = 0 , then
d(π) = m− C(I(π , rπ , rι))+ Ceven(I(π , r

π , rι)).

Proof  If a 2-transposition applied on a component c of
I(π , rπ , rι) increases the number of components by two
units, we can assume by the proof of Lemma 6 that it
transforms c into three components c′ , c′′ , and c′′′ such
that two of them are odd components and the other has
the same parity as cr.

If c is odd, and if we can always increase the number
of components by two units, we end up with a compo-
nent with only one intergenic region, but if c is even,
at some point we will have to increase the number of
components by one unit, creating two odd compo-
nents. This means that for each even component we
need to apply two 2-transpositions that increase the
number of components by one unit only. Since we
can always apply pairs of transpositions that do not
increase the number of even components, it follows that
d(π) = m− C(I(π , rπ , rι))+ Ceven(I(π , r

π , rι)) . � �

Page 9 of 17Oliveira et al. Algorithms Mol Biol (2019) 14:21

Lemmas 8 and 9 respectively show the lower and upper
bounds for finding d(π) using super short transpositions.

Lemma 8  Let (π , rπ) be an instance, (ι, rι) be the
target instance, and let m = n+ 1 be the num-
ber of intergenic regions in rπ and rι . It follows that
d(π) ≥ max{m−C(I(π ,rπ ,rι))+Ceven(I(π ,r

π ,rι))
2 , inv(π)}.

Proof  In order to sort π we need to remove all inver-
sions, and since a 2-transposition can remove only
one inversion, we necessarily have that d(π) ≥ inv(π) .
Besides, by Lemma 2, we can increase the number of
components by at most two with a super short trans-
position. Let k = C(I(π , rπ , rι))− Ceven(I(π , r

π , rι)) .
To reach m trivial components, and considering also
Lemma 7, we need at least m+k

2 super short transposi-
tions. Thus, d(π) ≥ max{m+k

2 , inv(π)} . � �

Lemma 9  Let (π , rπ) be an instance, (ι, rι) be the
target instance, and let m = n+ 1 be the num-
ber of intergenic regions in rπ and rι . We have that
d(π) ≤ inv(π)+m− C(I(π , rπ , rι))+ Ceven(I(π , r

π , rι)).

Proof  Suppose that we first remove all inver-
sions of π using inv(π) 2-transpositions of type
τ (i, i + 1, i + 2, ℓ(rπi), 0, 0) , and let π ′ be the resulting
permutation. The value of C(I(π ′, rπ

′
, rι)) cannot be

smaller than C(I(π , rπ , rι)) since any 2-transposition
removing an inversion is applied inside a same compo-
nent. Let k = C(I(π , rπ , rι))− Ceven(I(π , r

π , rι)) and let
k ′ = C(I(π ′, rπ

′
, rι))− Ceven(I(π

′, rπ
′
, rι))

Let us analyze the parity of any component that a
2-transposition breaks: (i) if it transforms an odd com-
ponent into two, then one component must be odd; (ii)
if it transforms an even component into two, then both
components are odd or even; (iii) if it transforms an even
component into three, then two components must be
odd; (iv) if it transforms an odd component into three,
then either two components are even or the three com-
ponents are odd. This means that k ′ ≥ k.

By Lemma 7, we can go from C(I(π ′, rπ
′
, rι)) to m com-

ponents using m− k ′ 2-transpositions, which results, by
the analysis above, in no more than m− k 2-transposi-
tions. � �

Finally, using Lemmas 8 and 9, we prove that it is possi-
ble to obtain a 3-approximable solution for this problem.

Theorem 3  Let (π , rπ) be an instance, (ι, rι) be the target
instance, and let m = n+ 1 be the number of intergenic
regions in rπ and rι . The value of d(π) is 3-approximable.

Proof  Let k = C(I(π , rπ , rι))− Ceven(I(π , r
π , rι)) . If

m−k
2 ≥ inv(π) then, by Lemma 8, d(π) ≥ m−k

2  , and, by
Lemma 5, d(π) ≤ m− k + inv(π) ≤ m− k + m−k

2 ≤ 3m−k
2

 .
Otherwise, m−k

2 < inv(π) , so m− k < 2 inv(π) . By
Lemma 8, d(π) ≥ inv(π) , and, by Lemma 9,
d(π) ≤ m− k + inv(π) ≤ 2 inv(π)+ inv(π) ≤ 3 inv(π) .
� �

Algorithm 2 describes a 3-approximation algorithm
that transforms an instance (π , rπ) into (ι, rι) using Super
Short Transpositions. Similarly to Algorithm 1, Algo-
rithm 2 has a time complexity of O(n2).

Algorithm 2 has a better approximation factor when
the number of inversions is strictly greater than n, as
stated in the following theorem.

Theorem 4  Let (π , rπ) be an instance, (ι, rι) be the target
instance, and let m = n+ 1 be the number of intergenic
regions in rπ and rι . If inv(π) > n , Algorithm 2 has an
approximation factor of (1+ 1

ℓ
) , where ℓ = inv(π)

n ≥ 1.

Proof  Similar to proof of Theorem 2, given that
m− C(I(π , rπ , rι))+ Ceven(I(π , r

π , rι)) ≤ n+ 1 . � �

Page 10 of 17Oliveira et al. Algorithms Mol Biol (2019) 14:21

Corollary 4.1  Let (π , rπ) be an instance, (ι, rι) be the tar-
get instance, and let m = n+ 1 be the number of intergenic
regions in rπ and rι . If inv(π) ≥ n (resp. inv(π) ≥ 2n ) Algo-
rithm 2 has an approximation factor of at most 2 (resp. 1.5).

Sorting by Super Short Reversals and Super Short
Transpositions
In this section we analyze the version of the problem
when both super short reversals and Super Short Trans-
positions are allowed to transform any (π , rπ) into (ι, rι).

Lemma 10  Let (π , rπ) be an instance, (ι, rι) be
the target instance, and let m = n+ 1 be the num-
ber of intergenic regions in rπ and rι . It follows that
d(π) ≥ max{m−C(I(π ,rπ ,rι))

2 , inv(π)}.

Proof  Directly from Lemmas 2, 4, and 8. � �

Lemma 11  Let (π , rπ) be an instance, (ι, rι) be
the target instance, and let m = n+ 1 be the num-
ber of intergenic regions in rπ and rι . We have that
d(π) ≤ inv(π)+m− C(I(π , rπ , rι)).

Proof  Suppose that first we remove all inversions of
π using inv(π) 2-reversals of type ρ(i, i + 1, ℓ(rπi), 0) ,
and let π ′ (resp. rπ ′

) ) be the resulting permutation
(resp. intergenic regions). Let k = C(I(π , rπ , rι)) and let
k ′ = C(I(π ′, rπ

′
, rι)) . We have that k ′ ≥ k , since 2-rever-

sals removing inversions are always applied inside a same
component.

Analogous to Lemma 9, and assuming that k ′ = k + ℓ for
some ℓ ≥ 0 , then Ceven(I(π

′, rπ
′
, rι)) ≤ Ceven(I(π , r

π , rι))+ ℓ .
We use the procedure described in Lemma 9 on com-
ponents c with cr ≥ 3 , applying two 2-transpositions
that increase the number of components by two units.
For components c with cr = 2 , we apply a 1-reversal as
described in Lemma 1, breaking them into two odd
components.

The above procedure applies inv(π) 2-reversals,
n− k ′ − Ceven(I(π

′, rπ
′
, rι)) 2-transpositions, and

Ceven(I(π
′, rπ

′
, rι)) 1-reversals, which results in no more

than inv(π)+m− C(I(π), rι)) . � �

Now we prove that it is possible to obtain a 3-approx-
imable solution for this problem.

Theorem 5  Let (π , rπ) be an instance, (ι, rι) be the target
instance, and let m = n+ 1 be the number of intergenic
regions in rπ and rι . The value of d(π) is 3-approximable.

Proof  Similar to proof of Theorem 1, using Lem-
mas 10 and 11. � �

Algorithm 3 describes a 3-approximation algorithm
that transforms an instance (π , rπ , rι) into (ι, rι, rι) using
both super short reversals and super short transpositions.
As algorithms 1 and 2, it has a time complexity of O(n2).

As in the previous algorithms, Algorithm 3 has a better
approximation factor when the number of inversions is at
least n, as explained in the following theorem.

Theorem 6  Let (π , rπ) be an instance, (ι, rι) be the target
instance, and let m = n+ 1 be the number of intergenic
regions in rπ and rι . If inv(π) ≥ n Algorithm 3 has an
approximation factor of (1+ 1

ℓ
) , where ℓ = inv(π)

n ≥ 1.

Proof  Analogous to proof of Theorem 2. � �

Corollary 6.1  Let (π , rπ) be an instance, (ι, rι) be
the target instance, and let m = n+ 1 be the number
of intergenic regions in rπ and rι . If inv(π) ≥ n (resp.
inv(π) ≥ 2n ) Algorithm 3 has an approximation factor of
at most 2 (resp. 1.5).

Page 11 of 17Oliveira et al. Algorithms Mol Biol (2019) 14:21

Sorting by Signed Super Short Reversals
In this section, we analyze the version of the problem
when super short reversals are allowed to transform
(π , rπ) into (ι, rι) , where π and ι are signed permutations.

Given a signed permutation π , let Seven−π be the set of ele-
ments from π such that ||πi| − i| is even and πi < 0 , and let
Sodd

+

π be the set of elements from π such that ||πi| − i| is
odd and πi > 0 . Sets Seven−π and Sodd+π capture the negative
and positive elements from π that end with negative signs
after any sequence of 2-reversals that puts all elements in
their correct positions (i.e., remove all inversions). Let ϕneg
be the number of elements in Seven−π ∪ Sodd

+

π .
The following lemma, proved by Galvão et al. [8], gives

the exact number of super short reversals needed to
transform π into ι.

Lemma 12  Given a signed permutation π ,
d(π) = inv(π)+ ϕneg.

This lemma helps us to state the following lower bound
for our problem.

Lemma 13  Let (π , rπ) be an instance, (ι, rι) be
the target instance, and let m = n+ 1 be the num-
ber of intergenic regions in rπ and rι . We have that
d(π) ≥ inv(π)+max{ϕr ,ϕneg }.

Proof  Directly from Lemmas 4 and 12. � �

The following lemma states an upper bound for this
problem.

Lemma 14  Let (π , rπ) be an instance, (ι, rι) be
the target instance, and let m = n+ 1 be the num-
ber of intergenic regions in rπ and rι . We have that
d(π) ≤ inv(π)+max{ϕr ,ϕneg } + 2(m− C(I(π , rπ , rι)).

Proof  Let k = C(I(π , rπ , rι)) and let ℓ = max{ϕr , ϕneg } .
Suppose that we first remove all inversions of π using inv(π)
2-reversals of type ρ(i, i + 1, ℓ(rπi), 0) , and let π ′ (resp. rπ ′ )
be the resulting permutation (resp. intergenic regions).

Let k ′ = C(I(π ′, rπ
′
, rι) . We have that k ′ ≥ k . We

apply m− k ′ ≤ m− k 1-reversals that split every non-
trivial component from I(π ′, rπ

′
, rι) into two compo-

nents according to Lemma 3, and let π ′′ (resp. rπ ′′ ) be the
resulting permutation (resp. intergenic regions).

At this point, we have a permutation π ′′
such that rπ

′′
= rι , and π ′′ has no more than

ℓ+ (m− k ′) ≤ ℓ+ (m− k) negative elements. We just
need to apply up to ℓ+ (m− k ′) 1-reversals of type
ρ(i, i, ℓ(rπ

′′

i), 0) (i.e., without modifying the length of its
intergenic regions) to each negative element from π ′ , and
the lemma follows.� �

Using Lemmas 13 and 14, we prove that the value of
d(π) is 5-approximable.

Theorem 7  Let (π , rπ) be an instance, (ι, rι) be the target
instance, and let m = n+ 1 be the number of intergenic
regions in rπ and rι . The value of d(π) is 5-approximable.

Proof  Let k = C(I(π , rπ , rι)) , and let ℓ = max{ϕr , ϕneg } .
If m−k

2 ≥ inv(π)+ ℓ then, by Lemma 12, d(π) ≥ m−k
2  ,

and, by Lemma 14, d(π) ≤ 2(m− k)+ inv(π)+ ℓ ≤

2(m− k)+ m−k
2

≤ 5
m−k
2

.
Otherwise, m−k

2 < inv(π)+ ℓ , so 2(m− k) < 4(inv(π)+ ℓ) .
By Lemma 12, d(π) ≥ inv(π)+ ℓ , and, by Lemma 14,
d(π) ≤ 2(m− k)+ inv(π)+ ℓ ≤ 4(inv(π)+ ℓ)+ inv(π)

+ℓ ≤ 5(inv(π)+ ℓ) . �

Algorithm 4 describes a 5-approximation algorithm
that transforms a signed instance (π , rπ , rι) into (ι, rι, rι)
using Signed Super Short Reversals. As in previous algo-
rithms, the time complexity of Algorithm 4 is O(n2).

Page 12 of 17Oliveira et al. Algorithms Mol Biol (2019) 14:21

As in the previous algorithms, Algorithm 4 has a bet-
ter approximation factor when the number of inver-
sions is at least n, as explained in the following theorem.

Theorem 8  Let (π , rπ) be an instance, (ι, rι) be the target
instance, and let m = n+ 1 be the number of intergenic
regions in rπ and rι . If inv(π) ≥ n , Algorithm 3 has an
approximation factor of (1+ 2

ℓ
) , where ℓ = inv(π)

n ≥ 1.

Proof  Let k = C(I(π , rπ , rι)) . Suppose now that
inv(π) = nℓ for some ℓ ≥ 1 . Since m−k

2 < n , by Lemma 4
we have that d(π) ≥ nℓ . Algorithm 4 applies nℓ 2-rever-
sals, up to m− k < n 1-reversals, and up to n 1-reversals
to flip the sign of each negative element, which results
in no more than nℓ+ n− 1+ n < n(ℓ+ 2) super short
reversals. � �

Corollary 8.1  Let (π , rπ) be an instance, (ι, rι) be
the target instance, and let m = n+ 1 be the number
of intergenic regions in rπ and rι . If inv(π) ≥ n (resp.
inv(π) ≥ 2n ) Algorithm 4 has an approximation factor of
at most 3 (resp. 2).

Sorting by Signed Super Short Reversals and Super
Short Transpositions
In this section, we analyze the version of the problem
when both super short reversals and Super Short Trans-
positions are allowed to sort signed permutations.

Let H(π) be the inversion graph [18] of the signed
permutation π , such that V (H(π)) = {π1,π2, ...,πn} and
E(H(π)) is formed by pairs of elements from π that are
inversions. In H(π) , a component is defined as a maximal
subgraph in which any two vertices are connected to each
other by paths. A component from H(π) is negative if it
contains an odd number of negative elements (vertices),
and it is positive otherwise.

Let ϕodd be the number of negative components of
H(π) . The following lemma, proved by Galvão et al. [8],
gives the exact number of super short reversals and Super
Short Transpositions needed to transform π into ι , which
is a lower bound for our problem.

Lemma 15  Given a signed permutation π ,
inv(π)+ ϕodd super short operations are required to
transform π into ι.

Now we state in the following lemma an upper bound
for this problem.

Lemma 16  Let (π , rπ) be an instance, (ι, rι) be
the target instance, and let m = n+ 1 be the num-
ber of intergenic regions in rπ and rι . We have that
d(π) ≤ inv(π)+ ϕodd + 2(m− C(I(π , rπ , rι))).

Proof  Suppose that we first remove all inversions of π
using the polynomial algorithm presented in [8], that
uses inv(π)+ ϕodd super short operations such that all
2-reversals are of type ρ(i, i + 1, ℓ(rπi), 0) , all 2-transpo-
sitions are of type τ (i, i + 1, i + 2, ℓ(rπi), 0, 0), and all the
ϕodd 1-reversals are ignored (i.e., not applied), and let π ′
be the resulting permutation.

The number of components I(π ′, rπ
′
, rι) in π ′ cannot

be smaller than C(I(π , rπ , rι)) , since the 2-reversals and
2-transpositions are applied inside a same component
only. Let k ′ = C(I(π ′, rπ

′
, rι)) ≥ C(I(π , rπ , rι)).

By Lemma 3, we can go from k ′ to m components
using m− k ′ 1-reversals, which results in no more than
m−C(I(π , rπ , rι)) 1-reversals. After that, we will have
a permutation π ′′ with up to min{n,m− k ′ + ϕodd}
negative elements, so we can apply up to
min{n,m− k ′ + ϕodd} 1-reversals of type ρ(i, i, ℓ(rιi), 0) to
each negative element of π ′′ . � �

Using Lemmas 15 and 16, we prove that it is possible
to obtain a 5-approximable solution for this problem.

Theorem 9  Let (π , rπ) be an instance, (ι, rι) be the target
instance, and let m = n+ 1 be the number of intergenic
regions in rπ and rι . The value of d(π) is 5-approximable.

Proof  Let k = C(I(π , rπ , rι)) , and let ℓ = ϕodd . If
m−k
2 ≥ inv(π)+ ℓ then, by Lemma 15, d(π) ≥ m−k

2  ,
and, by Lemma 16, d(π) ≤ 2(m− k)+ inv(π)+ ℓ ≤

2(m− k)+ m−k
2

≤ 5
m−k
2

.
Otherwise, m−k

2 < inv(π)+ ℓ , so 2(m− k) <

4(inv(π)+ ℓ) . By Lemma 15, d(π) ≥ inv(π)+ ℓ , and, by
Lemma 16, d(π) ≤ 2(m− k)+ inv(π)+ ℓ ≤ 4(inv(π)+ ℓ)+ inv(π)

+ℓ ≤ 5(inv(π)+ ℓ) . � �

Algorithm 5 describes a 5-approximation algorithm
that transforms a signed instance (π , rπ , rι) into (ι, rι, rι)
using both signed super short reversals and Super
Short Transpositions. Regarding the complexity, by
previous algorithms we know that lines 1-3 and 6-17
take up to O(n2) , and according to [8] the while loop in
line 4 takes O(n3) , which is then the time complexity of
Algorithm 5.

Page 13 of 17Oliveira et al. Algorithms Mol Biol (2019) 14:21

i i+1

As for previous algorithms, Algorithm 5 also has a bet-
ter approximation factor when the number of inversions
is at least n. This is the purpose of the following theorem.

Theorem 10  Let (π , rπ) be an instance, (ι, rι) be the tar-
get instance, and let m = n+ 1 be the number of inter-
genic regions in rπ and rι . If inv(π) ≥ n , Algorithm 5 has
an approximation factor of (1+ 2

ℓ
) , where ℓ = inv(π)

n ≥ 1.

Proof  Let k = C(I(π , rπ , rι)) . Suppose now that
inv(π) = nℓ . Since m−k

2 < n , by Lemma 4 we have that
d(π) ≥ ℓ . Algorithm 4 applies nℓ operations between
2-reversals and 2-transpositions, up to m− k < n
1-reversals, and up to n 1-reversals to flip the sign of
each negative element, which results in no more than
nℓ+ n− 1+ n < n(ℓ+ 2) super short operations. � �

Corollary 10.1  Let (π , rπ) be an instance, (ι, rι) be
the target instance, and let m = n+ 1 be the number
of intergenic regions in rπ and rι . If inv(π) ≥ n (resp.
inv(π) ≥ 2n ) Algorithm 5 has an approximation factor of
at most 3 (resp. 2).

Experimental tests
We implemented the five proposed algorithms and
tested them unsing simulated permutations, in order to
observe their performances. We generated two differ-
ent permutation datasets, which we call fully-random
instances (FRI) and almost random instances (ARI).
Each dataset has 1,000,000 instances (π , rπ) , π is a per-
mutation with 100 elements and rπ is a sequence of 101
intergenic regions sizes.

The dataset FRI was generated in the following
way: (i) let (ι, rι) be an initial instance, being ι with
100 elements, and each rιi received a random inte-
ger k ∈ [0..100] . (ii) Generate (π , rπ) by applying w
consecutive super short operations to (ι, rι) , with
randomly generated indices for both positions and
intergenic sizes, always respecting the current val-
ues. We created 10,000 instances for each value of
w ∈ {10, 20, 30, . . . , 990, 1000}.

For Sorting by (Signed) Super Short Reversals we
applied 0.8w 2-reversals and 0.2w 1-reversals, and at each
step one of them was chosen at random while both were
available. For Sorting by Super Short Transpositions we
applied w 2-transpositions. For Sorting by (Signed) Super
Short Operations we applied 0.5w 2-transpositions, 0.4w
2-reversals, and 0.1w 1-reversals, and at each step one of
them was chosen at random while more than one were
available.

The dataset ARI was generated in a similar way as FRI,
but when the algorithm had to apply either a 2-reversal
or a 2-transposition we randomly chose a pair among
all pairs of adjacent elements that were not an inversion.
Since w < max{inv(π),π ∈ δn} =

n(n−1)
2  , at least one pair

always exists.
Given any instance (π , rπ) from ARI created using

w SSOs, we know exactly how many inversions (π , rπ)
has—it is the number of 2-reversals and 2-transpositions
applied. The number of inversions on instances from FRI,
however, is not known, but we can compute the expected
number of inversions in a permutation with n elements
after k random swaps (i.e., 2-reversals and 2-transposi-
tions) applied to the identity permutation [19]:

where ca = cosαa , sa = sin αa , xab = 1− 4
n (1− cacb) ,

and αa =
(2a+1)π
2n+2 .

Figures 5 and 6 show the experimental results for
instances of type FRI and ARI, respectively. We show the
average distance returned for each algorithm described
in this paper, plus the average and maximum approxima-
tion factors calculated based on the lower bound of each
problem for each instance.

E[in,k] =
n(n+ 1)

4
−

1

8(n+ 1)2

n∑

i,j=0

(cj + ci)
2

s2k s
2
i

xkji,

Page 14 of 17Oliveira et al. Algorithms Mol Biol (2019) 14:21

On Figs. 5 and 6, Algorithm 1 is denoted by SbSSR,
Algorithm 4 is denoted by SbSigSSR, Algorithm 2 is
denoted by SbSST, Algorithm 3 is denoted by SbSSO, and
Algorithm 5 is denoted by SbSigSSO. In Fig. 5, the curve
Inv. 1 represents the expected number of inversions for
SbSSR and SbSigSSR, the curve Inv. 2 represents the
expected number of inversions for SbSST, and the curve
Inv. 3 denotes the expected number of inversions for
SbSSO and SbSigSSO. These three curves were generated
using the formula E[in,k] described above. In Fig. 6 the

curves Inv. 1, 2, and 3 follow the same idea as the curves
in Fig. 5, but instead of expected number of inversions
they represent the exact number of inversions.

As distance is directly related to the number of inver-
sions, in Fig. 5a we see that, although in practice we have
applied up to 1000 operations, the distance values were
never greater than 300 on average—the average returned
distances for each algorithm follow the trend dotted line
that represents the expected number of inversions of that
instances. Algorithms for signed permutations returned

a

b

c
Fig. 5  a average returned distance, b maximum returned approximation, and c average returned approximation for instances in FRI. In a dotted
curves represent the expected number of inversions, dashed curves represent the algorithms for signed permutations, and line curves represent
the algorithms for unsigned permutations. Colors relate problems having the expected number of inversions given by the dotted line of same color.
This means that SbSSR and SbSigSSR are expected to have inversions as in Inv. 1, SbSST is expected to have inversions as in Inv. 2, and SbSSO and
SbSigSSO are expected to have inversions as in Inv. 3. All the approximations in b and c were calculated based on the lower bound of each problem

Page 15 of 17Oliveira et al. Algorithms Mol Biol (2019) 14:21

a

b

c
Fig. 6  a average returned distance, b maximum returned approximation, and c average returned approximation for instances in ARI. In a dotted
curves represent the exact number of inversions, dashed curves represent the algorithms for signed permutations, and line curves represent the
algorithms for unsigned permutations. Colors relate problems having the expected number of inversions given by the dotted line of same color.
This means that SbSSR and SbSigSSR have inversions as in Inv. 1, SbSST has inversions as in Inv. 2, and SbSSO and SbSigSSO have inversions as in Inv.
3. All the approximations in b and c were calculated based on the lower bound of each problem

Page 16 of 17Oliveira et al. Algorithms Mol Biol (2019) 14:21

distances with a slightly higher value than the same algo-
rithms for unsigned permutations, which is expected
given that in addition to inversions and intergenic sizes,
they also need to take care of elements with negative
signs.

Concerning the approximation factors in Fig. 5b, c, it
can be noted that despite the theoretical approximation
factors of 3 and 5, the average approximation factors of
instances in FRI were between 1 and 2.2. Furthermore,
in our tests, no instance for SbSSR and SbSSO, whose
theoretical approximation factors are 3, had approxima-
tion factor above 2.5, and no instance for SbSigSSR and
SbSigSSO, whose theoretical approximation factors are 5,
obtained approximation above 3.3 and 3, respectively.

In Fig. 6a we have another scenario where the returned
distance follows the number of applied SSOs, but this
behavior is due to our choice of applying only opera-
tions that do not destroy previously created inversions.
One interesting thing about this figure is that distances
returned by the algorithm for SSOs were very close to the
number of inversions, especially when w ≥ 400 , some-
thing that did not happened on FRI. In Fig. 6b, c, we see
that this dataset returned maximum and average approx-
imations systematically better than for dataset FRI: no
instance had an approximation factor greater than 2.5,
and on average all algorithms have average approxima-
tion factors less than 1.7. For w ≥ 120 (resp. w ≥ 240 ),
where we expect to have around n (resp. 2n) inversions,
none of the instances had approximation factor above
2 (resp. 1.5), as we expected given Lemmas 2, 4, 6, 8,
and 10.

Conclusion
In this paper, we analyzed the minimum number of
super short reversals and/or Super Short Transpositions
needed to sort a signed or unsigned permutation π and,
at the same time, transform its intergenic regions lengths
rπ according to rι.

We defined some bounds and a graph structure that
allowed us to build five algorithms (one for each consid-
ered problem) that guarantee approximation factors of 3
for unsigned permutations (using either SSRs, SSTs, or
both) and 5 for signed permutations (using either SSRs
or SSOs). These algorithms have better approximation
factors for instances for which the number of inver-
sions is at least n or 2n. In the former case, it is equal to
2 for unsigned permutations (using either SSRs, SSTs,
or both), and to 3 for signed permutations (using SSRs
or SSOs); in the latter case it is equal to 1.5 for unsigned
permutations, and to 2 for signed permutations. All of
these algorithms were tested in simulated instances,
showing that, on average, they behave better than their
theoretical approximation factors predict.

Some questions remain open. For instance, what is the
computational complexity of each of these five problems?
Besides, how can we incorporate indels (insertions and
deletions) of intergenic regions to these problems, to be
able to compare two genomes that share the same set
of genes but may differ on their total intergenic regions
length?

Acknowledgements
This work was supported by the National Council for Scientific and Tech-
nological Development-CNPq (Grants 400487/2016-0, 425340/2016-3,
and 140466/2018-5), the São Paulo Research Foundation-FAPESP (Grants
2013/08293-7, 2015/11937-9, 2017/12646-3, and 2017/16246-0), the Brazilian
Federal Agency for the Support and Evaluation of Graduate Education-CAPES,
and the CAPES/COFECUB program (Grant 831/15). We also thank the anony-
mous reviewers for their helpful suggestions.

Authors’ contributions
First draft: ARO. Proofs: ARO, GJ, and GF. Experiments: ARO, UD, and ZD. Final
manuscript: ARO, GJ, GF, UD, and ZD. All authors read and approved the final
manuscript.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Institute of Computing, University of Campinas, Campinas, Brazil. 2 LS2N,
UMR CNRS 6004, University of Nantes, Nantes, France. 3 School of Technology,
University of Campinas, Limeira, Brazil.

Received: 16 February 2019 Accepted: 14 October 2019

References
	1.	 Bafna V, Pevzner PA. Sorting by transpositions. SIAM J Discrete Math.

1998;11(2):224–40. https​://doi.org/10.1137/S0895​48019​52828​0X.
	2.	 Kececioglu JD, Sankoff D. Exact and approximation algorithms for sorting

by reversals, with application to genome rearrangement. Algorithmica.
1995;13:180–210. https​://doi.org/10.1007/BF011​88586​.

	3.	 Yancopoulos S, Attie O, Friedberg R. Efficient sorting of genomic permu-
tations by translocation. Inversion and block interchange. Bioinformatics.
2005;21(16):3340–6. https​://doi.org/10.1093/bioin​forma​tics/bti53​5.

	4.	 Hannenhalli S, Pevzner PA. Transforming men into mice (polynomial
algorithm for genomic distance problem). In: Proceedings of the 36th
annual symposium on foundations of computer science (FOCS’1995).

Table 1  Summary of the approximation factor of the
approximation algorithms presented in this manuscript
for general permutations (GP), permutations with nℓ
inversions for some ℓ ≥ 1 ( ℓIP), permutations with at least
n inversions (1IP), and permutations with at least 2n
inversions (2IP)

Sorting problem GP ℓIP 1IP 2IP

SbSSR 3 1+ 1
ℓ

2 1.5

SbSST 3 1+ 1
ℓ

2 1.5

SbSSO 3 1+ 1
ℓ

2 1.5

SbSigSSR 5 1+ 2
ℓ

3 2

SbSigSSO 5 1+ 2
ℓ

3 2

https://doi.org/10.1137/S089548019528280X
https://doi.org/10.1007/BF01188586
https://doi.org/10.1093/bioinformatics/bti535

Page 17 of 17Oliveira et al. Algorithms Mol Biol (2019) 14:21

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ? Choose BMC and benefit from:

Washington, DC: IEEE Computer Society Press; 1995. https​://doi.
org/10.1109/SFCS.1995.49258​8. p. 581–92.

	5.	 Elias I, Hartman T. A 1.375-approximation algorithm for sorting by trans-
positions. IEEE/ACM Trans Comput Biol Bioinform. 2006;3(4):369–79. https​
://doi.org/10.1109/TCBB.2006.44.

	6.	 Fertin G, Labarre A, Rusu I, Tannier E, Vialette S. Combinatorics of genome
rearrangements. Computational molecular biology. London: The MIT
Press; 2009.

	7.	 Chen T, Skiena SS. Sorting with fixed-length reversals. Discrete Appl Math.
1996;71(1–3):269–95. https​://doi.org/10.1016/S0166​-218X(96)00069​-8.

	8.	 Galvão GR, Lee O, Dias Z. Sorting signed permutations by short
operations. Algor Mol Biol. 2015;10:12. https​://doi.org/10.1186/s1301​
5-015-0040-x.

	9.	 Lefebvre J-F, El-Mabrouk N, Tillier ERM, Sankoff D. Detection and valida-
tion of single gene inversions. Bioinformatics. 2003;19(1):190–6. https​://
doi.org/10.1093/bioin​forma​tics/btg10​25.

	10.	 Dalevi DA, Eriksen N, Eriksson K, Andersson SGE. Measuring genome
divergence in bacteria: a case study using Chlamydian Data. J Mol Evol.
2002;55(1):24–36. https​://doi.org/10.1007/s0023​9-001-0087-9.

	11.	 Seoighe C, Federspiel N, Jones T, Hansen N, Bivolarovic V, Surzycki R,
Tamse R, Komp C, Huizar L, Davis RW, Scherer S, Tait E, Shaw DJ, Harris
D, Murphy L, Oliver K, Taylor K, Rajandream M-A, Barrell BG, Wolfe KH.
Prevalence of small inversions in yeast gene order evolution. Proc Natl
Acad Sci. 2000;97(26):14433–7. https​://doi.org/10.1073/pnas.24046​2997.

	12.	 McLysaght A, Seoighe C, Wolfe KH. High frequency of inversions during
eukaryote gene order evolution. In: Sankoff D, Nadeau JH, editors. Com-
parative genomics: empirical and analytical approaches to gene order
dynamics, map alignment and the evolution of gene families. New York:
Springer; 2000. p. 47–58. https​://doi.org/10.1007/978-94-011-4309-7_6.

	13.	 Biller P, Guéguen L, Knibbe C, Tannier E. Breaking good: accounting
for fragility of genomic regions in rearrangement distance estimation.
Genome Biol Evol. 2016;8(5):1427–39. https​://doi.org/10.1093/gbe/evw08​
3.

	14.	 Biller P, Knibbe C, Beslon G, Tannier E. Comparative genomics on artificial
life. In: Beckmann A, Bienvenu L, Jonoska N, editors. Pursuit of the uni-
versal lecture notes in computer science. Cham: Springer International
Publishing; 2016. p. 35–44. https​://doi.org/10.1007/978-3-319-40189​-8_4.

	15.	 Fertin G, Jean G, Tannier E. Algorithms for computing the double cut and
join distance on both gene order and intergenic sizes. Algor Mol Biol.
2017;12:16. https​://doi.org/10.1186/s1301​5-017-0107-y.

	16.	 Bulteau L, Fertin G, Tannier E. Genome rearrangements with indels in
intergenes restrict the scenario space. BMC Bioinform. 2016;17(S14):225–
31. https​://doi.org/10.1186/s1285​9-016-1264-6.

	17.	 Knuth DE. The art of computer programming, Volume 3: Sorting and
searching. Reading: Addison-Wesley Publishing Company; 1998.

	18.	 Rotem D, Urrutia J. Circular permutation graphs. Networks.
1982;12(4):429–37. https​://doi.org/10.1002/net.32301​20407​.

	19.	 Bousquet-Melou M. The expected number of inversions after n adjacent
transpositions. Discrete Math Theor Comput Sci. 2010;12(2):65–88.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1109/SFCS.1995.492588
https://doi.org/10.1109/SFCS.1995.492588
https://doi.org/10.1109/TCBB.2006.44
https://doi.org/10.1109/TCBB.2006.44
https://doi.org/10.1016/S0166-218X(96)00069-8
https://doi.org/10.1186/s13015-015-0040-x
https://doi.org/10.1186/s13015-015-0040-x
https://doi.org/10.1093/bioinformatics/btg1025
https://doi.org/10.1093/bioinformatics/btg1025
https://doi.org/10.1007/s00239-001-0087-9
https://doi.org/10.1073/pnas.240462997
https://doi.org/10.1007/978-94-011-4309-7_6
https://doi.org/10.1093/gbe/evw083
https://doi.org/10.1093/gbe/evw083
https://doi.org/10.1007/978-3-319-40189-8_4
https://doi.org/10.1186/s13015-017-0107-y
https://doi.org/10.1186/s12859-016-1264-6
https://doi.org/10.1002/net.3230120407

	Super short operations on both gene order and intergenic sizes
	Abstract
	Background:
	Results and conclusions:

	Background
	Definitions
	Sorting by Super Short Reversals
	Sorting by Super Short Transpositions
	Sorting by Super Short Reversals and Super Short Transpositions
	Sorting by Signed Super Short Reversals
	Sorting by Signed Super Short Reversals and Super Short Transpositions
	Experimental tests
	Conclusion
	Acknowledgements
	References

