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Drug Safety (DS) is a domain with significant public health and social impact. Knowledge

Engineering (KE) is the Computer Science discipline elaborating on methods and tools

for developing “knowledge-intensive” systems, depending on a conceptual “knowledge”

schema and some kind of “reasoning” process. The present systematic and mapping

review aims to investigate KE-based approaches employed for DS and highlight the

introduced added value as well as trends and possible gaps in the domain. Journal

articles published between 2006 and 2017 were retrieved from PubMed/MEDLINE

and Web of Science® (873 in total) and filtered based on a comprehensive set of

inclusion/exclusion criteria. The 80 finally selected articles were reviewed on full-text,

while the mapping process relied on a set of concrete criteria (concerning specific

KE and DS core activities, special DS topics, employed data sources, reference

ontologies/terminologies, and computational methods, etc.). The analysis results are

publicly available as online interactive analytics graphs. The review clearly depicted

increased use of KE approaches for DS. The collected data illustrate the use of KE

for various DS aspects, such as Adverse Drug Event (ADE) information collection,

detection, and assessment. Moreover, the quantified analysis of using KE for the

respective DS core activities highlighted room for intensifying research on KE for

ADE monitoring, prevention and reporting. Finally, the assessed use of the various

data sources for DS special topics demonstrated extensive use of dominant data

sources for DS surveillance, i.e., Spontaneous Reporting Systems, but also increasing

interest in the use of emerging data sources, e.g., observational healthcare databases,

biochemical/genetic databases, and social media. Various exemplar applications were

identified with promising results, e.g., improvement in Adverse Drug Reaction (ADR)

prediction, detection of drug interactions, and novel ADE profiles related with specific

mechanisms of action, etc. Nevertheless, since the reviewed studies mostly concerned

proof-of-concept implementations, more intense research is required to increase the

maturity level that is necessary for KE approaches to reach routine DS practice. In
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conclusion, we argue that efficiently addressing DS data analytics and management

challenges requires the introduction of high-throughput KE-based methods for effective

knowledge discovery and management, resulting ultimately, in the establishment of a

continuous learning DS system.

Keywords: drug safety, pharmacovigilance, knowledge engineering, knowledge discovery, knowledge

representation, ontologies, terminologies, semantic technologies

INTRODUCTION

Pharmacovigilance (PV)1, also known as Drug Safety (DS), is
“the science and activities related to the detection, assessment,
understanding and prevention of adverse effects or any other
possible drug-related problems” (World Health Organization,
2002). DS is an important issue of public health interest,
given that adverse drug reactions (ADRs2) and adverse drug
events (ADEs1) cause a significant social and financial burden3.
An important part of DS concerns the identification of the
so-called “signals”4, performed by national and international
drug monitoring/regulatory organizations (e.g., the Uppsala
Monitoring Centre (UMC), the European Medicines Agency
(EMA), the Food and Drug Administration (FDA) in the
United States, etc.). Signal detection is typically based on the
analysis of individual case safety reports gathered in Spontaneous
Reporting Systems (SRSs), e.g., using disproportionality-based
statistical methods (Montastruc et al., 2011).

The current era of “data explosion” affects the entire
spectrum of health, including DS. While traditionally post-
marketing DS surveillance relied on SRSs as well as clinical
studies and the scientific literature, advances in Information
and Communication Technologies (ICT) recently enabled
the exploitation of new/emerging data sources, such as
observational healthcare databases, biochemical and genetic
databases, social media, internet search logs, etc. To this end,
various computational analysis methods have been proposed for

1Due to the numerous abbreviations used in the article, we provide as Appendix
an abbreviation index to facilitate the reader.
2ADEs: Side-effects that may or may not have causal relationship with the drug,
including the events caused by drug misuse (e.g., overdose). ADRs: Side-effects
that occur after a legitimate drug use (i.e., there is no overdose) and therefore
“characterized by the suspicion of a causal relationship between the drug and the
occurrence.” For a comprehensive definition of terms used in DS we refer the
reader to Lindquist (2007).
3By reviewing European studies (Formica et al., 2018) estimated: (a) the cost of
ADRs between e2,851 and e9,015 for the inpatient setting and e174–8,515 for
the outpatient setting; (b) the impact of ADRs on the length of stay to be 9.2 ±

0.2 days (outpatient setting) and 6.1 ± 2.3 days (inpatient setting). Furthermore,
the US Office of Disease Prevention and Health Promotion estimated that ADEs
account for 1 in 3 of all hospital adverse events, concern about 2 million hospital
stays each year, and prolong hospital stays by 1.7–4.6 days. Regarding outpatient
settings, each year ADEs account for over 3.5 million physician office visits, about
1 million emergency department visits, and∼125,000 hospital admissions (https://
health.gov/hcq/ade.asp).
4“Information that arises from one or multiple sources (including observations
and experiments) which suggests a new, potentially causal association, or a new
aspect of a known association, between an intervention and an event or set
of related events, either adverse or beneficial, that is judged to be of sufficient
likelihood to justify verificatory action” (Council for International Organizations
of Medical Sciences (CIOMS), 2010).

post-marketing DS surveillance (Harpaz et al., 2012), illustrating
both strengths and weaknesses (Hauben and Norén, 2010).

For the development and safety monitoring of new drugs (i.e.,
prior to market authorization), computational approaches attract
lately a major interest as well, especially in the scope of in silico
clinical trials (Pappalardo et al., 2018) and Precision Medicine
(Collins and Varmus, 2015). Multi-scale modeling approaches
(exploiting low-level biochemical information regarding the
behavior of molecular structures as well as more abstract
information regarding the phenotypic action of a drug via
mathematic models, systems, or network-based structures) are
being used in Systems Pharmacology (SP) (Mager and Kimko,
2016). In particular, SP-based approaches have been used for DS
(Bai et al., 2014; Boland et al., 2016; Schotland et al., 2016; Trame
et al., 2016) and regulatory actions (Lorberbaum et al., 2015),
as they facilitate in silico clinical trials (Ramanujan et al., 2016;
Rieger et al., 2018), including the simulation of individual patient
characteristics toward the overall vision of Precision Medicine
(Birtwistle et al., 2016).

To this end, the recent data deluge dictates the need to
introduce high-throughput computational methods for DS that
will enable efficient knowledge extraction and management,
compensating the underlying data heterogeneity and complexity.
This need becomes more demanding, especially considering
the concurrent investigation of diverse types of data, in order
to strengthen the evidence of the outcomes provided by the
respective computational methods (Koutkias and Jaulent, 2015).

In Computer Science, knowledge is represented “by facts,
rules and other symbolic structures, rather than the traditional
representation as abstract numbers or algorithms” (Fox, 1984).
Knowledge Engineering (KE) is the discipline that elaborates
on the theories, methods, and tools for developing knowledge-
intensive applications (Schreiber, 2008). KE typically entails:
(a) knowledge extraction (e.g., based on Natural Language
Processing (NLP)5), (b) knowledge integration (i.e., syntactic and
semantic alignment as well as normalization of different kinds
of knowledge), (c) knowledge representation (i.e., modeling of
domain/application knowledge in computationally exploitable
formats like ontologies6), (d) knowledge dissemination (i.e.,
modeling information for communication purposes focusing for

5An interesting review on text mining for ADEs has been presented by Harpaz
et al. (2014).
6“In Computer and Information sciences, an ontology defines a set of
representational primitives for modeling a domain of knowledge or discourse.
The representational primitives are typically classes (or sets), attributes (or
properties), and relationships (or relations among class members). The definitions
of the representational primitives include information about their meaning and
constraints on their logically consistent application” (Gruber, 2009).
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example on interoperability among heterogeneous ICT systems),
and (e) knowledge elicitation (i.e., generating or discovering new
knowledge via advanced KE techniques like semantic mining).

Recent research has illustrated that KE can contribute in
addressing DS challenges. In particular, KE applications for
DS can facilitate the integration and analysis of heterogeneous
data sources (Koutkias and Jaulent, 2015), and represent the
respective knowledge in a manner which facilitates advanced
processing capabilities like automatic inference (Natsiavas et al.,
2018). The later requires the definition of explicit semantics
via well-defined knowledge structures, i.e., common reference
terminologies, thesauri, or ontologies. The use of such reference
knowledge structures is a key aspect in KE, as it facilitates
“machine-understandable” interlinking, comparison, reuse and
further processing of data in two ways: (a) it enhances semantic
interoperability through common reference concepts, and (b) it
provides the underlying semantic infrastructure for automatic
inference. Thus, the use of reference knowledge structures is
crucial in order to characterize a computational method/system
as “knowledge-based.”

In KE, semantics are expressed via relationships among
the referred concepts (e.g., “Myocardial Infarction” occurs_in
“Myocardium”), or via a hierarchy of concepts and their
properties using “sub-concepts” (e.g., the term “Myocardial
Infarction” is_a “Cardiac Disorder”) and “sub-properties,”
respectively. A knowledge structure could describe how ADEs,
such as “myocardial infarction” may be associated to the
corresponding pathological process and anatomical location, e.g.,
“Myocardial Infarction” is_a “Cardiac Disorder” and occurs_in
“Myocardium.” An ICT system would represent this knowledge
and the respective concepts using a reference terminology, e.g.,
MedDRA7. Such an explicit and computationally exploitable
representation of knowledge enables “reasoning.” As an example
of how a computer may perform automatic reasoning, explicit
linking of an ADE to its corresponding biological process
(e.g., “Cardiac Failure” is_associated_with “Heart Contraction”)
allowed the identification of 190 genes that are associated with
heart contraction and could potentially have a role in cardiac
failure (Sarntivijai et al., 2016).

This study constitutes a “systematic and mapping review”8,
conducted in accordance with the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA) statement
(Moher et al., 2009). It aims to present KE-based approaches
for DS and their potential application in current DS practice,
illustrating the added value through exemplar research efforts
spanning diverse dimensions of DS research. Thus, the main
research question of the current study is: “What are the main KE
methods applied in the DS domain, upon which knowledge models
and data sources are they applied, what is their contribution/added

7MedDRA R© (the Medical Dictionary for Regulatory Activities) is a reference,
international terminology in the domain of DS, developed under the auspices
of the International Council for Harmonization of Technical Requirements for
Pharmaceuticals for Human Use (ICH). The MedDRA R© trademark is owned by
IFPMA on behalf of ICH.
8A mapping review aims “to map out and categorize existing literature on a

particular topic, identifying gaps in research literature from which to commission

further reviews and/or primary research” (Grant and Booth, 2009).

value for DS, and what are the potential gaps, challenges and
opportunities for further research?”.

METHODS

A systematic search was performed by querying two reference
bibliographic repositories: PubMed9 and Web of Science10. The
study comprised of the article retrieval step and two consecutive
review stages (Figure 1); the first aimed to filter irrelevant
articles with the domains of KE and DS based on their title
and abstract, and the second was devoted to evaluating the
remaining papers’ full-text in detail, and map them based on
specific analysis criteria.

The review was conducted by the authors of the paper. In the
retrieval stage, we defined and executed two queries (provided as
Supplementary Material) and imported the obtained citations in
BibReview11, a tool that was used throughout our study enabling
collaborative review of bibliographic data (Lamy et al., 2015).
The queries included two core parts (linked with the logical
operator AND), each comprising of synonym terms describing
the domains of interest, i.e., KE and DS. We considered articles
written in English and published in scientific journals between
2006 and 2017. 2006 was selected as the starting year of our
review, since there was no much activity on KE for DS until
then and a key study regarding the use of MedDRA has sparkled
an interesting discussion about the use of formal semantics,
highlighting the prospects and the need for further research
(Bousquet et al., 2005b).

In addition, the current study relied on the following inclusion
and exclusion criteria:

1) Inclusion criteria: (a) articles exploiting clearly KE
methods/technologies; (b) articles referring to algorithms
exploiting formal mathematic structures (e.g., graphs),
as these can be considered knowledge representation
schemes, and (c) articles in which NLP was employed
to extract information from free-text sources combined
with other KE processes, e.g., ML algorithms using
reference terminologies/ontologies.

2) Exclusion criteria: (a) articles referring to “inference” based on
plain statistics; (b) articles referring to ontologies [e.g., Gene
Ontology (GO)] as simple data sources, without exploiting
their underlying semantics; (c) articles not reporting the use of
at least one knowledge source, e.g., a terminology, a thesaurus,
an ontology, etc.; (d) opinion or review papers not providing
concrete suggestions or designs, and (e) articles from the same
authors with a high degree of overlapping12.

Table 1 partially presents the analysis criteria employed in
the overall mapping process. These were based on established
knowledge in the domain, experiences and tacit knowledge of
the authors, and the outcomes obtained as the review progressed.
While other systematic reviews related with KE were considered

9https://www.ncbi.nlm.nih.gov/pubmed/
10https://webofknowledge.com/
11https://pypi.org/project/BibReview/
12In such cases, only the most representative article was considered in our review.
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FIGURE 1 | Rationale of the review methodology.

for criteria definition (e.g., Bjørnson and Dingsøyr, 2008; Wnuk
and Garrepalli, 2018), to a great extent these were found
irrelevant for our study. In order to reduce the subjectivity
of the review process, specific enumerations of answers for
each review criterion were defined. The authors iteratively
examined the possible answers for each criterion, to make sure
that these are orthogonal (not conceptually overlapping) to
the extent possible. Furthermore, specific explanations for each
criterion value were added in a spreadsheet file used for data

gathering and analysis13, in order to avoid ambiguities for the
reviewers.

In order to mitigate the risk for various kinds of bias, we
applied the guidelines provided by Drucker et al. (2016) and
Altman et al. (2011), which are further discussed in subsection
Risk of Bias.

13The detailed review results and the overall mapping outcome is documented in
a spreadsheet, which is provided as Supplementary Material.
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TABLE 1 | Analysis criteria and indicative answers.

Criterion Indicative answers

DS core activities ADE information collection, ADE detection, ADE assessment, ADE monitoring, ADE prevention, ADE reporting

DS special topics Comparative drug analysis, Drug interactions, MoA identification/analysis Personalized drug safety, Signal detection, Specific (class

of) disease, Specific (class of) drug(s), Specific adverse effect, Vaccine safety

Data source categories ADE databases, Bibliographic databases, Clinical narratives, Clinical trials, Drug information databases, EHRs, Genetics and

biochemical databases, HL7 messages, Manually annotated corpora, mHealth apps, Patient summaries, PHRs, Social media,

Structured Product Labels, Spontaneous Reporting Systems

Data source(s) Absorption, Distribution, Metabolism, and Excretion Associated Proteins database (ADME-APs), ADE Corpus, ADEpedia, ADRMine

Corpus, AEOLUS, AERS-DM, etc.

KE core activities Knowledge dissemination, Knowledge elicitation, Knowledge extraction, Knowledge integration, and Knowledge representation

Computational

method(s)

Data mining, Disproportionality analysis, Graph-based inferencing, Information extraction (e.g., Natural Language Processing),

Machine Learning, Ontology reasoning, Rule-based inferencing, Simulation, Terminological reasoning, Vector-based similarity

identification

Challenges/weaknesses Commercial tools, Competing interests, Evaluation against small dataset, Evaluation restricted on a narrow scope, Evaluation with

simulated data, Knowledge model not available, Knowledge model not validated for completeness, No evaluation regarding

knowledge modeling quality criteria, No statement regarding competing interests, Not applying formal DL semantics, Not using a

knowledge representation standard, Proprietary datasets, Significant dependence on manual work

Reference

terminologies/ontologies

Adverse Event Reporting Ontology (AERO), Anatomical Therapeutic Chemical (ATC) classification system, Basic Formal Ontology

(BFO), British National Formulary (BNF) Dictionary, ChEBI, etc.

Knowledge formalism DAML + OIL, Frame-based ontology, OWL, RDF, Relational, SWRL, XML

Country E.g., Australia, Belgium, Canada, China, Denmark, France, etc.

Organization type Academia/Research, Healthcare, Industry, DS Monitoring

FIGURE 2 | The PRISMA flow in the context of the current study.
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FIGURE 3 | (A) Number of articles per authors’ organization category, (B) author-country distribution (showing only n > 3 articles), and (C) distribution of the selected

articles per year.

RESULTS

The analysis results are provided as Supplementary Material in
the form of a spreadsheet, while they are also publicly available as
online interactive analytics forms, enabling their investigation in
further detail14. This section presents the most important facets
of these results.

Article Selection
Figure 2 depicts the number of selected papers in each step of the
review process, following the PRISMA guidelines (Moher et al.,
2009). From the 873 articles initially retrieved, 94 articles were
selected to be evaluated in full detail. 14 of them were excluded
during the full-text review according to the exclusion criteria
defined (section Methods). Finally, 8015 articles were included in
the presented review.

The “demographic” features of the selected articles are
illustrated in Figure 3. In particular, Figure 3A presents the

14The online analytics are available at: https://inab-certh.github.io/Knowledge-
Engineering-for-Drug-Safety-Systematic-and-mapping-review/analytics and the
respective files can be accessed at: https://github.com/inab-certh/Knowledge-
Engineering-for-Drug-Safety-Systematic-and-mapping-review.
15The list of selected articles is provided as Supplementary Material.

distribution of articles according to the organization category of
the respective authors, highlighting that industrial, healthcare
and DS monitoring organizations contributed less in the
domain, compared to research organizations. As shown in the
author-country distribution depicted in Figure 3B, most articles
were produced by organizations located in the USA. However,
China, France and Spain are also among the leading countries
in researching KE for DS. In terms of time evolution, Figure 3C
depicts an increasing trend in the number of publications
after 2010.

Synthesized Findings
In this section, we present in detail the results of our
quantified analysis based on the criteria presented in
Table 1. Furthermore, we provide an overview of the
impact of the selected papers on the main topics posed
by the study research question, as described in the
Introduction section16.

16A catalog with Web links to data sources, reference terminologies, ontologies,
standards, technologies, and systems referred in the study is provided as
an Appendix.
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FIGURE 4 | Number of articles related with: (A) DS core activities, and (B) DS special topics.

Quantified Analysis
Figure 4 depicts the distribution of the reviewed articles,
according to the DS core activities and special topics. As shown
in Figure 4A, “ADE detection-”, “ADE information collection”,
and “ADE assessment” attract most research efforts among
the core DS activities. Respectively, Figure 4B depicts that
signal detection, mechanism of action (MoA) analysis, and drug
interactions are the leading DS special topics.

Figure 5 depicts the main KE activities employed in the
reviewed articles and their time evolution (Figure 5C), as well
as the number of articles related with the most prominent
computational approaches (Figure 5A). Knowledge extraction,
representation and elicitation were the main focus, mostly
through the application of NLP, terminological reasoning,
ontological reasoning and vector-based similarity identification
using ML algorithms, e.g., Support Vector Machines (SVMs).
Typically, more than one KE core activities were employed in
each article. As shown in Figure 5B only knowledge extraction
seems to be a standalone approach, which has been employed in
a significant number of papers. This use of more than one KE
core activities outlines the complexity of the targeted problems
and the need for synthesized approaches to address them.

Figures 6A–C present the associations between the various
DS and KE core activities, the DS special topics and the
data source categories, as well as the KE core activities and
the data sources, respectively, in the form of chord diagrams.
Figure 6D depicts a Sankey diagram presenting the most
significant interconnections17 among the DS special topics, the

17Only connections with weight >5 are depicted, to maintain readability.

most important data source categories, and the KE core activities
based on the reviewed articles. Interestingly, “signal detection,”
“MoA analysis and identification,” and “Drug interactions”
are the three most elaborated DS special topics, exploiting
a number of heterogeneous data sources, e.g., SRSs, ADE
databases, etc.

One of the key KE foundations is the reuse of
established/reference knowledge structures (i.e., ontologies,
standard terminologies, etc.). This facilitates semantic
interoperability between different systems and widens the
spectrum upon which KE approaches are applicable to. Figure 7
presents the most widely adopted terminologies/ontologies in
the reviewed articles18. The Unified Medical Language System
(UMLS), MedDRA, the Anatomical Therapeutic Chemical
(ATC) Classification System, the Systematized Nomenclature of
Medicine-Clinical Terms (SNOMED-CT), and the International
Classification of Diseases (ICD) are the most widely used
terminologies, while the Ontology for Adverse Events (OAE),
the Vaccine Ontology (VO), and GO are the most widely
referred ontologies.

The types of data sources employed in the reviewed
articles vary significantly, highlighting the complexity of the
domain and the need for advanced data integration and
representation schemes based on KE (Koutkias and Jaulent,
2015). Figure 8A presents the distribution of data source

18Not all referenced terminologies/ontologies are presented for readability
purposes. The full list of referenced terminologies/ontologies can be found in
the detailed analysis provided as Supplementary Material in the form of a
spreadsheet.
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FIGURE 5 | KE and computational approaches: (A) number of articles per computational approach, (B) overlapping of the most prominent KE activities within the

selected articles, and (C) KE activities and number of respective articles across time.

categories, while Figure 8B presents the most popular data
sources19, as employed in the reviewed articles. SRSs [e.g., the
FDA Adverse Event Reporting System (FAERS) and the Vaccine

19Not all data sources identified are presented for readability purposes. The full list
of data sources identified can be found in the fully detailed analysis provided as
Supplementary Material in the form of a spreadsheet.

Adverse Event Reporting System (VAERS)], drug information
databases (e.g., DrugBank), ADE databases [mainly the Side
Effect Resource (SIDER)], genetic and biochemical information
data sources [e.g., GO and the Kyoto Encyclopedia of Genes
and Genomes—GenomeNet (KEGG)], as well as scientific
literature repositories (i.e., PubMed/MEDLINE) are the most
prominent ones.
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FIGURE 6 | Links between: (A) KE core activities and DS core activities, (B) DS special topics and data source categories, (C) KE core activities and data source

categories. (D) The most prominent connections among KE core activities, data source categories and DS special topics.

The selected articles were also critically reviewed to identify
challenges or weaknesses and, consequently, gaps in the applied
research practices. As shown in Figure 9, in many of the reviewed
articles the research significantly depended onmanual work (e.g.,

data curation, annotation, etc.), conducted by a small group of
experts. Furthermore, despite elaborating on KE representation
schemes like ontologies, many studies did not evaluate the
proposed models regarding quality, e.g., using quality assessment
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FIGURE 7 | Reference knowledge sources (i.e., terminologies/vocabularies/thesauri and ontologies) employed in the reviewed articles.

FIGURE 8 | Use of main data sources: (A) number of articles per data source category, (B) number of articles per data source, and (C) schematic representation of

main data sources used and their categories.

frameworks like the Ontology Quality Evaluation Framework
(OQuaRE) (Duque-Ramos et al., 2014). This findingmay indicate
a difficulty to apply the respective approaches at large-scale
with real-world data. Moreover, a wide range of studies did
not use an interoperable knowledge representation format (e.g.,
ontologies), while in many studies the presented KE approaches
were evaluated in a narrower scope than the one presented as
their main use case.

Data and Knowledge Sources
In this subsection, we present the main data sources used in KE
for DS, as well as the employed knowledge sources, i.e., reference
ontologies/terminologies, as identified in our review20.

20The special characteristics of each data source category and their
possible contribution in signal detection are explicitly described in
Koutkias and Jaulent (2015).
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FIGURE 9 | Identified challenges/weaknesses as reported in the reviewed articles.

Data sources
Table 2 presents the usage of data sources for specific DS
applications, citing also the respective articles. We organize data
sources in two main types: (a) those established or dominant
in the domain of DS, such as SRSs, clinical trial databases,
and bibliographic databases, and (b) emerging or quite new,
such as observational healthcare databases, biochemical/genetic
information databases, and social media platforms.

Established data sources SRSs constitute the dominant data
source for DS. They have been widely used in the reviewed
articles for signal identification (mostly through NLP) as well
as monitoring and validation. Interestingly, in order to improve
the mining capacity of FAERS for signal detection and promote
semantic interoperability between FAERS and other data sources,
NLP techniques and normalization procedures were applied
to FAERS data using reference terminologies, i.e., MedDRA,
RxNorm, and the National Drug File—Reference Terminology
(NDF-RT) (Wang et al., 2014).

ADE databases [mostly SIDER, the Comparative
Toxicogenomics Database (CTD), and MetaADEDB],
clinical trials data (from ClinicalTrials.gov), drug information
databases (e.g., DrugBank) and bibliographic databases [i.e.,
PubMed/MEDLINE and the Semantic MEDLINE Database
(SemMedDB) (Kilicoglu et al., 2012), a database of semantic
relationships extracted fromMEDLINE] have been employed for
signal detection and MoA investigation.

Emerging data sources Observational healthcare databases and
Electronic Health Records (EHRs) in particular, gained a major
interest recently for DS research. In the scope of KE for DS,
structured EHRs were used for signal detection, combining the
use of ontologies and NLP approaches, as well as for developing
medication-related Clinical Decision Support Systems (CDSSs).
Unstructured EHR data, i.e., free-text clinical notes, were also
used for ADR identification.

Recent advances in high-throughput sequencing technologies
enable the integration of biological information to support
SP by focusing on gene-drug-disease interaction networks. An
increasing number of these frameworks incorporate genetic
data (most often genomic polymorphisms as described in
PharmGKB) for drug-drug interactions (DDIs) and ADR

in silico prediction, stressing the need to integrate such
data to complement in vivo and in vitro investigations
on pharmacogenomics. Information on pathways (e.g., from
KEGG), proteins (e.g., from UniProt) and their annotations with
GOwere the most prominent data sources for ADE identification
and the analysis of the respective MoA. Interestingly, the
use of biomolecular functional network data improved ADR
predictions (Huang et al., 2011), and suggests that such
prediction could help to design new models for investigating
ADRs and their MoA, to avoid tedious and costly clinical trials,
in line with the paradigms of in silico clinical trials and SP.

Structured Product Labels (SPLs) have been also used in
various studies, including comparative drug analysis and the
analysis of drug MoA. Furthermore, national SPL indexes were
used as a data source for localized CDSSs.

Social media platforms (mostly Twitter, DailyStrength.com,
and dedicated patient forums) attracted recently major interest
for DS. Exploiting KE activities like knowledge extraction in
social media can add a valuable new data source in the
DS ecosystem, as they are characterized by three interesting
aspects (Koutkias et al., 2017): (a) they provide vast amounts
of data, (b) posts could be monitored across time and
trends could be identified in relation with triggering events
(e.g., new safety issues reported by regulatory authorities or
announced in the media), and (c) user interconnections (e.g.,
mentions, responses, followership, etc.) could create a “social
graph” which could provide useful insights through graph-
based Social Network Analysis (SNA). Notably, a comparative
study concerning the prevalence of ADR mentions in Twitter
and other social media platforms concluded that social
media can be considered as a valuable data source for DS
(Nguyen et al., 2017).

Knowledge sources
Table 3 summarizes the use of the most prominent knowledge
sources in the reviewed articles, citing indicative references21.
We categorize them into reference terminologies, thesauri, and

21In the detailed analysis results (provided as Supplementary Material), all
referenced knowledge sources for each paper are identified. For readability, we only
refer in the manuscript to the most prominent knowledge sources used.
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TABLE 2 | Use of data sources in the reviewed articles for most prominent DS applications.

Category Application in drug safety

Established data

sources

SRS • Signal detection (Sarntivijai et al., 2012; Tao et al., 2012; Cheng et al., 2013; Boyce et al., 2014; Cheng and

Zhao, 2014; Courtot et al., 2014; Iyer et al., 2014; Wang et al., 2014; Cai et al., 2015, 2017; Dupuch and

Grabar, 2015; Liu and Chen, 2015; Koutkias and Jaulent, 2016; Liu et al., 2016, 2018; Knowledge Base

Workgroup of the Observational Health Data Sciences and Informatics (OHDSI) Collaborative, 2017; Voss

et al., 2017)

• Validation (Henegar et al., 2006; Gottlieb et al., 2012; Courtot et al., 2014; Iyer et al., 2014)

• Monitoring (Marcos et al., 2013)

ADE databases • Signal detection (Huang et al., 2011; Gurulingappa et al., 2012; Cheng et al., 2013; Cheng and Zhao, 2014;

Iyer et al., 2014; Shang et al., 2014; Cai et al., 2015; Herrero-Zazo et al., 2015; Jiang et al., 2015; Koutkias

and Jaulent, 2015, 2016; Bravo et al., 2016; Eshleman and Singh, 2016; Kawazoe et al., 2016; Lowe et al.,

2016; Noor et al., 2016; Abdelaziz et al., 2017; Knowledge Base Workgroup of the Observational Health

Data Sciences and Informatics (OHDSI) Collaborative, 2017; Nguyen et al., 2017)

• MoA identification/analysis (Huang et al., 2011; Gottlieb et al., 2012; Xu and Wang, 2013; Cai et al., 2015;

Herrero-Zazo et al., 2015; Guo et al., 2016; Noor et al., 2016; Abdelaziz et al., 2017; Personeni et al., 2017;

Piñero et al., 2017)

• Validation (Gurulingappa et al., 2012)

Drug information databases • Signal detection (Tari et al., 2010; Huang et al., 2011; Boyce et al., 2014; Cheng and Zhao, 2014; Iyer et al.,

2014; Cai et al., 2015; Herrero-Zazo et al., 2015; Koutkias and Jaulent, 2015, 2016; Noor et al., 2016; Zhang

et al., 2016; Abdelaziz et al., 2017; Knowledge Base Workgroup of the Observational Health Data Sciences

and Informatics (OHDSI) Collaborative, 2017)

• MoA identification/analysis (Lin et al., 2010; Tari et al., 2010; Huang et al., 2011; Gottlieb et al., 2012; Cai

et al., 2015; Herrero-Zazo et al., 2015; Noor et al., 2016; Zhang et al., 2016; Abdelaziz et al., 2017)

Bibliographic databases • Signal detection (Tari et al., 2010; Gurulingappa et al., 2012; Boyce et al., 2014; Shang et al., 2014;

Zhang et al., 2014, 2016; Bravo et al., 2016; Koutkias and Jaulent, 2016; Lowe et al., 2016; Noor et al.,

2016; Knowledge Base Workgroup of the Observational Health Data Sciences and Informatics (OHDSI)

Collaborative, 2017; Voss et al., 2017)

• MoA identification/analysis (Tari et al., 2010; Hur et al., 2012; Xu and Wang, 2013; Zhang et al., 2016;

Cañada et al., 2017; Piñero et al., 2017)

Clinical trials data • Signal detection (Huang et al., 2011; Boyce et al., 2014; Koutkias and Jaulent, 2015; Knowledge Base

Workgroup of the Observational Health Data Sciences and Informatics (OHDSI) Collaborative, 2017)

• MoA identification/analysis (Huang et al., 2011)

Emerging data sources EHRs • Signal detection (Ceusters et al., 2011; Boyce et al., 2014; Zhang et al., 2014; Declerck et al., 2015; Jiang

et al., 2015; Henriksson et al., 2016; Noor et al., 2016; Yuksel et al., 2016; Knowledge Base Workgroup

of the Observational Health Data Sciences and Informatics (OHDSI) Collaborative, 2017; Personeni et al.,

2017; Voss et al., 2017)

• CDSS development (Gottlieb et al., 2012; Koutkias et al., 2012; Neubert et al., 2013; Doulaverakis et al.,

2014)

Clinical narratives Signal detection (Iyer et al., 2014; Zhang et al., 2014; Henriksson et al., 2015, 2016; Sarker and Gonzalez,

2015; Iqbal et al., 2017)

Biochemical and genetic

information databases

• Signal detection (Arikuma et al., 2008; Tari et al., 2010; Boyce et al., 2014; Cai et al., 2015; Kawazoe et al.,

2016; Noor et al., 2016; Abdelaziz et al., 2017; Knowledge Base Workgroup of the Observational Health

Data Sciences and Informatics (OHDSI) Collaborative, 2017)

• MoA identification/analysis (Arikuma et al., 2008; Tari et al., 2010; Gottlieb et al., 2012; Hur et al., 2012; Cai

et al., 2015; Noor et al., 2016; Abdelaziz et al., 2017; Piñero et al., 2017)

SPLs • Comparative drug analysis (Bisgin et al., 2011; Boyce et al., 2013, 2014)

• MoA identification/analysis (Gottlieb et al., 2012; Cai et al., 2015; Guo et al., 2016; Abdelaziz et al., 2017)

• CDSS development (Neubert et al., 2013; Doulaverakis et al., 2014)

Social media ADE information collection (Liu and Chen, 2015; Nikfarjam et al., 2015; Sarker and Gonzalez, 2015; Eshleman

and Singh, 2016; Liu et al., 2016, 2018; Audeh et al., 2017; Cocos et al., 2017; Nguyen et al., 2017)

vocabularies, spanning from simple hierarchies to ontologies,
which express richer semantics.

Reference terminologies, thesauri, and vocabularies Several
knowledge sources [e.g., UMLS, MedDRA, ATC, RxNorm,
ICD, SNOMED-CT, and Medical Subject Headings (MeSH)]
were used as reference terminologies for knowledge extraction
through Named Entity Recognition (NER), which is a typical
step in NLP applications. Furthermore, they provided a “light”

semantic structure of concepts (i.e., a concept hierarchy),
which could be exploited for automatic inference. One of
their most prominent uses was the semantic normalization
of heterogeneous data sources during data integration. For
example, UMLS was widely used in knowledge extraction
activities, i.e., as reference terminology in NER steps applied
to recognize entities in free-text through the MetaMap-MMtx
tool, to reduce the semantic ambiguity between the various
data sources. MedDRA and the World Health Organization
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TABLE 3 | Use of the most prominent knowledge sources in the reviewed articles.

Knowledge source Use in the reviewed articles

Terminologies/Thesauri/

Vocabularies

MedDRA/WHO-ART • Semantic annotation of concepts (grouping, classification etc.) (Henegar et al., 2006; Neubert et al., 2013; Courtot
et al., 2014; Declerck et al., 2015; Jiang et al., 2015; Guo et al., 2016; Xie et al., 2016a,b; Cai et al., 2017;

Segura-Bedmar and Martínez, 2017; Voss et al., 2017)

• Reference terminology for data integration (Sarntivijai et al., 2012, 2016; Boyce et al., 2014; Yuksel et al., 2016;

Knowledge Base Workgroup of the Observational Health Data Sciences and Informatics (OHDSI) Collaborative,

2017)

• NLP (e.g., Named Entity Recognition) (Bisgin et al., 2011; Gurulingappa et al., 2012; Iyer et al., 2014; Cai et al.,

2015)

UMLS • NLP (e.g., Named Entity Recognition) (Segura-Bedmar et al., 2010, 2011; He et al., 2013; Kang et al., 2014;

Shang et al., 2014; Jiang et al., 2015; Sarker and Gonzalez, 2015; Eshleman and Singh, 2016; Liu et al., 2016,

2018; Zhang et al., 2016)

• Reference terminology for data integration (Henegar et al., 2006; He et al., 2013; Boyce et al., 2014; Cheng and

Zhao, 2014; Iyer et al., 2014; Cai et al., 2015; Bravo et al., 2016; Noor et al., 2016; Abdelaziz et al., 2017;

Cohen and Widdows, 2017; Piñero et al., 2017)

ATC • Reference terminology for data integration (Gottlieb et al., 2012; Koutkias et al., 2012; Cheng et al., 2013; Neubert

et al., 2013; Kawazoe et al., 2016)

• NLP (e.g., Named Entity Recognition) (Bisgin et al., 2011; Henriksson et al., 2016; Segura-Bedmar and Martínez,

2017)

• Semantic annotation of concepts (grouping, classification etc.) (Lin et al., 2010; Cheng and Zhao, 2014;

Doulaverakis et al., 2014; Iyer et al., 2014; Cai et al., 2015; Abdelaziz et al., 2017; Personeni et al., 2017)

RxNorm • Reference terminology for data integration (Boyce et al., 2014; Iyer et al., 2014; Wang et al., 2014; Jiang et al.,

2015; Cai et al., 2017; Hogan et al., 2017; Knowledge Base Workgroup of the Observational Health Data

Sciences and Informatics (OHDSI) Collaborative, 2017; Personeni et al., 2017; Voss et al., 2017)

ICD-9/10 • Reference terminology for data integration (Koutkias et al., 2012; Boyce et al., 2014; Declerck et al., 2015; Yuksel

et al., 2016)

• Semantic annotation of concepts (grouping, classification etc.) (Huang et al., 2011; Zhang et al., 2013;

Doulaverakis et al., 2014; Henriksson et al., 2015; Personeni et al., 2017)

SNOMED-CT • Semantic annotation of concepts (grouping, classification etc.) (Iyer et al., 2014; Henriksson et al., 2015; Guo

et al., 2016; Personeni et al., 2017)

• Reference terminology for data integration (Zhang et al., 2013; Boyce et al., 2014; Declerck et al., 2015; Yuksel

et al., 2016)

MeSH • NLP (e.g., Named Entity Recognition) (Kang et al., 2014; Henriksson et al., 2015; Lowe et al., 2016; Knowledge

Base Workgroup of the Observational Health Data Sciences and Informatics (OHDSI) Collaborative, 2017;

Piñero et al., 2017; Voss et al., 2017) or manually (Cheng and Zhao, 2014; Bravo et al., 2016)

Ontologies OAE/VAE • Combined with disproportionality analysis for signal detection and comparative drug analysis (Sarntivijai et al.,

2012; Xie et al., 2016a,b; Wang et al., 2017)

• Basis for other ontologies (Tao et al., 2012; Marcos et al., 2013; Lin and He, 2014; Herrero-Zazo et al., 2015;

Guo et al., 2016; Liu et al., 2017; Wang et al., 2017)

• Enhance NLP results (Gurulingappa et al., 2012; Hur et al., 2012)

OntoADR • Combined with OAE to investigate MoA of Tyrosine Kinase Inhibitors (Sarntivijai et al., 2016)
• Secondary use of EHRs and observational studies data (e.g., signal detection and automatic report generation)

(Declerck et al., 2015; Yuksel et al., 2016)

• Searching, coding, and information retrieval of ADE information (Bousquet et al., 2014; Souvignet et al., 2016)

(WHO) Adverse Reaction Terminology (WHO-ART) were used
to semantically categorize and interrelate (e.g., group) concepts
regarding signals or ADE reports and also as common reference
terminologies for integration purposes or NLP tasks. In US-
originated studies, RxNorm was used as a reference terminology
for drugs, but to a smaller extent compared to ATC overall.
An interesting application of SNOMED-CT was for enhancing
the semantics provided by WHO-ART (Alecu et al., 2008) and
MedDRA (Bousquet et al., 2014; Dupuch and Grabar, 2015).

Ontologies OAE (He et al., 2014b) and VO (Lin and He,
2012; Zhang et al., 2013) constitute reference ontologies in
the domain. They were combined with statistical approaches
and disproportionality analysis for the comparative analysis

of drugs and ADE profiles. OAE and VO were also used to
enhance the results of plain NLP algorithms, or as a conceptual
base for other ontologies like the Ontology of Vaccine Adverse
Events (OVAE), the Ontology of Drug Neuropathy Adverse
Events (ODNAE), the Ontology of Cardiovascular Drug AEs
(OCVDAE), the Ontology of Chinese Medicine for Rheumatism
(OCMR), and the Ontology of Genetic Susceptibility Factors
(OGSF). Furthermore, OAE has been identified as an ontology
which could support a systems-based modeling approach for
regulatory drug approval purposes (Zhichkin et al., 2012;
Sinha et al., 2016).

The RxNorm-based Drug Ontology (DrOn) represents the
therapeutic functions of drug products, including their MoA at
the molecular level and their adverse effects (Hogan et al., 2017).
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However, it seems that it is not extensively employed for DS
purposes, as DS was not among its main use cases.

Notably, OntoADR is an ontologized version of MedDRA
(Bousquet et al., 2014), which was used in the SALUS project
to integrate MedDRA in an overall ontology-based information
model and support secondary use of EHR data for DS
(Declerck et al., 2015) and observational studies (Yuksel et al.,
2016). Similarly, OAE and MedDRA have been interlinked
to investigate the biological mechanisms of Tyrosine Kinase
Inhibitors (Sarntivijai et al., 2016).

Knowledge Engineering Activities
In this subsection, we present how the main KE activities
were employed in the reviewed articles and highlight the most
prominent approaches. Thus, we emphasize on the employed KE
methods, illustrating how these were employed for DS.

Knowledge dissemination
A platform aiming to facilitate knowledge dissemination
regarding drug safety, efficacy, and effectiveness was proposed,
overcoming the issue of outdated drug product labels (Boyce
et al., 2013). The study integrated many data sources in a
single knowledge graph containing information related with
drug products (including ADEs and DDIs) and provided a
proof-of-concept Web interface allowing to actively explore
all the information related with a specific drug product.
Knowledge dissemination approaches were also employed
to support comparative drug analyses regarding ADEs and
contraindications, using visual analytics combined with
ontological reasoning (Lamy et al., 2017).

Knowledge elicitation
Knowledge elicitation activities are typically related with rule-
based inferencing combined with ontological reasoningmethods.
For instance, a conceptual model relying on the Drug Interaction
Ontology (DIO) to identify DDIs was developed based on two
rule-based inferencing modules (Pathway object constructor
and Drug interaction detector) (Arikuma et al., 2008). Drug-
Drug Interactions Ontology (DINTO) combined Description
Logic (DL) (Baader et al., 2004) based reasoning with rules
formed in the Semantic Web Rules Language (SWRL) to
identify DDIs and investigate their MoA (Herrero-Zazo et al.,
2015), upon a conceptual model exploiting Pharmacokinetics
and Pharmacodynamics related knowledge. The Drug Enzyme
Interaction (DEI) ontology was combined with a rule-base
to investigate drug MoAs (Zhang et al., 2016). Similarly,
ProLog was used to encode rules regarding drug metabolism
and conduct reasoning to identify potential DDIs (Tari
et al., 2010). In addition, SPARQL queries following specific
patterns regarding temporal inference were used to identify
ADRs upon HL7 messages integrated in one large Resource
Description Framework (RDF) graph (Kawazoe et al., 2016).
Rules referring to four levels of interaction mechanisms,
namely, pharmacokinetic, pharmacodynamic, pharmacogenetic,
and multi-pathway interaction, were employed to identify DDIs
and their underlying MoAs upon a large RDF knowledge graph
integrating 15 DDI databases (Noor et al., 2016).

Inferencing methods based on graph theory were also
extensively applied. Graph clustering coefficient analysis was
used to identify similar ADE clusters (Lin et al., 2010). Node
closeness in a protein–protein interaction graph was used to
infer DDIs (Gottlieb et al., 2012), while network centrality was
investigated in a gene-gene interaction graph as a metric of
gene importance in terms of causing fever (Hur et al., 2012).
Several graph-based metrics (i.e., connectivity, betweenness, and
clustering coefficient) were used to predict ADEs in a knowledge
graph built upon MetaADEDB (Cheng et al., 2013). Graph
shortest paths were used to identify the weight of relationships in
a vaccine-related network extracted from SemMedDB, to confirm
the structural validity of VO (Zhang et al., 2013). A similar
approach was used to identify relationships between drugs and
ADE terms presented in the UMLS Metathesaurus semantic
network, in order to extract ADEs from biomedical text (Kang
et al., 2014). A graph kernel based ML approach was used
to extract drug-enzyme relationships from the literature, using
UMLS as reference terminology (Zhang et al., 2016). Graph-
based metrics combined with terminological reasoning were
employed to calculate the semantic distance between MedDRA
terms and cluster them to improve Standardized MedDRA
Queries (SMQs) (Dupuch and Grabar, 2015). The relationships
of drugs and their effects were modeled in the form of the so-
called Drug Effect Graph and used topological characteristics to
identify ADE relations in Twitter (Eshleman and Singh, 2016).

DL-based reasoning upon ontologies was applied in various
cases (Vandervalk et al., 2013; Zhang et al., 2013; Courtot et al.,
2014; Herrero-Zazo et al., 2015; Souvignet et al., 2016; Lamy et al.,
2017). In particular, combining the use of ontology reasoning
(upon OAE and VO) with more traditional disproportionality
measures like the Proportional Reporting Ratio (PRR) was
used to analyse already identified ADEs and interrelate the
statistic properties of each signal with the categorical information
provided by the respective ontologies (Sarntivijai et al., 2012; Xie
et al., 2016b; Wang et al., 2017). A similar approach, combining
ontology reasoning upon OAE interlinked with MedDRA and
disproportionality analysis of SRS data (i.e., FAERS and VAERS)
was presented in Sarntivijai et al. (2016) and Xie et al. (2016a).

Terminological reasoning was combined with ontologies
and other statistical approaches, including disproportionality
analysis. For example, an advanced association rule mining
approach was presented for identifying causality between drugs
and ADEs in FAERS (Cai et al., 2017). In particular, the
Relative Reporting Ratio (RRR) was used to model confidence as
defined in association rulemining, combined with terminological
reasoning based on RxNorm and MedDRA upon FAERS data.

ML was also identified as a prominent paradigm employed for
knowledge elicitation. SVMs were used in several classification
schemes (Huang et al., 2011; Henriksson et al., 2016; Zhang et al.,
2016), while association rules were elicited and contextualized in
Koutkias et al. (2012) for ADE prevention based on EHR data.
Vector-based similarity mechanisms were also extensively used,
mostly for content-based document classification (Henriksson
et al., 2015; Nikfarjam et al., 2015; Cocos et al., 2017). For
example, SemMedDB predicates (i.e., triplets in the form of
subject-predicate-object) were modeled as vectors and used
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an SVM to classify concepts (Cohen and Widdows, 2017),
while deep-learning neural networks were used to identify
ADEs in Twitter (Cocos et al., 2017). A vector-based approach
implemented pattern structures, in combination with the class
hierarchies of three medical ontologies (ICD-9-CM, SNOMED-
CT, and ATC), to mine association rules that characterize ADEs
occurring in distinct patient subgroups (Personeni et al., 2017).

Finally, a large-scale DDI prediction system relying on a large
RDF knowledge base was developed upon vector-based as well
as graph-based similarity metrics combined with terminological
reasoning (Abdelaziz et al., 2017).

Knowledge extraction
The most widely used knowledge extraction approach refers
to the use of NLP techniques applied on unstructured data,
i.e., free-text, originated from biomedical literature, social
media, clinical notes, etc., using various computational methods
(including ML-based).

Relying on core NLP methods, the DrugNerAR system
demonstrated its ability to identify drug mentions in biomedical
literature for DDI identification (Segura-Bedmar et al., 2010),
and drug-gene relationships, extracted from MEDLINE (Xu and
Wang, 2013). NLPwas also used upon bibliographic data sources,
storing a structured representation of plain text in a “parse tree
database” for further elaboration and reasoning to identify DDIs
(Tari et al., 2010). Notably, an alternative approach targeting
social media took into account the three previous and the three
next tokens to analyse each token in its context for identifying
ADR mentions (Nikfarjam et al., 2015). Context-based semantic
analysis across sentences improved the identification of ADRs
in patient forums, using the NegEx tool and drug indications
to filter out negated ADEs and drug indications, respectively
(Liu and Chen, 2015). NLP was also applied on clinical notes
to identify DDIs based on drug-gene relationships extracted
from SemMedDB (Zhang et al., 2014), while SemMedDB was
also exploited for Literature Based Discovery aiming at signal
assessment (Shang et al., 2014). Similarly, NLP was applied on the
clinical notes of a large dataset, taking into account contextual
information (i.e., temporal information and categorization in
factual, hypothetical or negated sentence), to detect ADEs specific
to antipsychotics and antidepressants (Iqbal et al., 2017). NLP
was also applied on WikiPedia to identify drugs and conditions
in the title of its articles, as well as links to other pages related
to drugs, conditions and ADRs, aiming to construct a lexicon of
ADR terms (Lowe et al., 2016).

An alternative approach used topic modeling on free-text
drug leaflets to generate novel hypotheses regarding DS (Bisgin
et al., 2011). Topic modeling and sentiment polarity were
used as contextual information regarding the identification of
ADEs in Twitter (Eshleman and Singh, 2016). Ontology-assisted
NLP was used to identify ADE mentions in free-text sources,
i.e., medical case reports and literature, targeting at signal
identification (Gurulingappa et al., 2012). Finally, SPLs were used
to extract information and integrate it in a large RDF graph
(Boyce et al., 2013).

On exploiting ML-based approaches, the SSEL-ADE
framework relied on an SVM employing n-grams and graph-
based metrics to identify ADE mentions in social media (Liu
et al., 2018). N-gram models were used combining 3 SVM
kernels and stacked generalization to improve the identification
of DDIs in biomedical literature (He et al., 2013). An ensemble
of ML methods was employed to identify DDIs in clinical
narratives, taking into account contextual information for the
analysis of each term (i.e., negation, speculation and temporality)
(Henriksson et al., 2015, 2016). Notably, third-party data sources
were integrated in one knowledge base combined with ML
to identify ADEs in biomedical literature (Bravo et al., 2016).
Interestingly, crowdsourcing was used to manually annotate a
corpus of free-texts (in a reasonable time and without bias) to
train the ML model.

Knowledge integration
WHO-ART and SNOMED-CTweremapped based on synonymy
in the UMLSMetathesaurus to automatically generate definitions
of WHO-ART terms in a DL formalism, i.e., the Web Ontology
Language (OWL), aiming to identify WHO-ART terms that may
be grouped together (Alecu et al., 2008). As the same medical
condition may be coded with different terms in DS databases, it
was assumed that such approach would enable to group similar
terms and improve signal generation. As a next step in the
same line of work, SNOMED-CT was used to convert MedDRA
to an OWL ontology, namely, OntoADR, which combined
the semantics of MedDRA and SNOMED-CT (Bousquet
et al., 2014), through a relational database implementation
(Souvignet et al., 2016).

Koutkias and Jaulent investigated the limitations of
computational signal detection methods when applied on
single data sources, and elaborated on multiple heterogeneous
signal detection methods, data sources and other drug-related
resources under a common, integrated framework (Koutkias and
Jaulent, 2015). The framework relied on the Pharmacovigilance
Signal Detection Ontology (PV-SDO) and a multiagent system,
implementing a comprehensive workflow comprising of method
selection and execution, as well as outcomes’ aggregation,
filtering, ranking and annotation (Koutkias and Jaulent, 2016).

Declerck et al. proposed an ontology-based abstraction layer
called Common Information Model—CIM (Declerck et al.,
2015). CIM was populated through software “bridges” based on
mappings of local EHR databases to CIM, thus accommodating
the dependencies of the overall framework on the local EHR
data schemas.

Furthermore, various data sources (SPLs, ADE information,
clinical trials data, etc.) were integrated in a single knowledge
graph based on common-terms matching and mappings
to reference terminologies, in order to provide a unified
and semantically enhanced knowledge base for information
regarding drug products (Boyce et al., 2013).

Considering the integration of biochemical data for DS,
several sources, such as UMLS, DrugBank, CTD, and UniProt
were integrated in one large RDF graph for ADR detection
(Abdelaziz et al., 2017). Several heterogeneous data sources
were also integrated to interrelate biochemical and phenotypic
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information for predicting ADEs through an SP approach
(Huang et al., 2011; Cheng and Zhao, 2014). Furthermore,
the Adverse Drug Reaction Classification System (ADReCS)
combines a hierarchical structure of concepts (similar to the
MedDRA structure) and integrates information from a large
number of ADE and biochemical data sources, explorable
through a Web interface for signal assessment (Cai et al., 2015).
Similarly, DisGeNet is a comprehensive centralized repository
created by integrating data from curated databases and two
datasets obtained by mining the scientific literature (Piñero et al.,
2017). It focuses on the associations between genes/variants and
diseases. DS is one of DisGeNet’s main use cases and can also be
considered as a large knowledge graph as it is also available in
RDF format (Queralt-Rosinach et al., 2016).

Regarding medication-based CDSSs, Koutkias et al. integrated
various knowledge sources using the Computerized Interpretable
Guideline (CIG) formalism (Koutkias et al., 2012); they
used meta-rules to integrate these sources and well-defined
communication interfaces, in order to satisfy both performance
requirements and also the need to obtain knowledge from
third-party sources. In the same context, a combination of
rule-based and ontology-based knowledge representation was
developed to accommodate the need for integrating various
data sources and also providing effective CDSS support
to prevent ADEs in a computationally effective manner
(Doulaverakis et al., 2014).

The D3 (Drug-drug interactions Discovery and
Demystification) system aimed to infer MoAs for DDIs
based on an integrated RDF schema of 12 biomedical resources
and 15 DDI databases (Noor et al., 2016). Some data sources
included data in RDF format obtained from Bio2RDF, which
were semantically aligned through the use of UMLS and a set
of specific relationships (e.g., “has indication”). Non-UMLS
compatible data sources were also integrated via explicit
database cross-references.

The LAERTES knowledge base which was built in the context
of the Observational Health Data Sciences and Informatics
(OHDSI) collaborative (Knowledge Base Workgroup of the
Observational Health Data Sciences and Informatics (OHDSI)
Collaborative, 2017), integrated multiple data sources into
a common knowledge schema for signal investigation, in
compliance with the OMOP Common Data Model (CDM)
(Boyce et al., 2014; Voss et al., 2017).

Knowledge representation
Ontologies are the most commonly used knowledge
representation formalism and, therefore, several ontologies
were introduced targeting the domain of DS, mostly using OWL
and RDF.

As regards the ADE representation, OAE is the most
prominent ontology. OAE is a community-based outcome,
widely used to semantically categorize ADEs (He et al., 2014b).
Respectively, VO is a community-based ontology used to
semantically categorize vaccines (Hur et al., 2012; Lin and He,
2012; Zhang et al., 2013), typically used in combination with
OAE. VO was also used in combination with the Time Event
Ontology (TEO) which was developed to formally represent the

time-oriented aspects of an ADE report (Tao et al., 2012), as
time has been recognized as an important aspect of ADEs (Iqbal
et al., 2017; Personeni et al., 2017). VO and OAE were also
used as the conceptual base of OVAE to depict relationships
between vaccines, adverse events, and patient age groups (Marcos
et al., 2013), in the context of the VIOLIN vaccine safety analysis
system (He et al., 2014a), and to classify and update data
regarding ADEs of Hepatitis vaccines (Xie and He, 2017). VO
and OAE were referenced by OGSF, aiming to model the genetic
susceptibility (or predisposition) to vaccine adverse events (Lin
and He, 2014). Furthermore, ODNAE extends OAE to facilitate
the analysis of drugs causing neuropathy adverse events (Guo
et al., 2016). Similarly, OCVDAE extends OAE to facilitate the
analysis of ADEs caused by cardiovascular drugs (Wang et al.,
2017), and OCMR extends OAE to facilitate the comparative
analysis of traditional Chinese drugs regarding rheumatism
(Liu et al., 2017).

Henegar et al. modeled MedDRA using DAML + OIL
(OWL’s predecessor) to support automatic signal generation
(Henegar et al., 2006). The same group created an OWL
ontology to enrich the formal definitions of WHO-ART terms
with associative relations provided by SNOMED-CT to support
grouping of WHO-ART terms related to the same medical
condition (Alecu et al., 2008) and, as a further step, presented
an ontologized version of MedDRA, exploiting SNOMED-CT
semantics (Bousquet et al., 2014). OWL was also used to model
ADEs based on concepts concerning the patient’s medical history
and their time-related aspects (Ceusters et al., 2011). Moreover,
the Adverse Event Reporting Ontology (AERO) was proposed to
enable the modeling of case definitions related to adverse events
following immunization to support the respective information
processing workflow (Courtot et al., 2014).

In the scope of representing drug interactions, DIO
models drug metabolic pathway related concepts, including
information from organ to molecular level, supporting
SP approaches (Arikuma et al., 2008). DEI models the
interactions of drugs and enzymes, used to infer potential
DDIs from biomedical literature (Zhang et al., 2016). DINTO
provides a DDI classification schema and a conceptual
model taking into account both the pharmacokinetic and
pharmacodynamic aspects of DDIs (Herrero-Zazo et al.,
2015). DINTO references OAE and integrates knowledge from
other data sources (i.e., ChEBI, DrugBank, and SIDER) with
no manual curation, following the NeOn KE methodology
(Suárez-Figueroa et al., 2012).

In a few cases, the RDF representation formalism was
used without aiming to formulate a specific conceptual
model; for example, HL7 messages were converted to
RDF and integrated to a large RDF model to confirm
that they could be used in the context of ADR detection
(Kawazoe et al., 2016).

Alternatively, relational databases were used as a knowledge
base storage formalism, since they provide a mature data
storage paradigm, able to support vast data storage in a
computationally effective manner that is widely used in real-
world enterprise systems. Compared to ontologies, relational
databases are not specifically designed to support KE activities
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(e.g., automatic reasoning). On the other hand, while ontologies
can support formal semantics and automatic reasoning given
their underlying robust mathematical background, i.e., DL, the
respective data storage systems are not yet mature enough and
the automatic reasoning process is computationally expensive
for large knowledge graphs, making relational databases a
competing alternative for large knowledge bases. To this
end, MEDLINE abstracts were used to extract knowledge on
drug metabolism and interactions (storing the corresponding
structured representation into a database in the form of a tree-
structure representation) and queried to identify DDI mentions
(Tari et al., 2010). SemMedDB contains statements in the form of
triples (subject-predicate-object) extracted from MEDLINE and
stored in a relational format (Zhang et al., 2014). MetaADEDB
relies on a relational schema to integrate several heterogeneous
data sources for DS (Cheng et al., 2013).

Hybrid data storage approaches have been also proposed,
using both relational and RDF formalisms. For example,
LAERTES used relational databases as its basic data storage
paradigm (Boyce et al., 2014; Knowledge Base Workgroup
of the Observational Health Data Sciences and Informatics
(OHDSI) Collaborative, 2017). However, it also employs theWeb
Annotation Data Model (WADM), to enable “drill-down” into
evidence supporting a statistic measure of association between
a drug and a Health Outcome of Interest (HOI) (e.g., a count,
PRR, etc.). DisGeNet is also available both in relational and
RDF version, accompanied by an ontology which defines its
conceptual model.

Impact of Knowledge Engineering on Drug Safety
In this subsection, we highlight the contribution that the
employed KE approaches have in DS core activities (Table 1).
In particular, the emphasis is given on illustrating the value of
adopting KE approaches for DS and their potential application in
current DS practice.

ADE information collection
Currently, information collection methods to support routine DS
activities (e.g., signal identification) are mostly focusing on SRS,
bibliographic, and clinical trial data. In particular, bibliographic
search is typically conducted manually by experts, requiring
the formulation of the respective query (i.e., define the terms
of interest, expand the query through synonyms, etc.), and
the manual evaluation of the returned results based on expert
tacit knowledge. On the other hand, via the formalization of
knowledge in an explicit way, the use of KE tools can automate
this process, facilitate the exploitation of new/emerging data
sources, and reduce errors in the process.

Bibliographic data sources were used to extract DDIs (Segura-
Bedmar et al., 2010; Tari et al., 2010; He et al., 2013) and
ADE mentions (Gurulingappa et al., 2012; Kang et al., 2014).
NLP combined with disproportionality analysis was used to
identify DDIs in free-text clinical notes, concluding that the
narrative part of EHRs can complement existing sources for
post-marketing DDI surveillance (Iyer et al., 2014). Similarly,
clinical narratives were exploited for ADE identification (Zhang
et al., 2014; Henriksson et al., 2015). Notably, psychiatric clinical

notes were used to identify ADEs achieving an F-score of 0.83
(Iqbal et al., 2017). EHR data were also used to generate ADE
reports automatically, aiming to address ADE underreporting by
clinicians (Declerck et al., 2015).

Various studies exploited social media with promising
results22. In particular, they were used to identify ADE mentions
using various NLP techniques (Nikfarjam et al., 2015; Sarker
and Gonzalez, 2015), concluding that since the language used is
highly informal, the use of context and sentiment analysis could
further improve the results. A combination of statistical learning
and semantic filtering improved the recognition of known ADRs
in patient forums with precision ranging between 75 and 82%
and recall between 56.5 and 65.3% (Liu and Chen, 2015).
High accuracy in recognizing ADE mentions in two MedHealth
forums and Twitter were also reported, with area under the curve
(AUC) values of 84.5, 77.3, and 84.5%, respectively (Liu et al.,
2016). Finally, a graph-based inference approach combined with
topic modeling and sentiment analysis identified adverse drug
effect mentions in Twitter with precision exceeding 85% and F1
exceeding 81% (Eshleman and Singh, 2016).

ADE detection
Systematic approaches for knowledge extraction, integration
and further processing (e.g., based on DL reasoning)
demonstrated promising results on ADE detection. An exemplar
implementation of in silico DDI prediction incorporating
drug metabolic pathways and molecular events enabled the
quantitative evaluation of drug interactions (Arikuma et al.,
2008). A prototype implementation was able to quantitatively
examine the effect of irinotecan-ketoconazole interactions
using numerical simulations. The extension of this method for
other drug pairs as well as multiple drug interactions showed
the potential to support computational DDI predictions using
DIO. As a result, four potential drug interactions that involved
cytochrome p450 (oxidation by CYP3A4) and drug binding
reaction to albumin were automatically detected via DIO,
while two of them had not been reported in the literature.
DDIs were successfully identified (>75% according to the
presented evaluation scheme) by modeling the behavior of
regulatory elements, particularly enzymes (Tari et al., 2010).
Furthermore, live attenuated influenza vaccines were found to
have lower chance of inducing Guillain-Barre Syndrome and
paralysis than trivalent (killed) inactivated influenza vaccine
(Sarntivijai et al., 2012).

Integrated knowledge bases created with the support of
KE processes demonstrate remarkable results regarding ADE
detection. The ability to identify ADEs through large-scale data
integration in one knowledge base was demonstrated using
MetaADEDB (Cheng et al., 2013). Using FAERS as the gold
standard during the evaluation process, MetaADEDB facilitated
ADE detection (AUC value reported more than 0.9 by 10-fold
cross validation and 0.912 for external validation). Furthermore,
the LAERTES knowledge base (Knowledge Base Workgroup
of the Observational Health Data Sciences and Informatics

22A relatively updated list of studies working on ADE extraction upon social media
is presented in Liu et al. (2018), regardless if they employ KE techniques or not.
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(OHDSI) Collaborative, 2017) was evaluated including positive
and negative controls, illustrating an AUC value of 0.92
(Voss et al., 2017).

Notably, INferring Drug Interactions (INDI) inferred both
pharmacokinetic and pharmacodynamic DDIs upon EHR data
by applying ML on drug MoA similarity and their biochemical
properties (Gottlieb et al., 2012). Its validation confirmed one
of the predicted CYP-related DDIs using hospital data in Israel.
Finally, Tiresias, a DDI prediction system relying on a large
integrated RDF knowledge base, was successfully used to predict
DDIs, identifying 68% of all DDIs found after 2011, using only
information about DDIs present in the January 2011 version of
DrugBank (Abdelaziz et al., 2017).

ADE assessment
ADE assessment mostly refers to the analysis of the underlying
MoA as well as the comparative analysis of drugs. These activities
typically require the integration of heterogeneous data sources,
including biochemical and genetic information databases.

Dynamic reconstruction of drug metabolic pathways from
primitive molecular events using information modeled in DIO
was conducted, showing that unknown potential pathways
can be inferred through the combination of ontologies and
rule-based inference (Arikuma et al., 2008). Similarly, drug
target information was used to identify clusters of similar
DDI cases reported in FAERS and provide explanations for
their MoA (Lin et al., 2010). The ability to interpret the
MoA of the respective DDIs was demonstrated by exploiting
drug metabolism knowledge encoded in the form of rules
linking proteins and drugs via four types of relationships (i.e.,
metabolizes, induces, inhibits, regulates) (Tari et al., 2010). For
each DDI identified, the respective triggered rules could be
considered as a description of the respective MoA. Alternatively,
a gene interaction graph regarding vaccines was built based on
bibliographic data, and provided a method to identify genes
potentially related with the ADE of fever (Hur et al., 2012).
In DIO, drug-enzyme relationships were used to model the
mechanism of drug metabolism for DDI detection in biomedical
literature, achieving an F-measure of 84.97% for drug-enzyme
relationships recognition and 83.19% for DDI recognition against
the “in vivo” dataset used for evaluation (Zhang et al., 2016).
Finally, in the context of the eTOX project a Web application
was presented, aiming to facilitate the exploration of a knowledge
base regarding drugs, genes and compounds’ toxicity associations
for investigating liver toxicity (Cañada et al., 2017).

An interesting contribution was the development of a
semantics-enabled Web analytics tool, namely, the Case Series
Characterization Tool (CSCT) (Yuksel et al., 2016). CSCT has
been used to conduct observational studies and comparative
drug analyses, exploiting the integration of semantically and
syntactically heterogeneous data sources, addressed by an
ontology-based data information model. The CSCT deployment
was validated by PV researchers from both UMC and the
Lombardy Regional Pharmacovigilance Centre. The main
advantages of the presented approach are: (a) easier definition
of analysis rules (since CIM semantics were independent of the
underlying data sources’ syntactic or semantic schema), and (b)

scalability of the proposed integration model due to semantic
mediation of CIM as “whenever a new source or target content
model is to be added, the required mapping to the CIM is added in
linear time, without affecting the existing resources.”

Another notable contribution of the reviewed studies
concerns the semantic enhancement of widely used
terminologies like MedDRA. OntoADR (semantically)
enhanced MedDRA using knowledge from sources, such as
SNOMED-CT (Bousquet et al., 2014; Souvignet et al., 2016).
The “ontologization” of MedDRA could significantly benefit
disproportionality analysis, data mining or other techniques used
for post-marketing DS surveillance, since MedDRA taxonomic
limitations can decrease the sensitivity and specificity of signals
computed by automatic approaches (Yokotsuka et al., 2000;
Bousquet et al., 2005a,b).

Furthermore, the use of ontologies and the reasoning
capabilities that they offer facilitated ADE profiling. In particular,
the semantics provided by OAE and VO or their extensions
combined with statistical approaches (i.e., disproportionality
analysis) against various DS data sources (i.e., FAERS, VAERS,
drug package insert documents from the China Food and Drug
Administration Website) were employed, in order to extract
ontology-assisted ADE profiles and investigate the underlying
MoAs (Lin and He, 2012; Guo et al., 2016; Xie et al., 2016a,b;
Wang et al., 2017). Some profiles were identified as novel, since
they were not previously reported in the literature [e.g., ADE
profiles regarding the M. bovis strain Bacillus Calmette—Guerin
(Xie et al., 2016a)]. Using this approach, two drug ingredient
classes and three cardiovascular drug MoA classes were found
to have statistically significant class effects on 13 AEs (Wang
et al., 2017). The fact that valid, novel ADE profiles were
automatically inferred and linked to specific MoAs through the
use of ontologies, highlights the significance of adopting KE-
based approaches in the context of DS.

Another significant contribution of the reviewed KE
approaches regarding ADE assessment concerned the
prioritization of ADE signals according to their importance.
A normalized AERS dataset and the Common Terminology
Criteria for Adverse Events (CTCAE) were used to prioritize
DDI-induced ADEs identified in FAERS (according to their
severity), as well as occurrences of medications and problems
extracted from clinical notes from Mayo Clinic’s EHR (Jiang
et al., 2015). This ontology-based approach facilitated automatic
prioritization of DDIs related to Warfarin, Clopidogrel, and
Simvastatin, three frequently prescribed cardiovascular drugs.

Finally, regarding the investigation of ADE MoAs, the D3
system uses a rule-base with nine rules corresponding to nine
different interaction mechanisms divided into four levels (Noor
et al., 2016): pharmacokinetic (protein binding, metabolic
inhibition, metabolic induction, transporter inhibition,
and transporter induction); pharmacodynamic (additive-
enhancement and competition); pharmacogenetic (SNPs that
may alter drug exposure); and multiple pathway interactions
(MPIs). For example, when both drugs x and z share at least
1 enzyme y and 1 transporter y2, then an MPI mechanism
could be inferred and the rule would be “x metabolized_by y;
x transported_by y2; z metabolized_by y; z transported_by y2.”
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The results of using such an inference mechanism included 85%
recall rate and 61% precision rate in terms of the inference or lack
of inference of DDI MoA explanations, for a random collection
of interacting and non-interacting drug pairs, respectively.

ADE prevention
In the context of the ReMine project, an ontology was developed
to support adverse event prevention and mitigation, in addition
to detection and monitoring, based on the patient’s medical
history (Ceusters et al., 2011). While the ReMine project aimed
to better document adverse events and facilitate the development
of mitigation and prevention strategies on the long term, others
were aiming at real-time interventions. For example, in the
context of the PSIP (Koutkias et al., 2012), Panacea (Doulaverakis
et al., 2014) and E-pharmacovigilance (Neubert et al., 2013)
projects, knowledge-based DSSs were developed for preventing
ADEs in the clinical environment, taking into account hospital
data and also focusing on the clinical context to address aspects,
such as over-alerting (Koutkias et al., 2012).

A novel Web analytics platform aimed to facilitate clinicians
to conduct comparative drug analysis for ADE prevention (Lamy
et al., 2017). The proposed tool was based on ontological
reasoning, in order to classify information and highlight
important relationships between drugs and ADEs. The tool was
evaluated by 22 General Practitioners, demonstrating high rates
of user acceptance.

Interestingly, few works focused on “personalized” ADE
prevention. In particular, an automatic technique to identify
gene-drug relationships was presented (Xu and Wang, 2013), as
well as a prototype implementation of a Web browser plugin
providing personalized warnings for DDIs based on ontologies
and Personal Health Record (PHR) data (Vandervalk et al., 2013).

ADE monitoring
ADE monitoring concerns the process of tracking the evolution
of an ADE through time, mostly for epidemiological reasons.
As this process is mostly relevant with statistical metrics, KE
approaches are not expected to significantly contribute in that
and, therefore, ADE monitoring was not one of the main focuses
in the reviewed papers. Notably, only one of the selected papers
explicitly referred to ADEmonitoring as one of its key objectives,
through secondary use of EHR data (Yuksel et al., 2016).

ADE reporting
ADE reporting can be defined as a bidirectional activity:
(a) patients and healthcare professionals (HCPs) reporting
potential ADRs to regulatory agencies and the pharma industry,
and (b) drug monitoring organizations or regulatory agencies
communicating DS-related information (e.g., new signals or
confirmed ADRs) to HCPs and patients. Both reporting
channels pose challenges, e.g., under-reporting toward drug
monitoring agencies, ambiguity and vast amount of information
communicated to patients and HCPs, etc. These reporting
processes could significantly benefit from KE approaches;
however, it seems that this DS activity does not receive much
attention and can be identified as a “research gap” with a lot of
room for progress.

An open Web platform based on SPL information and
other interlinked data sources was developed to support
the dissemination of information regarding DS by exploiting
comparative drug effectiveness among other information (Boyce
et al., 2013). The targeted users were primarily clinicians
and researchers.

An ontology-supported methodology for reporting adverse
events following immunization to regulatory agencies according
to the Brighton case definition was presented based on the
AERO ontology (Courtot et al., 2014). The study demonstrated
the feasibility of confirming automated diagnosis and concluded
that a logical formalization of existing guidelines could improve
reporting by identifying missing elements and enforcing
consistency through standardization. The approach allows
medical experts to prioritize reports and, therefore, such
formalization may accelerate the identification of vaccine-
induced ADRs and the response of regulatory agencies.

Interestingly, the SALUS project developed an ontology-based
approach to automatically generate ADE reports from EHR data
in the E2B format (Declerck et al., 2015).

Risk of Bias
Bias is defined as a “systematic error, or deviation from the truth,
in results or inferences” (Altman et al., 2011). Risk of bias can
refer to multiple aspects of the systematic review process and
can be related with various causes (Drucker et al., 2016). For
example, “evidence selection bias occurs when a systematic review
does not identify all available data on a topic” and this “can
arise from publication bias, where data from statistically significant
studies are more likely to be published than those that are not
statistically significant.” It should be clarified that bias does not
refer to imprecision (e.g., due to the reviewing process inherent
subjectivity, further discussed in subsection Limitations), but
only refers to systematic error introduced by the systematic
review protocol.

Table 4 depicts the main bias sources and the way that our
study protocol has mitigated the respective risks. It should be
noted that bias risks have been investigated mostly in the context
of clinical trials or similar interventions and this has also affected
the widely accepted risks of bias as well as their reporting or
mitigation mechanisms. As the presented review does not refer
to a medical intervention, the respective bias risks and their effect
on the presented study have been adapted accordingly.

DISCUSSION

Drug safety encompasses all data gathering and processing
activities related with the detection, assessment, understanding
and prevention of adverse effects throughout the entire lifecycle
of drugs (World Health Organization, 2002). In a pre-market
setting, clinical trials of newly developed drugs constitute the
main procedure for identifying ADRs resulting from their use.
However, due to time constraints, the limited population size as
well as potential bias, clinical trials do not enable the detection
of all possible ADRs. Consequently, post-marketing surveillance
is necessary to identify new or incompletely documented ADRs
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TABLE 4 | Analysis of bias risks and mitigation measures employed in the current study.

Bias risk Application in current study Reporting/Mitigation

Selection bias: missing important research

because it was not published due to bias

(e.g., due to lack of statistical significance)

Our systematic review focuses on qualitative criteria

which cannot be statistically measured. Therefore,

criteria like statistical significance could not affect our

study and reporting tools like funnel plots are not

applicable. However, indexing errors in the systematic

review initial data source(s) could lead to missing

potentially relevant articles.

We employed two reference bibliographic repositories (namely,

PubMed and Web of Science), in order to mitigate the risk of

missing articles due to indexing errors.

Primary study bias: reviewed studies could

be biased regarding the evaluation

mechanism used, the presented findings,

conclusions, etc. (a.k.a. reporting bias)

Since there is no widely accepted methodology to

publish the results of KE practices on DS application, the

reviewed studies report results in an arbitrary manner

that could indeed affect overall conclusions.

Identified specific evaluation and reporting weaknesses that could

imply bias in the systematic review evaluation criteria. The

reviewed studies that have been identified to suffer from such

reporting weaknesses correspond to 62.5% of the selected

articles.

Competing interests: reviewed studies (or

even the presented systematic review)

could be sponsored by companies or have

other ties to industry

The authors of the presented systematic review do not

have ties with industry or any other kind of relationship

which could imply competing interests. Some reviewed

articles originate from companies and, therefore, this

kind of bias could have an implication in their reported

outcomes.

The industrial participation in the studies was identified as a

specific evaluation criterion. More specifically, these studies

correspond to 30% of the selected articles.

throughout the time a drug is actively prescribed (World Health
Organization, 2008).

Recently, several studies argued that data employed for DS
should be extended from the traditional data sources, i.e., SRSs
and bibliography, to observational healthcare databases and even
social media platforms, while linkage with biochemical and
genetic information would be desirable to provide MoA and
may allow to identify more unexpected AEs. In order to achieve
this advancement and take into account these requirements,
DS monitoring organizations have to face new challenges, both
scientific and technical, given that the above sources are not
designed to serve DS aspects per se. In particular, there is
an emerging need for high-throughput computational methods
that will enable, from the one hand, efficient data analysis and
interpretation and, on the other hand, knowledge extraction,
representation, exploitation and management (Koutkias and
Jaulent, 2015).

Up to now, the emphasis in computational DS surveillance
was mostly given on data-driven and statistics-based approaches.
The current review focused on KE, a discipline of Computer
Science which exploits methods for acquiring, representing and
exploiting knowledge, having as its cornerstone well-defined
formalisms and structures. The study illustrated the methods
employed and the impact that current KE-based approaches
have in DS, while also highlighting trends, limitations, as well as
opportunities for further research.

Summary of Main Findings
The number of studies exploiting KE for DS increased constantly
between 2006 and 2017 (Figure 3C). The reviewed articles
illustrated the interest in exploiting diverse data and knowledge
sources as well as the application of various KE methods,
spread across the entire spectrum of the core KE activities
as defined in our study (in many cases targeting multiple KE
activities). Interestingly, these studies targeted diverse DS aspects
as well, including both core DS activities (i.e., ADE information

collection, assessment, etc.) and DS topics of special interest (e.g.,
vaccine safety, drug interactions, etc.), according to our study
context (Table 1).

The distribution of authors across the globe (Figure 3B)
illustrated an international interest in KE for DS. However, the
relatively low contribution from DS monitoring organizations
as well as healthcare organizations in research studies in
the field (Figure 3A), could be attributed to the lack of
the required KE-oriented technical expertise and, perhaps, to
the reluctance in adopting technological paradigms that are
not directly related with familiar approaches, e.g., statistical
inference, disproportionality analysis, etc. This may also indicate
a significant challenge for KE researchers in the domain to
illustrate a major “success story,” which would disseminate the
value of KE approaches in the context of DS, and therefore,
facilitate their wider adoption. The reviewed studies illustrated
mostly proof-of-concept outcomes, indicating that KE for DS is
still in its infancy, especially regarding its application in routine
DS activities.

While wide interest in exploiting diverse as well as emerging
data sources is apparent, it raises many challenges and room
for further research. For example, the biological knowledge
underlying drug metabolism and pharmacological mechanisms
has not been adequately elaborated to infer new causal
relationships among drugs and effects. Besides polymorphic sites
and alterations to gene expression, other molecular mechanisms,
such as regulatory elements and epigenetic modifications,
may have direct or indirect relationship with medication
and consequently ADEs. Furthermore, standardization of
observational healthcare data is an important issue (Koutkias,
2019). Common data models relying on reference terminologies,
such as the OMOP CDM (Voss et al., 2015), may scale-up the
applicability and the reproducibility of computational analysis
methods in the domain. Despite the inherent noise in social
media content and the complexity in analyzing it, this data source
cannot be neglected due to its wide penetration in everyday life
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and its capacity to provide insights especially for rare health-
related events (Klein et al., 2018).

To a great extent, the reviewed studies relied on publicly
available data, provided, for example, via PubMed/MEDLINE
and FAERS. Nevertheless, important, systematically curated
and rather new Linked Data infrastructures, such as the EBI-
RDF platform23 and OpenPHACTS24 are available, which were
not adequately considered in the reviewed studies. In terms
of knowledge sources, UMLS, MedDRA, ATC, SNOMED-CT,
and ICD were the most widely used terminologies, as these
constitute reference and well-curated resources with varying
granularity. With respect to ontologies, OAE, VO, and GO were
the most widely used, due to their rich content and relevance
with DS.

In terms of KE activities, knowledge extraction and knowledge
representation were extensively elaborated, while the focus on
knowledge dissemination was quite limited (Figure 6). Similarly,
ADE detection, information collection and assessment attracted
most research efforts among the DS core activities, while signal
detection, MoA analysis, and identification of drug interactions
are the three most focused DS special topics. Contrariwise, the
focus on ADE reporting is limited, and it can be identified as a
gap for further research (Natsiavas et al., 2018).

Regarding the employed KE methods, NLP as well as graph-
based inferencing were employed in many studies, while DL-
based inferencing was quite limited. Interestingly, few studies
exploited temporal modeling or analysis, despite the fact that
time is extremely useful in the assessment of potential DS signals.
In addition, very few studies employed holistic KEmethodologies
based e.g., on ontology patterns, quality control frameworks,
etc. Adopting methodologies, such as MIRO (Matentzoglu et al.,
2018), NeOn (Suárez-Figueroa et al., 2012), OQuaRE (Duque-
Ramos et al., 2014), and XOD (He et al., 2018), could reinforce
the credibility and the completeness of future contributions
in the domain. Furthermore, the lack of focus on knowledge
dissemination approaches is also evident.

Interestingly, some studies jointly exploited multiple data
sources, illustrating, for example, the added value of KE
methods regarding integration (Koutkias and Jaulent, 2016), as
well as the interest for systematic linkage/modeling between
the phenotype and elements of the genome/proteome that
interact with the drug, and activated pathways to investigate
the MoA. This need for a systematic approach facilitating the
integration of low-level biochemical and genotypic information
with phenotypic models applying the SP paradigm has been
already identified as a research opportunity (He, 2016; Herrero-
Zazo et al., 2016; Mager and Kimko, 2016). While such models
illustrated remarkable results, they were not fully exploiting
the power of ontologies, as they are typically based on rules
(at least partially), in order to model physiological, biological,
or pharmacodynamic/pharmacokinetic processes, and not using
reference ontological models depicting Systems Biology or
SP concepts in a systematic manner. Therefore, the holistic

23https://www.ebi.ac.uk/rdf/
24http://www.openphactsfoundation.org

modeling of ADRs, combining the power of ontologies and
DL reasoning with the mathematical or empirical models of
pharmacokinetics and pharmacodynamics is a topic of open
research. Such an approach could enable the integration of
big data sources (via ontologies) with SP multi-scale models,
to facilitate Precision Medicine. Well-promising results were
obtained by combining statistical-based inference on report
data and ontology-based modeling and inference upon ADR
characteristics and categories (Xie et al., 2016b); thus, this
approach enhanced with SP models shall be considered also as
a research opportunity and further elaborated by future studies.

With respect to technical challenges, reasoning performance
constitutes an important issue, especially when considering large-
scale knowledge models. For example, in order to avoid multiple
inheritance, OAE (a quite big, reference ontology in the domain)
asserts only one parent term and allows the other parent term(s)
to be obtained automatically by reasoning (Xie et al., 2016b).
Another example of compromising knowledge modeling in the
sake of performance is the case of DINTO (Herrero-Zazo et al.,
2015), where the ontology had to be simplified in order to be
processed by existing reasoners. Thus, performance issues in DL
reasoning software may be considered as a bottleneck for the
real-world adoption of complex/large ontology models.

In terms of evaluation, the results presented in many of
the reviewed articles significantly depended on manual work
(e.g., data curation, annotation, etc.), or they were obtained by
engaging a small group of experts. In addition, many of the
presented KE approaches were evaluated focusing on a narrower
scope than the one presented as their main use case. Overall,
shortcomings related to evaluation were the most frequent in the
reviewed studies (Figure 9).

Besides weaknesses/challenges, some remarkable outcomes
reported in the reviewed studies include:

1) An improvement in ADR prediction by exploiting
biomolecular functional network data in the context of
clinical trials (Huang et al., 2011).

2) An ontologized version of MedDRA which can facilitate
grouping of ADRs that correspond to the same medical
condition (Bousquet et al., 2014).

3) The successful incorporation of contextualized, medication
safety related CDSSs in commercial products (an EHR and
a Computerized Physician Order Entry (CPOE) system)
(Koutkias et al., 2012).

4) A semantic interoperability platform automatically
generating ADE reports from EHR data, aiming to address
underreporting by clinicians (Declerck et al., 2015; Yuksel
et al., 2016).

5) The successful identification of adverse drug effect mentions
in Twitter with precision exceeding 85% and F1 exceeding
81% (Eshleman and Singh, 2016).

6) The automatic detection of two novel drug interactions
involving cytochrome p450 (CYP3A4) and albumin as
potential drug interaction proteins from DIO (Arikuma
et al., 2008).

7) The conclusion that live attenuated influenza vaccines have
lower chance of inducing Guillain-Barre Syndrome and
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FIGURE 10 | Advancing the data-driven perspective in DS through KE: methods, enabling technologies, and exemplar applications.

paralysis than trivalent (killed) inactivated influenza vaccine
(Sarntivijai et al., 2012).

8) The extraction of novel, ontology-assisted ADE profiles
regarding the M. bovis strain Bacillus Calmette—Guerin
(Xie et al., 2016b).

9) A Web analytics platform relying on ontological reasoning,
facilitating clinicians to conduct comparative drug analyses
based on advanced and user-friendly analytics regarding
ADEs and contraindications (Lamy et al., 2017).

10) An ontology-supported methodology for reporting ADRs
to regulatory agencies, demonstrating automated diagnosis
confirmation (through standardization), and improvement
in the reporting process (Courtot et al., 2014).

To this end, Figure 10 illustrates the identified advancements of
the data-driven perspective in DS through KE with respect to
methods, enabling technologies, and exemplar applications.

Applications in Routine DS Practice
Employing ICT tools in routine DS practice conducted
by hospitals, pharmaceutical companies, Contract Research
Organizations (CROs) as well as drug regulatory organizations,
imposes major challenges (Lu, 2009). In this subsection, we
highlight the reviewed studies explicitly focusing on practical
applications engaged with real-world environments as part of
their pilot or validation phase.

The knowledge components of the CDSS developed in the
PSIP project were based on EHR data obtained from three
European countries (Koutkias et al., 2012). The CDSS was
connected to the respective Hospital Information Systems (HIS)
to identify and prevent potential ADEs. PSIP elaborated on
contextualizing the CDSS knowledge in the particular local
setting, such as the hospital/clinic and the targeted users. For

example, in order to avoid over-alerting, alert generation was
based on thresholds considering the statistical significance of
each ADE rule in each particular clinical site. In addition,
clinicians (both hospital pharmacists and medical doctors) were
engaged in the system design and evaluation. The electronic
service for DDI and ADE prevention during medication
prescription of the Panacea CDSS was evaluated using patient
data from a public hospital in Thessaloniki, Greece (Doulaverakis
et al., 2014). Similarly, the E-pharmacovigilance system was
deployed through a Web interface to present DS data to treating
physicians (pediatric and internal medicine inpatient clinics from
the University Hospital of Erlangen-Nurnberg) within the local
HIS (Neubert et al., 2013).

The SALUS project focused on a practical implementation
to automatically produce ADE reports based on real-world
clinical data in two pilot sites (a regional clinical data warehouse
maintained in Lombardy Region, Italy and the commercial EHR
system in Uniklinikum Dresden, Germany) (Declerck et al.,
2015). Notably, SALUS developed a signal analysis tool, which
was validated by DS experts in pragmatic cases (Yuksel et al.,
2016). Finally, a visual analytics platform to support comparative
drug studies was deployed and evaluated by clinicians to assess
the physician’s decision whether to consider the new drug for
future prescriptions (Lamy et al., 2017).

It is clear that most KE approaches are currently in
an experimental phase and have not yet entered routine
DS practice beyond pilots, due to technical challenges (e.g.,
automated reasoning upon big data volumes is computationally
ineffective), or procedural/organizational challenges (e.g., need
of clear evidence regarding CDSS performance, need to
validate the respective knowledge data sources, etc.). The
DS-related routine procedures which could be improved via
KE-oriented applications can be summarized as follows: (a)
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DS procedures applied in the clinical environment to report
and/or prevent ADEs, (b) DS-related information assessment
and dissemination from the drug regulatory organizations
point of view, and (c) assessment of potential signals in
clinical trials of new drugs. The practical challenges of these
processes in each context have already been highlighted. Notably,
clinicians do not feel confident about the currently applied DS
procedures (Vallano et al., 2015), while the need for better
and more active DS surveillance has been identified by both
drug regulatory organizations (Weaver et al., 2008) and the
industry (Lu, 2009).

The use of KE technologies like the Semantic Web
and Linked Data paradigms could significantly facilitate
information and knowledge extraction, integration, elicitation
and dissemination and, therefore, accommodate the imposed
challenges on routine DS tasks. The main advantages of using KE
approaches in real-world DS applications could be summarized
as following:

(a) Information linking could be significantly improved and
automated, reducing the need for manual data exploration
through automatic processing.

(b) Semantic enhancement of already established information
processing workflows (typically based on statistical measures
like disproportionality analysis). The already established
statistical processing could be combined with well-defined
knowledge sources and their semantics to improve outcomes
(e.g., regarding causality assessment).

(c) Error prevention could be facilitated by integrating different
data sources to be used as control sources, in order to prevent
false positives, over-alerting etc.

(d) Process acceleration as KE approaches could save a lot of time
via (semi)-automatic data retrieval and interlinking.

The above advantages advocate for more intense research in
the domain, in order to increase the level of maturity, which is
necessary to employ KE approaches in routine DS practice.

Limitations
The main source of limitation for the current study concerns
the risk of bias. As explained in the Risk of bias subsection, our
analysis considered such risks and followed specific mitigation
actions to eliminate them. Subjectivity in the review process
as well as in the definition of the domain is a significant
issue for review studies. We believe that the participation of
domain experts in our study, the employment of an appropriate
conflict resolution protocol, as well as the adoption of reference
definitions (e.g., to establish the analysis criteria) significantly
reduced this issue. However, some risk inevitably remains; for
example, in the paper submission phase we realized that one
relevant paper was not included in our study (Bean et al., 2017),
because we did not include the term “Knowledge Graph” (a term
recently coined in the domain of KE) in our query terms. In
addition, given that our query for article retrieval was focused
on DS per se, some interesting resources that could be of wider
scope, and not explicitly targeting or being used for DS, have not
been considered in our study.

CONCLUSIONS

Computational methods in the domain of DS have been primarily
data-driven. However, in the era of big data, data heterogeneity
and complexity hamper the application of these methods at
large scale and across data sources. In order to overcome
these shortcomings, an increasing number of studies employ
KE methods and tools. Especially as semantic technologies
and standards evolve and KE approaches gain awareness, the
potential of enriching the traditional data analytics approaches
for DS with knowledge-based components becomes stronger.

Along this perspective, this review highlighted exemplar
research efforts by presenting a variety of knowledge-intensive
activities applied in the DS field, such as normalization of
DS data, integration of data from heterogeneous sources, the
use of semantic models and terminologies to facilitate signal
detection, and semantic processing of DS data, to name a few. In
addition, we referred to a number of knowledge-based tools and
platforms that have been employed to reinforce DS and support
ADR detection, contextualized ADE prevention, and large-scale,
semantically-enriched combinatorial signal detection. Through
the conducted analysis, our study illustrated the contribution,
the complementarity as well as the advances that KE-based
approaches may bring to traditional data analytics applied in DS.

Despite the increasing number of studies exploiting KE
for DS, the lack of a major “success-story”—beyond proof-of-
concept—is apparent. This constitutes a significant challenge for
researchers in the domain, that have to respond to, in order to
foster the value of KE approaches in the context of DS and,
therefore, facilitate their wider adoption by DS stakeholders.
Although few studies reached or explicitly focused on routine
DS practice, we argue that engaging KE methods in established
DS processes can substantially contribute in the development
of an advanced, continuous learning health system (Friedman
et al., 2015), which is necessary for efficient DS surveillance.
Finally, we suggest that the use of KE approaches, e.g., ontologies,
in combination with pharmacokinetics and pharmacodynamics
models could facilitate the construction of an SP framework
able to provide a pathway toward Precision Medicine exploiting
real-world evidence (Caudle et al., 2016; Helmlinger et al., 2017).
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APPENDIX

TABLE A1 | Abbreviations used in the study.

Abbreviation Full text Abbreviation Full text

ADE Adverse Drug Event IT Information Technology

ADR Adverse Drug Reaction KE Knowledge Engineering

AUC Area Under the receiver operating characteristic Curve ML Machine Learning

CDM Common Data Model MoA Mechanism of Action

CDSS Clinical Decision Support System MPI Multiple Pathway Interactions

CIG Computer Interpretable Guidelines NER Named Entity Recognition

CSCT Case Series Characterization Tool NLP Natural Language Processing

CIM Common Information Model PHR Personal Health Record

CPOE Computerized Physician Order Entry PRR Proportional Reporting Ratio

DDI Drug-drug interaction

DEI Drug Enzyme Interaction ontology RRR Relative Reporting Ratio

DIO Drug Interactions Ontology SNA Social Network Analysis

DL Description Logics SNP Single Nucleotide Polymorphism

DS Drug Safety SP Systems Pharmacology

DSS Decision Support Systems SPL Structured Product Label

EHR Electronic Health Record SRS Spontaneous Reporting System

FDA Food and Drug Administration TEO Time Event Ontology

HCP Healthcare Professional UMC Uppsala Monitoring Centre

HIS Hospital Information System XOD eXtensible Ontology Development

TABLE A2 | Catalog with Web links to data sources, reference terminologies, ontologies, standards, technologies, and systems referred in the study.

Abbreviation Full text (if applicable) and link

ADReCS Adverse Drug Reaction Classification System (http://bioinf.xmu.edu.cn/ADReCS/)

ATC Anatomical Therapeutic Chemical Classification system (https://www.whocc.no/atc_ddd_index/)

Bio2RDF http://bio2rdf.org/

CheBI Chemical Entities of Biological Interest (https://www.ebi.ac.uk/chebi/)

CTD Comparative Toxicogenomics Database (http://ctdbase.org/)

D3 Drug-drug interaction Discovery and Demystification (https://scholar.colorado.edu/csci_gradetds/106/)

DAML + OIL https://www.w3.org/TR/daml+oil-reference

DINTO Drug-Drug Interactions Ontology (http://www.ontobee.org/ontology/DINTO)

DrOn Drug Ontology (https://www.ebi.ac.uk/ols/ontologies/dron)

DrugBank https://www.drugbank.ca/

E2B http://www.ich.org/products/electronic-standards.html

FAERS FDA Adverse Event Reporting System (https://www.fda.gov/drugs/guidancecomplianceregulatoryinformation/surveillance/adversedrugeffects/

ucm082193.htm)

GO Gene Ontology (http://www.geneontology.org/)

ICD International Classification of Diseases (http://www.who.int/classifications/icd/en/)

ICT Information and Communication Technologies

INDI INferring Drug Interactions (https://www.cs.tau.ac.il/~bnet/software/INDI/)

KEGG Kyoto Encyclopedia of Genes and Genomes—GenomeNet (https://www.genome.jp/kegg/)

LAERTES Large-scale adverse effects related to treatment evidence standardization (https://github.com/OHDSI/KnowledgeBase/tree/master/LAERTES)

MedDRA Medical Dictionary for Regulatory Activities (https://www.meddra.org/)

MeSH Medical Subject Headings (https://www.nlm.nih.gov/mesh/)

MetaADEDB http://lmmd.ecust.edu.cn/online_services/metaadedb/

MIRO Minimal Information for Reporting of an Ontology (https://zenodo.org/record/398804)

NDF-RT National Drug File—Reference Terminology (https://www.nlm.nih.gov/research/umls/sourcereleasedocs/current/NDFRT/)

OAE Ontology for Adverse Events (http://www.oae-ontology.org/)

(Continued)
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TABLE A2 | Continued

Abbreviation Full text (if applicable) and link

OCMR Ontology of Chinese Medicine for Rheumatism (http://www.ontobee.org/ontology/OCMR)

OCVDAE Ontology of Cardiovascular Drug Adverse Events (http://bioportal.bioontology.org/ontologies/OCVDAE)

ODNAE Ontology of Drug Neuropathy Adverse Events (http://www.ontobee.org/ontology/ODNAE)

OGSF Ontology of Genetic Susceptibility Factors (https://www.ebi.ac.uk/ols/ontologies/ogsf)

OHDSI Observational Health Data Sciences and Informatics (https://www.ohdsi.org/)

OVAE Ontology of Vaccine Adverse Events (http://www.violinet.org/ovae/)

OWL Web Ontology Language (https://www.w3.org/OWL/)

OQuaRE Ontology Quality Evaluation Framework (http://miuras.inf.um.es/oquarewiki/index.php5/Main_Page)

PharmGKB Pharmacogenomics Knowledge Base (https://www.pharmgkb.org/)

PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses (http://prisma-statement.org/)

PV-SDO Pharmacovigilance Signal Detection Ontology (http://safer-project.eu/SignalDetectorsOntology.owl)

RDF Resource Description Framework (https://www.w3.org/RDF/)

RxNorm https://www.nlm.nih.gov/research/umls/rxnorm/

SemMedDB Semantic MEDLINE Database (https://skr3.nlm.nih.gov/SemMedDB/)

SIDER Side Effect Resource (http://sideeffects.embl.de/)

SMQ Standardized MedDRA Queries (https://www.meddra.org/standardized-meddra-queries)

SNOMED-CT Systematized Nomenclature of Medicine-Clinical Terms (https://www.snomed.org/)

SPARQL SPARQL Protocol and RDF Query Language (https://www.w3.org/TR/2013/REC-sparql11-overview-20130321)

SWRL Semantic Web Rules Language (https://www.w3.org/Submission/SWRL/)

UMLS Unified Medical Language System (https://www.nlm.nih.gov/research/umls/)

UniProt https://www.uniprot.org/

VAERS Vaccine Adverse Event Reporting System (https://vaers.hhs.gov/)

VO Vaccine Ontology (http://www.violinet.org/vaccineontology/)

WADM Web Annotation Data Model (https://www.w3.org/TR/annotation-model/)
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