
HAL Id: hal-02481155
https://hal.science/hal-02481155v2

Preprint submitted on 27 Apr 2020 (v2), last revised 30 Apr 2020 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Rewarding miners: bankruptcy situations and pooling
strategies

Marianna Belotti, Stefano Moretti, Paolo Zappalà

To cite this version:
Marianna Belotti, Stefano Moretti, Paolo Zappalà. Rewarding miners: bankruptcy situations and
pooling strategies. 2020. �hal-02481155v2�

https://hal.science/hal-02481155v2
https://hal.archives-ouvertes.fr

Rewarding miners: bankruptcy situations and pooling

strategies

Marianna Belotti, Stefano Moretti, Paolo Zappalà

1 CEDRIC, CNAM, 75003 Paris, France

Caisse des Dépôts, 75013 Paris, France,

marianna.belotti@caissedesdepots.fr
2 LAMSADE, CNRS, Université Paris-Dauphine, Université PSL, 75016 Paris, France

stefano.moretti@dauphine.fr
3 LIP6, CNRS, Sorbonne Université, 75005 Paris, France

Politecnico di Milano, 20133 Milano, Italy

paolo.zappala@lip6.fr

Abstract. In Proof-of-Work (PoW) based blockchains (e.g., Bitcoin), mining is the proce-

dure through which miners can gain money on regular basis by finding solutions to mathe-

matical crypto puzzles (i.e., full solutions) which validate blockchain transactions. In order

to reduce the uncertainty of the remuneration over time, miners cooperate and form pools.

Each pool receives rewards which have to be split among pool’s participants. The objective

of this paper is to find an allocation method, for a mining pool, aimed at redistributing

the rewards among cooperating miners and, at the same time, preventing some malicious

behaviours of the miners.

Recently, Schrijvers et al. (2017) have proposed a rewarding mechanism that is incentive

compatible, ensuring that miners have an advantage to immediately report full solutions to

the pool. However, such a mechanism encourages a harmful inter-pool behaviour (i.e., pool

hopping) when the reward results insufficient to remunerate pool miners, determining a loss

in terms of pool’s computational power.

By reinterpreting the allocation rules as outcomes of bankruptcy situations, we define a

new rewarding system based on the well-studied Constrained Equal Losses (CEL) rule that

maintains the incentive compatible property while making pool hopping less advantageous.

Keywords: Blockchain, Mining, Mining Pool, Reward, Bankruptcy Situation.

1 Introduction

In the blockchain systems transactions are collected in blocks, validated and published on the

distributed ledger. Nakamoto [5] proposed a Proof-of-Work system based on Back’s Hashcash

algorithm [1] that validates blocks and chains them one to another. The Proof-of-Work system

requires finding an input of a predefined one-way function (e.g., hash function) generating an

output that meets the difficulty target. More precisely, the goal for the block validators (miners)

is to find a numerical value (nonce) that added to an input data string and “hashed” gives an

output which is lower than the predefined threshold. A miner who finds a full solution (i.e., a

nonce meeting the difficulty target) broadcasts it across the network.

Miners compete to be the first to find a full solution in order to publish the block and gain

a reward consisting in new minted crypto-currencies. Mining is a competitive crypto puzzle (a

mining race) that participants try to solve as fast as possible. The difficulty D of the crypto puzzle

limits the rate at which new transaction blocks are generated by the blockchain (e.g., it takes

approximately 10 minutes to find a full solution in the Bitcoin network). This difficulty value is

adjusted periodically in order to meet the established validation rate. At the time of writing, in

order to validate a block in the Bitcoin blockchain, miners needs to generate (on average) a number

D = 15, 47T of hashes.

Mining is a procedure through which miners can gain a substantial amount of money. Nowadays,

due to the high difficulty values, solo miners (i.e., miners who work alone with a personal device)

find a full solution with a time variance range of billions of years. Small miners survive in this

new industry by joining mining pools. A mining pool is a cooperative approach in which multiple

miners share their efforts (i.e., their computational power) in order to validate blocks and gain

rewards. Once a full solution is found, pool’s reward is split among the miners. In this way small

miners, instead of waiting for years to be rewarded, gain a fraction of the reward on a regular basis.

Miners’ reward is based on their contribution in finding a full solution. In order to give proof of

their work, miners submit to the pool partial solutions, i.e., nonces that do not meet the original

threshold, but a higher one. The solutions of this easier crypto puzzle are considered “near to valid”

solutions and called shares. For those blockchains that adopt a SHA-256 function, every hash value

(i.e., output of the hash function) is a full solution with probability 1
232D , and each hash has a

probability of 1
232 to be a share. Hence, a share is a full solution with probability p := 1

D .

Miners are rewarded according to the number of shares that they provide. Whenever a share

is also a full-solution a block is validated and the pool gains a reward that is split among pool

participants according to the number of shares that they have reported.

Mining pools are managed by a pool manager that establishes the way in which miners should

be rewarded. Each pool adopts its own rewarding system. There exist several rewarding approaches

that can be more or less attractive to miners (see for instance [6]).

1.1 Mining pool attacks

An attack to a mining pool refers to any miner’s behavior which differs from the default practice

(the honest one) and that jeopardizes the collective welfare of the pool. Rosenfeld provided in [6]

an overview of the possible malicious behaviours regarding pools whose profitability depends on

their own rewarding mechanism. Miners may attack their pool at the time of reporting their Proof-

2

of-Work. More precisely they can (i) delay in reporting a share (i.e., block withholding) and/or (ii)

report a share elsewhere (i.e., pool-hopping).

The former is a practice consisting in delaying in reporting shares and full solutions to a mining

pool. This practice implies delaying a block validation and the consequent possession of the reward,

that in some cases may be profitable for attackers. Pool-hopping consists in an attack where miners

“hop” from a pool to another one according to pools’ attractiveness.

1.2 Related works on rewarding mechanisms

The problem for a pool manager is to establish how to redistribute the rewards among pool

participants in order to prevent malicious behaviours (as the ones listed above). In other words,

the pool manager must choose an “appropriate” rewarding mechanism preventing (possibly, all)

different types of attacks. Concerning the block withholding practice, Schrivers et al. [7] make

use of non-cooperative game theory to propose a rewarding mechanism (denoted as incentive

compatible) that prevents this attack. This specific rewarding system is robust against malicious

actions operated inside a pool, however it does not behave as well in an inter-pool environment

since it cannot prevent pool-hopping. In this case, Rosenfeld [6] shows that malicious miners can

gain at the expenses of the honest ones, who receive a lower reward than the expected one. In

[4] the authors use cooperative games to prove that pool-hopping is not preventable, thus mining

pools are not stable coalitions.

Our contribution. Starting from the model in [7], the goal of this work is to propose an alternative

incentive compatible rewarding mechanism discouraging the pool-hopping practice. By reinterpret-

ing the reward function in [7] as an outcome of a bankruptcy situation, we construct, analyze and

test a new rewarding mechanism adoptable by pools to remunerate contributing miners.

The paper is structured as follows. Section 2 presents the basic model for mining pool and some

definitions about bankruptcy situations. In Section 3, we introduce a reward function from the lit-

erature, we compare it with a new one (based on a modified version of the CEL rule for bankruptcy

situation) and we show that the two are equivalent with respect to incentives in reporting shares

or full solutions. Then, in Section 4, we compare these two methods from a multi-pool perspective

by showing (also with the aid of simulations) that the CEL-based reward function performs better

than the one from the literature in discouraging miners to hop from a pool to another. Section 5

concludes the paper.

2 Preliminaries

2.1 The model

Let N = {1, . . . , n} be a finite set of miners. Time is split into rounds, i.e., the period it takes any

of the miner in the pool to find a full solution. During a round miners participate in the mining

3

race and report their shares (and the full solution) to the pool manager. Once the full solution

is submitted, the pool manager broadcasts the information to the network and receives the block

reward B. Then, the pool manager redistributes the block reward B among the miners according

to a pre-defined reward function. The round is then concluded and a new one starts. For the sake

of simplicity we set B = 1.

The situation is represented by the vector s = (s1, s2, ..., sn) ∈ NN , defined as history transcript,

that contains the number of shares si reported by each miner i ∈ N in a round. Letting S =
∑
i∈N si

be the total number of reported shares, the reward function R : NN → [0, 1]n, according to [7],

is a function assigning to each history transcript s an allocation of the reward (R1(s), . . . , Rn(s)),

where Ri denotes the fraction of reward gained by the single miner i ∈ N and
∑
i∈N Ri = B = 1.

Following the approach in [7], under the assumption of rationality, miners want to maximize

their individual revenues over time. Let K be the numbers of rounds that have been completed

at time t and let sj be the transcript history for any round j ∈ K. Given a reward function R, a

miner i ∈ N will adopt a strategy (i.e., the number of reported shares at each round j) aimed at

maximizing her total reward given by

lim
t→+∞

∑
j∈K

Ri(sj),

where a strategy affects both the number of completed rounds and the number of reported shares.

In [7], a reward function R is said to be incentive compatible if each miner’s best response strategy

is to immediately report to the pool a share and a full solution. Assuming that (i) one single pool

represents the total mining power (normalized to 1) of the network and that (ii) each miner i ∈ N

has a fraction αi of the hashing power, then the probability for a miner i to find a full solution

is αi. Under this assumption, Schrijvers et al. [7] show that a miner i ∈ N has an incentive to

immediately report her shares if and only if the reward function R is monotonically increasing (i.e.,

Ri(s + ei) > Ri(s) for all history transcripts s, where ei = (ei1, . . . , e
i
n) ∈ {0, 1}N is a vector such

that eij = 0 for each j ∈ N \{i} and eii = 1.). Moreover, they show that a miner i ∈ N , finding a full

solution at time t, has an incentive to immediately report it if and only if the following condition

holds:
n∑
j=1

αj ·
(
Ri(s

t + ej)−Ri(st)
)
≤ Es[Ri(s)]

D
(1)

for all vectors of mining powers (αi)
n
i=1 and all history transcripts st, where Es[Ri(s)] is the ex-

pected reward for miner i over all possible history transcripts. Condition (1) results from the

comparison of the withholding strategy – i.e.,
∑

s:S=1 P(find s) ·
(
Ri(s

t+ s)
)
– with the honest one

– i.e., Ri(st) + Es[Ri(s)]
Es[S] – knowing the fact that the total number of submitted shares in a round,

S =
∑
i∈N si, follows a geometrical distribution of parameter p = 1

D (i.e., the probability for a

share to be a full solution), where D is the difficulty of the crypto puzzle. Therefore, the value of

the parameter D corresponds to the average number of submitted shares in a round.

4

2.2 Bankruptcy situations

We now provide some game-theoretical basic definitions. A bankruptcy situation arises whenever

there are some agents claiming a certain amount of a divisible estate, and the sum of the claims

is larger than the estate. Formally, a bankruptcy situation on the set N consists of a pair (c, E) ∈

RN × R with ci ≥ 0 ∀i ∈ N and 0 < E <
∑
i∈N ci = C. The vector c represents agents’ demands

(each agent i ∈ N claims a quantity ci) and E is the estate that has to be divided among them

(and it is not sufficient to satisfy the total demand C).

We denote by BN the class of all bankruptcy situations (c, E) ∈ RN ×R with 0 < E <
∑
i∈N ci

A solution (also called allocation rule or allocation method) for bankruptcy situations on N is a

map f : BN → RN assigning to each bankruptcy situation in BN an allocation vector in RN , which

specifies the amount fi(c, E) ∈ R of the estate E that each agent i ∈ N receives in situation (c, E).

A well-known allocation rule in the literature is the Constrained Equal Losses (CEL) rule,

which is defined in the following definition (see, for instance, [3,8] for more details on bankruptcy

situations and the CEL rule).

Definition 1 (Constrained equal losses rule (CEL)). For each bankruptcy situation (c, E) ∈

BN , the constrained equal losses rule is defined as CELi(c, E) = max(ci−λ, 0) where the parameter

λ is such that
∑
i∈N max(ci − λ, 0) = E.

3 Incentive Compatible Reward Functions

Schrijvers et al. [7] introduce a reward mechanism that fulfills the property of incentive compatibil-

ity using the identity of the full solution discoverer w. Given a vector ew = (ew1 , . . . , e
w
n) ∈ {0, 1}N

such that ewi = 0 for each i ∈ N \ {w} and eww = 1, the incentive compatible reward function R is

the following:

Ri(s;w) =


si
D + ewi

(
1− S

D

)
, if S < D

si
S , if S ≥ D

∀i ∈ N, (2)

where si is the number of shares reported by miner i, S is the total number of reported shares

in a round and D is the crypto puzzle difficulty. This function rewards miner i proportionally to

the submitted shares in the case S ≥ D. On the other hand, in the case S < D, each miner receives

a fixed reward-per-share equal to 1
D and the discoverer w of the full solution receives, in addition,

all the remaining amount 1 − S
D . So, in both cases,

∑
i∈N Ri(s;w) = B = 1. Roughly speaking,

the reward function R is the combination of two distinct allocation methods. In a short round, i.e.,

when the total amount of reported shares is smaller than the difficulty D of the original problem,

the reward function allocates a fixed amount-per-share to all agents equal to 1
D , but the agent w

5

who finds a solution is rewarded with an extra prize. Instead, in a long round, i.e., when the total

amount of reported shares exceeds the difficulty of the problem, the reward function allocates the

reward proportionally to the individual shares.

Remunerating miners in a per-share fashion, for long rounds, would lead pool going bankrupt

since the reward B results insufficient to pay out all the reported shares. For long rounds, the

rewarding mechanism proposed in [7] is nothing more than a solution to a bankruptcy situation.

Therefore, it is possible to create new reward functions by simply substituting in long rounds (i.e.,

in bankruptcy situations) different bankruptcy solutions.

Let us now create a new rewarding mechanism based on the CEL rule defined in Section 2.2 and

let us compare the properties of the two allocation methods in long rounds. In order to preserve

incentive compatibility we define a CEL-based reward function.

Definition 2. Given the identity of the full solution discoverer w, the CEL-based reward function

R̂ is defined as follows:

R̂i(s;w) =


si
D + ewi

(
1− S

D

)
, if S < D

ewi
D + max

(
si
D − λ, 0

)
, λ :

∑
i max

(
si
D − λ, 0

)
= 1− 1

D , if S ≥ D
∀i ∈ N,

where ew = (ew1 , . . . , e
w
n) ∈ {0, 1}N is a vector such that eww = 1 and ewi = 0 ∀i ∈ N \ {w}, si is

the number of shares reported by miner i, S =
∑
i∈N si is the total number of reported shares in a

round and D is the crypto puzzle difficulty.

We assign to agent w, who finds the solution during a long round, an extra prize of 1
D to

add to the allocation established by the classical CEL rule for the bankruptcy situation (c, E) =(
1
D · s, 1 −

ewi
D

)
, with the estate reduced by 1

D . More precisely, in long rounds R̂i(s;w) =
ewi
D +

CELi
(

1
D ·s, 1−

ewi
D

)
. In other words, it means that 1 is added to the count of the shares si reported

by the full solution discoverer w. If the value si
D −λ is negative, by default, the agent w is receiving

1
D . This incentive is sufficient to make the reward function incentive compatible.

Before proving this statement, let us compare the allocations provided by the classical CEL

rule and R̂ through an example with n = 3, D = 10 and E = 1.

Example 1. Given the following bankruptcy situation: s = (2, 7, 8), miner 1 finds the full solution

(w = 1) and (c, E) = ((0.2, 0.7, 0.8), 1). By Definition 1, it is easy to check that λ = 0.25, hence:

CEL(c, E) = (0, 0.45, 0.55).

Now, consider the new CEL-based rule R̂, a prize of 1
D = 0.1 is allocated to miner 1, and a new

bankruptcy situation (c, E′) arises where the estate is reduced by 0.1; (c, E′) = ((0.2, 0.7, 0.8), 0.9).

By Definition 2, now λ = 0.3 and we have that:

R̂((2, 7, 8); 1) = (0.1, 0, 0) + CEL((0.2, 0.7, 0.8), 0.9) = (0.1, 0, 0) + (0, 0.4, 0.5) = (0.1, 0.4, 0.5).

6

In order to prove that the CEL-based rule is incentive compatible we need to present some

preliminary results. More precisely, to express Condition (1) for this new reward function we need

to focus on the parameter λ of the definition. This parameter depends on miners’ demands and

it changes value from round to round. It is important to analyze how the parameter varies if an

additional share is found. Let us denote by:

(i) λ1 the value of the parameter λ when miner i finds the full solution and immediately reports

it to the pool and,

(ii) λ2 the value of the parameter after delaying in reporting the full solution by one additional

share. By convention, if miner i finds the additional share the parameter is denoted as λ1
2, while

if any other miner finds it we have λ2
2.

By analyzing the different values of the parameter λ it is possible to derive the following result:

Proposition 1. Let us consider CELi(c, E) = max(ci − λ1, 0) and CELi(c + ej , E) = max(c
′

i −

λ2, 0). For each (c, E) ∈ BN , i, j ∈ N we have that λ1 ≤ λ2.

Proof. Let us report the efficiency condition for the two allocations:

max(cj − λ1, 0) +
∑

i∈N\{j}

max(ci − λ1, 0) = max(cj + 1− λ2, 0) +
∑

i∈N\{j}

max(ci − λ2, 0).

If cj ≤ λ1, efficiency condition implies that
∑
i∈N\{j}max(ci − λ1, 0) ≥

∑
i∈N\{j}max(ci − λ2, 0).

Hence, λ1 ≤ λ2. For cj > λ1 let us assume, by contradiction, that λ1 > λ2. The assumption implies

that
∑
i∈N\{j}max(ci − λ1, 0) ≤

∑
i∈N\{j}max(ci − λ2, 0). However, max(cj − λ1, 0) = cj − λ1 <

cj − λ2 < cj + 1− λ2 = max(cj + 1− λ2, 0) and this leads to contradiction.

Corollary 1. Given the situation of Proposition 1 we have that: λ2 − 1
D ≤ λ1 ≤ λ2.

Now, we are ready to prove the incentive compatibility of the new reward function based on

the CEL rule.

Proposition 2. The CEL-based reward function R̂ of Definition 2 satisfies the property of incen-

tive compatibility.

Proof. Let us write down Condition (1) for R̂:

αi

(
1

D
+ max

(
si + 1

D
− λ1

2, 0

)
− 1

D
−max

(si
D
− λ1, 0

))
+ (1− αi)

(
max

(si
D
− λ2

2, 0
)
− 1

D
−max

(si
D
− λ1, 0

))
≤ Es[R̂i(s;w)]

D
.

Since the average reward Es[R̂i(s;w)] is positive, the right hand side is positive. Therefore, the

condition is fulfilled if the left hand side is not positive.

Due to Proposition 1 and Corollary 1 we have that: siD − λ
2
2 ≤ si

D − λ1 ≤ si+1
D − λ1

2.

If all the terms in the form max(·, 0) are positive, then the condition is fulfilled:

αi

(
1

D
− λ1

2 + λ1

)
+ (1− αi)

(
−λ2

2 −
1

D
+ λ1

)
≤ max(αi, 1− αi)(−λ1

2 − λ2
2 + 2λ1) ≤ 0.

7

If siD − λ
2
2 ≤ 0 ≤ si

D − λ1 we get:

αi

(
1

D
− λ1

2 + λ1

)
+ (1− αi)

(
− si
D
− 1

D
+ λ1

)
≤ max(αi, 1− αi)(−λ1

2 −
si
D

+ 2λ1) ≤ 0.

If siD − λ1 ≤ 0 ≤ si+1
D − λ1

2 we get:

αi

(
si + 1

D
− λ1

2

)
+(1−αi)

(
− 1

D

)
≤ max(αi, 1−αi)

(si
D
− λ1

2

)
≤ max(αi, 1−αi)

(si
D
− λ1

)
≤ 0.

In the end, if all the terms in the form max(·, 0) are equal to 0, then the condition is fulfilled,

since the left hand side is negative.

4 A multi-pool analysis

Pool-hopping consists of a practice in which miners leave a pool to join another one that is consid-

ered more attractive in terms of remuneration. More precisely, during a round a miner performing

pool hopping (i.e., a hopper) stops submitting shares to the pool she was working with at the

beginning of the round and starts submitting shares to a different one. A hopper leaves, during a

mining race, a pool entering (or already in) a long round for a pool that is currently in a short

round. The hopping miner receives an increasing reward from the brand new pool (in short round)

and a decreasing reward from the pool left (facing a bankruptcy situation where the resource B is

insufficient to remunerate the working miners).

In a multi-pool framework, the total mining power of the network is represented by different

mining pools each with its own computational power. Differently from Section 2.1, each miner

i ∈ N is characterized by αi that now represents a fraction of the pool hashing rate. Indeed, in the

single-pool framework, we denote with αi the fraction of the total hashing power.

Hopping affects the actual rewards of a pool. If a miner performs pool hopping the pool loses

computational power and so on average the full solution is found later, i.e., the rounds become

longer.

In our multi-pool analysis, we assume that pool hopping is performed at the very beginning

of a long round and that miners hop between two pools adopting the same rewarding mechanism.

Every mean denoted as E[·] is considered conditioned to the fact that the miner is in a long round:

Es[·|S > D]. From now on, we mark with an asterisk (∗) every variable defining the reward of

miners once pool hopping is performed.

4.1 Hopping Analysis on Schrijver’s Rewarding Function

When miner i is remunerated with reward function R her incentive to perform pool hopping can

be measured as the difference between (i) the average reward when hopping E[R∗i] and (ii) the

average reward E[Ri] when working for the pool:

δhop := E[R∗i]− E[Ri].

8

Proposition 3. The reward function R proposed by Schrijvers et. al. always gives miners a positive

incentive δhop > 0 to perform pool hopping.

Proof. As shown in [7], the average reward of an honest miner i ∈ N , i.e., not hopping, is:

E[Ri] = αi.

A hopper (hopping at time t) receives an increasing reward from the new pool in a short round and

a decreasing one from the pool left. The sum of the two represents the total reward. On average at

the end of a short round (S = D) a miner has found αi ·D shares. The round finishes after D + t

shares are found, with t ∈ [0,+∞), hence the reward for the miner who performs pool hopping is

the following:

E[R∗i] =

∞∑
t=0

(
αit

D
+

αiD

D + t

)
p′(1− p′)t > αi

1− αi
> αi,

where p′ = 1−αi
D is the probability that a share found by an honest miner is a full solution, t is

the time taken by an honest miner (working for the old pool) to find a new share and R∗i is the

reward obtained by a miner who hops from a pool rewarding with R to another pool using the

same reward function. Hence, the incentive to perform pool hopping is always positive:

δhop = E[R∗i]− E[Ri] > αi − αi = 0.

A second result deriving from Proposition 3 is the fact that, on average, the hopping miners

gain more than their hashing ratio αi. This has been empirically verified on the Bitcoin network

in [2]. The average reward for a hopper, between pools adopting R, can be analytically computed

according to the following result.

Proposition 4. The average reward of miner i ∈ N hopping between two different pools remuner-

ating miners according to the reward function R is the following:

E[R∗i] =
αi

1− αi
+ α∗i ,

where α∗i = αi(1− αi)e1−αi(−Ei(αi − 1)) with Ei(x) =
∫ x
−∞

et

t denoting the exponential integral.

Proof. On average, a miner with computational power αi who performs pool hopping receives:

E[R∗i] =

∞∑
t=0

αit

D
p′(1− p′)t +

∞∑
t=0

αiD

D + t
p′(1− p′)t.

The first term represents the reward received by the new pool in short round that can be easily

computed as follows:
αi
D

∞∑
t=0

t · p′(1− p′)t =
αi
D
· D

1− αi
=

αi
1− αi

.

The second term (denoted as α∗i) corresponds to the reward assigned by the pool left by the

hopping miner. In order to compute this term we need to consider an approximation for D →∞:

α∗i =

∞∑
t=0

αiD

D + t

1− αi
D

(
1− 1− αi

D

)t
≈ αi(1− αi)e1−αi

∞∑
t=D

1

t
e−

1−αi
D t.

9

The computations can be solved by defining:

f(x) := lim
D→∞

fD(x) = lim
D→∞

∞∑
t=D

1

t
e−

tx
D .

Using Lebesgue’s theorem and given the constraint limx→∞ f(x) = 0 we get:

f(x) = −Ei(−x).

Hence:

α∗i ≈ αi(1− αi)e1−αif(1− αi) = αi(1− αi)e1−αi(−Ei(αi − 1)).

Thanks to the result provided by Proposition 4 we note that the shares submitted in the pool

left by the hopping miner (α∗i) represent an important part of her average reward. More precisely,

for values of αi < 0.39, α∗i is more than the 50% of the average reward a miner would have got by

not leaving the pool (i.e., her computational power αi). For instance, if a miner has αi = 0.2 as

computational power, she will get α∗i ≈ 0.11.

4.2 Hopping Analysis on CEL-based Rewarding Function

Following similar arguments, we can analyze the incentive to perform pool hopping when adopting

the CEL-based rule R̂. We can, then, compare the results obtained for the reward function R with

the ones provided by R̂. We denote as βi the average reward of function R̂ (corresponding to αi

for function R) that can be computed as follows since the probability for a miner i to find a full

solution and to receive the extra prize 1
D is αi:

βi = E[R̂i] =
αi
D

+ E
[
max

(si
D
− λ, 0

)]
λ :
∑
i

max
(si
D
− λ, 0

)
= 1− 1

D
.

Like in Section 4.1, let us define the incentive to perform pool hopping δ̂hop := E[R̂∗i]− E[R̂i] and

let us compute the average reward received by a hopper:

E[R̂∗i] =

∞∑
t=0

(
αit

D
+ max

(
αiD

D
− λ, 0

))
p′(1− p′)t =

αi
1− αi

+ E [max(αi − λ, 0)] ,

where p′ = 1−αi
D , t is the time taken by an honest miner to find a new share and R̂∗i is the reward

obtained by a hopping miner. Analogously to α∗i for function R, we denote by β∗i the reward given

by the pool the hopper left:

β∗i = E [max(αi − λ, 0)] .

Hence we have that:

δ̂hop = E[R̂∗i]− E[R̂i] =
αi

1− αi
+ β∗i − βi.

10

4.3 Comparison of the two Rewarding Functions in a multi-pool framework

We have, now, the metrics to compare the performance of the reward functions R and R̂ in hopping

situations. Both rewarding systems present an incentive to hop in long rounds, however the miner

rewarded with the CEL-based reward function are less incentivized. It is possible to compare the

incentives δhop, δ̂hop given by the two functions R, R̂ through the variables introduced in Section 4.2

since:

δ̂hop ≤ δhop ⇔ βi − β∗i ≥ αi − α∗i .

In order to show that the hopping incentive for the CEL-based reward function is lower with respect

to the incentive given by R it is sufficient to prove that βi − β∗i ≥ αi − α∗i .

Proposition 5. Let N be the ordered set of miners: α1 ≤ α2 ≤ · · · ≤ αn, let us define α>i :=∑
j>i αj, as the global computational powers of the miners that are more powerful than αi. Then,

βi − β∗i ≥ αi − α∗i if (1 − αi)(α>i − αi)e
−αi+(α>i−αi)−1

(−Ei(αi − 1)) ≥ 1 where Ei(·) is the

exponential integral function.

Proof. Given the definitions of βi and β∗i :

βi =
αi
D

+

∞∑
t=0

max

(
αi +

αit

D
− λ, 0

)
p(1− p)t and β∗i =

∞∑
t=0

max (αi − λ, 0) p′(1− p′)t,

let us recall that p = 1
D is the probability for a share to be a full solution and that p′ = 1−αi

D

represents the probability for a share reported by an honest miner to be a full solution.

For t→∞ (i.e., for very long rounds) the function max(·, 0) either tends to 0 or to 1 since in

long rounds eventually the most powerful miner is receiving all the reward (max(·, 0)→ 1) and the

other miners are receiving none of it (max(·, 0) → 0). The limit value 0 is reached for t = γi ·D,

where γi ∈ R ∪ {+∞} is defined as follows; γi := argminγ{αitD − λ < 0, ∀t ≥ γD}. Roughly

speaking, γi ·D represents the number of shares after which miner i is not rewarded.

Hence, it is possible to rewrite βi and β∗i in this form:

βi =
αi
D

+

γiD∑
t=0

(
αi +

αit

D
− λ
)
p(1− p)t and β∗i =

γiD∑
t=0

(αi − λ) p′(1− p′)t.

The value of γi might change if the miner is performing pool hopping, but for the sake of simplicity

we approximate by considering the same γi in both cases.

Assuming that
∑
t λ · p(1− p)t ≈

∑
t λ · p′(1− p′)t we can approximate the difference between βi

and β∗i as follows:

βi − β∗i ≈
αi
D

+

γiD∑
t=0

αit

D
p(1− p)t.

Due to the value of the difficulty D, we can consider the limit for D →∞, then:

βi − β∗i ≈
αi
D

+

γiD∑
k=0

αik

D

1

D
e−k/D =

αi
D

+ αi
1

D2

γiD∑
k=0

ke−k/D → αi(1− e−γi(1 + γi)).

11

Let us now compute explicitly γi. If i = N (i.e., αi = argmaxj{αj}) then γi = ∞. Otherwise at

time t = γi ·D the miners who receive a positive reward are all the j ∈ N : αj > αi, i.e., all the

ones having larger computational power than i. According to the CEL rule definition we get the

following balance equation: ∑
j>i

(
αj

(
1 +

t

D

)
− λ
)

= 1− 1

D
≈ 1.

Since the time t = γi ·D is the moment when the value max(αi(1 + t
D)− λ, 0) turns from positive

to null, we can say that αi(1 + t
D)− λ ≈ 0. Therefore we have that:

∑
j>i

(
αj

(
1 +

t

D

)
− αi

(
1 +

t

D

))
= 1.

Replacing the value of t with γi ·D we get (α>i − (N − i)αi)(1 + γi) = 1, then:

γi = ((α>i − (N − i)αi)−1 − 1).

Now we can find a lower bound for γi (since N − i ≥ 1) and so for βi − β∗i :

γi ≥ γ̄i := ((α>i − αi)−1 − 1) =⇒ βi − β∗i ≥ αi(1− e−γ̄i(1 + γ̄i)).

The sufficient condition for βi − β∗i ≥ αi − α∗i is:

αi(1− e−γ̄i(1 + γ̄i) ≥ αi − α∗i .

We get the statement of the proposition by replacing γ̄i and α∗i with their explicit formulas.

Thanks to Proposition 5, given miner i’s hashing ratio (i.e., αi) and the power of the miners who

are stronger than i (i.e., α>i), we can check whether R̂ is giving a lower hopping incentive than

the one given by R (i.e., check whether δ̂hop ≤ δhop) by simply applying the sufficient condition

introduced above that we denote as f(αi, α>i):

f(αi, α>i) := (1− αi)(α>i − αi)e−αi+(α>i−αi)−1

(−Ei(αi − 1)) ≥ 1.

Let us analyze the hopping performance of R and R̂ in the following example.

Example 2. Given 5 miners ordered according to their hash rates: α1 = 0.10 α2 = 0.15, α3 = 0.20,

α4 = 0.25, α5 = 0.30, using the condition provided by Proposition 5 we get:

• f(α1, α>1) = f(0.10, 0.90) = 0.59 < 1, miner 1 has a greater incentive to perform pool hopping

if rewarded with R̂ rather than with R;

• f(α2, α>2) = f(0.15, 0.75) = 0.66 < 1, miner 2 has a greater incentive to perform pool hopping

if rewarded with R̂ rather than with R;

• f(α3, α>3) = f(0.20, 0.55) = 1.24 > 1, miner 3 has a greater incentive to hop if rewarded with

R rather than with R̂;

12

• f(α4, α>4) = f(0.25, 0.30) > 106 > 1, miner 4 has a greater incentive to hop if rewarded with

R rather than with R̂;

• f(α5, α>5) = f(0.30, 0)→∞ > 1, miner 5 has a really low incentive to perform pool hopping

if rewarded with R̂.

We can see that miners representing the 75% of the pool’s computational power have a lower

incentive to perform pool hopping when the CEL-based rewarding mechanism is adopted.

By analyzing function f(·, α>i) – i.e., fixing α>i – we can identify the cases in which δ̂hop ≤ δhop

(where R̂ performs better than R). For instance, f(·, α>i) > 1 for every α>i < 0.4, means that

with R̂ not only the miners representing the most powerful 40% of the pool have a lower incentive

to perform pool hopping, but also the miner i who just follows in the ranking.

To compare the two reward functions, it is necessary to estimate the percentage of miners

who have a lower incentive to perform pool hopping. In Example 2 this percentage is p(α =

{0.1, 0.15, 0.2, 0.25, 0.3}) = 75%. Formally we would like to estimate:

p(α) :=
∑
i

αi · 1{βi−β∗i≥αi−α∗i }.

We know that p(α) > 40% thanks to the analysis of function f . In order to get a better idea of the

range of the value of function p we perform a simulation.

Simulation. Due to the unpredictability of α, we assume that it comes from a random distribution.

More precisely, given Xi ∼ U [0, 1], αi is defined as follows: αi := Xi∑
j Xj

.

We run a simulation with 100 different samples of α for n miners, with n ∈ {3, 10, 20, 30, 50},

and estimate the CDF of pn(α) for every n. We compute explicitly βi and β∗i , without using the

approximation above introduced.

Fig. 1. CDF of every pn(α), with n ∈ {3, 10, 20, 30, 50}.

13

The functions pn(α) have almost always values over 0.5 (i.e., in just two cases out of 100 with

n = 3, p3(α) achieves value between 0.47 and 0.5).

This means that in most of the cases the majority of the miners have a lower incentive to perform

pool-hopping with R̂ rather than R.

5 Conclusion

The paper analyzes the robustness of two different rewarding mechanisms in both intra-pool and

inter-pool environments. Schrijvers et al. introduce in [7] a reward function R that is incentive

compatible. However, this rule gives miners an incentive to leave pools in long rounds to join pools

in short rounds that adopt the same rewarding system (i.e., pool-hopping).

By reinterpreting R, in long rounds, as an allocation rule for a bankruptcy situation, we create

a new rewarding function R̂ inspired to the well-known Constrained Equal Loss (CEL) rule.

We show that this CEL-based rule is incentive compatible as R but it provides to most of the

miners a lower incentive to perform pool hopping in long rounds. In conclusion, if a pool wants to

tackle this issue, the proposed rewarding function R̂ is the one to be recommended.

References

1. Back, A.: Hashcash - a denial of service counter-measure (2002)

2. Belotti, M., Kirati, S., Secci, S.: Bitcoin pool-hopping detection. In: 2018 IEEE 4th International Forum

on Research and Technology for Society and Industry (RTSI). pp. 1–6. IEEE (2018)

3. Herrero, C., Villar, A.: The three musketeers: four classical solutions to bankruptcy problems. Mathe-

matical Social Sciences 42(3), 307–328 (2001)

4. Lewenberg, Y., et al.: Bitcoin mining pools: A cooperative game theoretic analysis. In: Proceedings

of the 2015 International Conference on Autonomous Agents and Multiagent Systems. pp. 919–927.

Citeseer (2015)

5. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)

6. Rosenfeld, M.: Analysis of bitcoin pooled mining reward systems. arXiv preprint arXiv:1112.4980 (2011)

7. Schrijvers, O., et al.: Incentive compatibility of bitcoin mining pool reward functions. In: International

Conference on Financial Cryptography and Data Security. pp. 477–498. Springer (2016)

8. Thomson, W.: Axiomatic and game-theoretic analysis of bankruptcy and taxation problems: an update.

Mathematical Social Sciences 74, 41–59 (2015)

14

