
HAL Id: hal-02480959
https://hal.science/hal-02480959

Submitted on 17 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Geometrically smooth spline bases for data fitting and
simulation

Ahmed Blidia, Bernard Mourrain, Gang Xu

To cite this version:
Ahmed Blidia, Bernard Mourrain, Gang Xu. Geometrically smooth spline bases for data fitting and
simulation. Computer Aided Geometric Design, 2020, 78, pp.101814. �10.1016/j.cagd.2020.101814�.
�hal-02480959�

https://hal.science/hal-02480959
https://hal.archives-ouvertes.fr


Geometrically smooth spline bases for data �tting and simulation

Ahmed Blidiaa, Bernard Mourraina, Gang Xub

aUniv. Côte d'Azur, Inria, Aromath, Sophia Antipolis, France
bSchool of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, P.R China

Abstract

Given a topological complex M with glueing data along edges shared by adjacent faces, we study the
associated space of geometrically smooth spline functions that satisfy di�erentiability properties across
shared edges. We present new and e�cient constructions of basis functions of the space of G1-spline functions
on quadrangular meshes, which are tensor product b-spline functions on each quadrangle and with b-spline
transition maps across the shared edges. This new strategy for constructing basis functions is based on a
local analysis of the edge functions, and does not depend on the global topology ofM. We show that the
separability of the space of G1 splines across an edge allows to determine the dimension and a basis of the
space of G1 splines on M. This leads to explicit and e�ective constructions of basis functions attached to
the vertices, edges and faces ofM.

This basis construction has important applications in geometric modeling and simulation. We illustrate it
by the �tting of point clouds by G1 splines on quadrangular meshes of complex topology and in Isogeometric
Analysis methods for the solution of di�usion equations. The ingredients are detailed and experimentation
results showing the behavior of the method are presented.

1. Introduction

To describe and analyze shapes with complex topologies, one often starts with a coarse representation
M that captures the topology and the principal geometric features of the shape. This representation can
then be re�ned and tuned to describe more accurately the actual shape. If the coarse model is a mesh, a
classical strategy to obtain a better approximation of the shape is to re�ne the mesh, by splitting some of its
faces. This approach yields piecewise linear representations of the shape, which may require several levels
of subdivisions in regions with high curvatures, in order to obtain a good approximation of the shape.

In this paper, we investigate a di�erent strategy to compute accurate shape representations. Instead of
splitting the coarse piecewise linear model, we increase the degree of the representation on each face ofM
with the aim to obtain better approximation performances with higher order of convergence. More precisely,
we investigate the problem of constructing e�ciently families of regular functions which are piecewise poly-
nomial on each face of the coarse mesh M and with regularity properties across the edges shared by two
faces. We will assume that all faces ofM are quadrangular faces and that tensor product b-spline functions
of the same degree and the same knot vector are used on each face of M. The regularity that we impose
across the edges shared by two faces is the continuity of the tangent planes of the parameterizations. This
corresponds to geometrically smooth spline functions (as opposed to parametrically smooth spline functions),
also called G1 spline functions. Our aim is to analyse in details the space of G1 splines on an arbitrary quad
mesh and to compute e�ciently bases which are suitable for �tting and numerical simulation problems.

Many works over the last decades have been investigating the problem of constructing G1 surfaces
from (quad) meshes. This includes subdivision surface constructions Catmull-Clark (1978), macro patch
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constructions in low degree Loop (1994b), Peters (1995), Prautzsch (1997), Reif (1995), Peters (2002),
Ying et al. (2004), Fan et al. (2008), Hahmann et al. (2008), Bonneau et al. (2014), manifold based
constructions Gu et al. (2006), He et al. (2006), Tosun et al. (2011), Wang et al. (2016), constructions using
transition maps de�ned from mesh embeddings Beccari et al. (2014), or constructions using guided surfaces
Kar£iauskas et al. (2016), Kar£iauskas et al. (2017a), Kar£iauskas et al. (2018). Some of these works
focus on the construction of G1 spline surfaces that interpolate a network of curves Sarraga (1987), Sarraga
(1989), Peters (1991), Loop (1994a), Tong et al. (2009), Cho et al. (2006), Bonneau et al. (2014),
Kar£iauskas et al. (2017b), Kar£iauskas et al. (2018). To solve this so-called trans�nite interpolation
problem, vertex enclosure constraints have to be satis�ed by the curves at a vertex of even valency. Explicit
rational transition maps of degree 1 or 2 have been used in some of these constructions Hahmann et al.
(2008), Peters et al. (2010), Beccari et al. (2014), Bonneau et al. (2014), Kar£iauskas et al. (2016),
Kar£iauskas et al. (2017b), Kar£iauskas et al. (2018). They depend on the valence of the end points of
an edge and on its proximity to an extraordinary vertex. In Peters et al. (2010), it is shown that rational
transition maps of degree 1 should not be used if extraordinary vertices are separated by ordinary vertices.

The analysis of spaces of G1 spline functions on general meshes is a problem, which has been much less
investigated. Several approaches have been considered to construct these spaces. One of them consists in
using a parametrization of a given domain to deduce transition maps that de�ne the regularity of the spline
functions across shared edges. More precisely, the G1 regularity condition is the continuity of the tangent
planes of the graph surface associated to the function and the domain parametrization. It is assumed that
the domain is planar. The resulting transition maps across shared edges involve two-by-two determinants of
the gradients of the parametrizations coordinates along the edge. This approach is investigated for instance
in Kapl et al. (2015), Kapl et al. (2017a), Bercovier et al. (2017), Kapl et al. (2017b) for piecewise
bilinear parametrizations of planar quad meshes and for parametrizations of higher degree in Collin et al.
(2016), Kapl et al. (2019). In Chan et al. (2018), this approach is extended to non-planar parametrizations,
involving the �rst fundamental form associated to the parameterization and thus increasing the degree of
the transition maps. A locking phenomenon on the isogeometric solutions of elliptic problems is observed
in numerical experimentations, with transitions maps of high degree compared to the degree of freedom of
the spline spaces.

The construction of bases for the corresponding space of G1 functions are either obtained by solving the
linear system deduced from the sampled G1 constraints or in Bercovier et al. (2017), Kapl et al. (2017b),
by explicitly computing Minimal Determining Sets (MDS) of coe�cients in the case of bi-degree 3 and 4
polynomial splines on planar quadrangular meshes with bilinear parametrization.

A second approach to analyse G1 spline spaces is to start from transition maps and to use the G1 functions
associated to these transition maps, for the domain parametrization and the numerical simulation. This is
the approach followed in Mourrain et al. (2016), or Blidia et al. (2017) and that we will also adopt in this
paper. To obtain G1 functions which are not degenerate, the transition maps should satisfy compatibility
conditions around vertices. Spaces of degenerate G1 spline functions where these compatibility conditions are
not satis�ed, have also been exploited in IsoGeometric Analysis for instance in Wu et al. (2017), Toshniwal
et al. (2017).

Dimension formulae for spaces of G1-splines on meshes are provided, for instance, in Bercovier et al.
(2017), Kapl et al. (2017a), for planar quadrangular meshes under some non-degeneracy restrictions, and
for general quadrangular meshes in Mourrain et al. (2016), Blidia et al. (2017).

The fact that geometrically continuous constructions yield parametrically continuous isogeometric func-
tions Groisser et al. (2015) has been exploited in isogeometric methods that compute a full basis of the G1

spline spaces. Functions associated to the vertices of the coarse mesh in geometrically smooth surface con-
structions Kar£iauskas et al. (2016), Majeed et al. (2017) have also been used in isogeometric approaches,
but with non-optimal convergence rates.

In this paper, we present new constructions of G1-spline bases on quadrangular meshesM of arbitrary
topology with b-spline representations of given bi-degree and knots subdivisions on each face. We assume
that the transition maps across shared edges are given by rational b-spline functions and satisfy compatibility
conditions around a vertex. We describe and use such transition maps of low degree, which depend only on
the valence of the end points of the edge in the quad meshM.
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The new strategy that we propose to analyse of the complete space of G1-spline functions onM is based
on a local analysis of the G1 edge functions and does not rely on the global topology ofM. We show that if
a separability condition is satis�ed for each edge, the dimension and a basis of the whole space of G1-splines
can be deduced from this analysis of G1-splines along the edges.

We adapt the construction of Minimal Determining Sets (see e.g. Lai et al. (2007), Alfeld (2000)) of
coe�cients to the G1 edge functions and show how to deduce e�ciently basis functions for the corresponding
G1 space, based on local linear operations associated to the edges of the mesh. In this approach, the vertex
enclosure constraints at vertices of even valence are implicitly taken into account.

This new construction yields basis functions attached respectively to vertices, edges and faces. We also
obtain a dimension formula for the space of G1-splines, depending on the number of vertices, edges and
faces, and the properties of the glueing data at the end points of the shared edges.

This basis construction is exploited in two types of applications. The �rst problem is the �tting of
point clouds by G1-splines on quadrangular meshes. The second one is the solution of di�usion equations,
following an Isogeometric Analysis approach, based on the G1-spline basis functions.

The remainder of the paper is structured as follows. The de�nition of G1-Spline spaces and the properties
of transition maps are presented in Section 2. The construction of G1-Spline basis is described in Section 3.
Section 4 presents the application to point clouds �tting by G1-splines on quadrangular meshes. Section 5
presents the application of G1-splines in isogeometric analysis. Finally, this paper is concluded and future
work is outlined in Section 6.

2. Space of G1-Splines

In this section, we present the general notions we use to de�ne G1 spline spaces and the properties of
the transition maps that we require. To de�ne G1-splines, we �rst need a topological surfaceM given by

• a collectionM2 of (planar) polygons, called faces ofM,

• a collection of homeomorphisms φσi,σj : τi 7→ τj between polygonal edges from di�erent polygons σi
and σj ofM2,

where a polygonal edge can be glued with at most one other polygonal edge, and it cannot be glued with
itself. The shared edges (resp. the points of the shared edges) are identi�ed with their image by the
corresponding homeomorphism. The collection of edges (resp. vertices) is denotedM1 (resp. M0).

Hereafter, we will consider only quadrangular faces with 4 edges, which we identify with the unit square
[0, 1]2 ⊂ R2.

Then, we need glueing data on the topological surfaceM, which consists of the following:

• for each edge τ ∈M1 of a cell σ, an open set Uτ,σ of R2 containing τ ;

• for each edge τ ∈M1 shared by two polygons σi, σj ∈M2, a C1-di�eomorphism called the transition
map φσj ,σi

: Uτ,σi
→ Uτ,σj

between the open sets Uτ,σi
and Uτ,σj

, and its corresponding inverse map
φσi,σj ;

This notion of glueing data is the same as the one used for instance in Mourrain et al. (2016), Blidia et al.
(2017), Kapl et al. (2019). The idea of using glueing data is coming from the theory of manifolds and the
construction of abstract varieties (c.f. e.g. the work of Weil (1946)).

For an edge τ shared by two polygons σ0, σ1 ∈M2, τ = τ0 in σ0, τ = τ1 in σ1 respectively, the transition
map φσ0,σ1

between the two cells is, in suitable frames, of the form:

φσ0,σ1
: (u1, v1) −→ (u0, v0) =

(
v1 bτ (u1) + v2

1ρ1(u1, v1)
u1 + v1 aτ (u1) + v2

1ρ2(u1, v1)

)
(1)

where aτ (u1), bτ (u1), ρ1(u1, v1), ρ2(u1, v1) are C1 functions. The shared edge is de�ned by v1 = 0 on σ1 and
by u0 = 0 on σ0. The functions [aτ , bτ ] are called the glueing data along τ on σ1. We assume we are given

3



this set g of glueing data [aτ , bτ ] for all shared edges ofM. As we will see, it completely speci�es the set of
G1-splinesM.

The di�erentiable functions on M are collections f = (fσ)σ∈M2
of di�erentiable functions on each

face σ ∈ M2 such that for any two faces σ0 and σ1 sharing an edge τ with φ0,1 as transition map, the two
functions fσ1

and fσ0
◦ φ0,1 have the same Taylor expansion of order 1.

This leads to the following two relations for each u1 ∈ [0, 1]:

f1(u1, 0) = f0(0, u1) (2)

∂f1

∂v1
(u1, 0) = bτ (u1)

∂f0

∂u0
(0, u1) + aτ (u1)

∂f0

∂v0
(0, u1) (3)

wheref1 = fσ1
, f0 = fσ0

are the restrictions of f on the faces σ0, σ1.
To de�ne the space of G1-splines onM, we will choose each face restriction fσ to be an element of the

space Rd,t a tensor product b-spline with open knot vector t = [t1, . . . , ts] ⊂ R of degree d in each of the
variables u and v (the �rst and last knots are repeated d+ 1 times). An element fσ ∈ Rd,t is of the form

fσ :=
∑

16i,j6m

cσi,j(fσ)bi(uσ)bj(vσ),

where cσi,j(fσ) ∈ R and b1, . . . , bm are the b-spline basis functions of the space Ud,t of splines of degree d and
knots t in one variable u. We denote by (bσi,j)06i,j6m−1 the b-spline basis functions on the face σ. With the

previous notation, bσi,j = bi(uσ)bj(vσ). The functions are represented by a vector Rm2×|M2| with 1 at the
position corresponding to the coe�cient cσi,j and 0 elsewhere.

We will consider hereafter glueing data [aτ , bτ ], which are spline functions ∈ Ud′,t′ of degree d′ and knots
t′ = [t′1, . . . , t

′
s′ ] ⊂ R, such that t′1 = · · · = t′d′ and t

′
s′−d′ = · · · = t′s′ .

De�nition 2.1. We denote by Sd,t(M, g) the vector space of di�erentiable functions onM for the glueing

data g, with face restrictions fσ in Rd,t.

An element in Sd,t(M, g) is in the spaceRd,t(M) of b-spline functions on each face. It will be represented

by its b-spline coe�cients on each face, that is, by a vector in Rm2×|M2|.
For two vectors f, f ′ ∈ Rd,t(M) ≡ Rm2×|M2|, we denote by 〈 f, f ′ 〉 the usual scalar product of their

b-spline coe�cients.
For a vertex γ of a face σ, we denote by Tσγ the map Tσγ : Sd,t(M, g) → R4 that associates to each

di�erentiable function f ∈ Sd,t(M, g) the following vector:

Tσγ (f) =
[
cσ0,0(f), cσ1,0(f), cσ0,1(f), cσ1,1(f)

]
where c0,0, c1,0, c0,1, c1,1 are the corner b-spline coe�cients of f ∈ Rd,t corresponding to γ. We call these
coe�cients, the (�rst) Taylor coe�cients of f around γ. For γ ∈ M0 an end point of an edge τ shared by
the faces σ0, σ1, let

T τγ : (f0, f1) 7→ Tσ0
γ (f0)⊕ Tσ1

γ (f1). (4)

A desired property for the space of G1-splines is the possibility to arbitrarily �x the Taylor coe�cients at
a vertex on a face. This means that at each vertex, we should be able to �x the values, derivatives and cross
derivatives and construct a G1-spline function that interpolates these values and derivatives. This leads to
the following de�nition:

De�nition 2.2. The space S(M, g) of G1-spline space is ample if for every vertex γ ∈M0 and every face

σ ∈M2 adjacent to γ, the map Tσγ is surjective.

To get an ample space of G1-splines on Sγ , we assume that the glueing data satisfy the following condition:
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Condition 2.3 (cocycle condition). For each interior vertex γ of valence v on the faces σ1, . . . , σv, such
that σi and σi+1 share the edge τi for i ∈ 1 . . . v − 1 and σv, σ1 share the edge τv.

v∏
i=1

(
0 1

bτi(0) aτi(0)

)
=

(
1 0
0 1

)
. (5)

where (aτi , bτi) for i ∈ 1 . . . v are the glueing data used for the junction along the edge τi.
Additionally if v = 4 and aτi(0) = 0, the glueing data (aτi , bτi), i = 1 . . . 4 at the vertex γ, called a

crossing vertex, must also satisfy

a′τ1(0) +
b′τ4(0)

bτ4(0)
= −bτ1(0)

(
a′τ3(0) +

b′τ2(0)

bτ2(0)

)
, (6)

a′τ2(0) +
b′τ1(0)

bτ1(0)
= −bτ2(0)

(
a′τ4(0) +

b′τ3(0)

bτ3(0)

)
. (7)

(see e.g. Peters et al. (2010), Mourrain et al. (2016), Blidia et al. (2017)).

3. Construction of G1-spline basis

3.1. G-splines along an edge

We consider �rst a topological meshMτ with two faces σ0, σ1 sharing an edge τ , with the glueing data
gτ = (a, b).

The G1-spline functions of Sd,t(Mτ , gτ ) are the pairs f = (f0, f1) of b-spline functions f0, f1 ∈ Rd,t,
which satis�es the relations (2) and (3). If τ is de�ned by v1 = 0 on σ1 and u0 = 0 on σ0, these relations
involve only the b-spline coe�cients cσ1

i,j(f), cσ0
j,i(f) for 0 6 i 6 m− 1 and 0 6 j 6 1. The other coe�cients

can be chosen arbitrarily. Let us denote by Sτ the space of b-spline functions (f0, f1) in Sd,t(Mτ , gτ ) with
all these other coe�cients equal to 0. The elements of Sτ are the G1-spline functions supported along the
edge τ .

Let γ, γ′ ∈ M0 be the end vertices of τ . We denote Eτ = Sτ ∩ kerT τγ ∩ kerT τγ′ (see de�nition (4)). It is

the vector space of G1-spline in Sτ supported along τ , with zero b-spline coe�cients at γ and γ′.
Let E⊥τ be the b-splines in Rd,t(Mτ ) which are orthogonal to all the elements in Eτ for the scalar product

on the b-spline coe�cients. We denote Sγ,τ = Sτ ∩ E⊥τ ∩ kerT τγ′ and similarly Sγ′,τ = Sτ ∩ E⊥τ ∩ kerT τγ . By
construction, we have

Sτ ⊃ Sγ,τ ⊕ Eτ ⊕ Sγ′,τ .

De�nition 3.1. The space Sτ is separable if Sτ = Sγ,τ ⊕ Eτ ⊕ Sγ′,τ .

If Sτ is separable, then any G1-spline function ∈ Sτ can be uniquely decomposed as a sum of a G1-spline
function f with Tσ0

γ (f) = Tσ1
γ (f) = Tσ0

γ′ (f) = Tσ1

γ′ (f) = 0, a function g determined by its coe�cients
Tσ0
γ (g), Tσ1

γ (g), and a function h determined by its coe�cients Tσ0

γ′ (h), Tσ1

γ′ (h). This implies that there is no

non-zero linear relation, induced by the G1 constraints, between the Bézier coe�cients at the two vertices
of an edge.

If Sτ is not separable, there exists an element in Sτ with non-zero Bézier coe�cients at the two vertices,
linearly independent of the G1-spline functions with zero coe�cients at one of the vertices. If the mesh has
more that one edge, this will induce the existence of G1-spline basis functions attached to vertices, whose
support is not included in the neighborhood of cells adjacent to the vertex. Since we are interested in G1-
spline spaces that admit a basis of functions with a local support, hereafter we only consider and construct
separable G1-spline spaces.

We construct now explicit spaces of G1-spline functions along an edge. We consider b-spline spaces Rd,t
with a small degree d (d = 2, . . . , 7) and a small number m2 of control points per face (m 6 8). The analysis
developed in this paper could be extended to a larger number m of control points per edge, increasing the
number of basis functions attached to an edge.
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The knots t of the b-spline functions are between 0 and 1. The set of distinct knots is a uniform
subdivision of the interval [0, 1], so that the b-spline functions share the same knots on the common edges.
The glueing data on the edge are of the form a(u) = aΘ0(u)− bΘ1(u), b(u) = −1 with a, b two parameters
and Θ0(u), Θ1(u) two functions interpolating 1 at 0 and 1.

Translating the equations (2) and (3) into linear equations in the 4m coe�cients cσ1
i,j(f), cσ0

j,i(f) for
0 6 i 6 m− 1 and 0 6 j 6 1, we compute bases of the spaces Sτ ,Sγ,τ , Eτ ,Sγ′,τ depending on the values of
a, b for a given edge τ . This can be precomputed for given degree and knot vector of b-spline patches and
for given type of glueing data (e.g. using a computer algebra system such as Maple).

3.1.1. Basis of Eτ
We compute a basis eτ1 , . . . , e

τ
l of Eτ de�ned by the equations (2), (3), T τγ (f) = 0 and T τγ′(f) = 0. Notice

that the functions eτi are G1 splines on the whole topological spaceM, since they are G1 along the edge τ
and T τγ (eτi ) = T τγ′(e

τ
i ) = 0. These will be called the edge basis functions of the edge τ .

We denote by B1
τ = {bσk1

i1,j1
, . . . , b

σkl
il,jl
} a set of free coe�cients in the linear system of equations (2), (3),

T τγ (f) = 0, T τγ′(f) = 0. This is a Minimal Determining Set of coe�cients for Eτ .

3.1.2. Basis of Sγ,τ
By de�nition of the space Sγ,τ , when the G1-spline space Sτ is separable and ample, the map Tσγ is

injective on Sγ,τ and its image is at least of dimension 4. This implies that the dimension of Sγ,τ is at least
4. Since there are 3 independent relations between the 8 Taylor coe�cients at a vertex γ on the two faces
σ, σ′ (the coe�cients on the common edge are equal and the derivatives along the edges adjacent to γ are
dependent), the dimension of Sγ,τ is at most 8− 3 = 5.

For notational conveniency, we de�ne δ(γ, τ) = 0 if dim(Sγ,τ ) = 5 and δ(γ, τ) = 1 otherwise. If τ is a
boundary edge, we let δ(γ, τ) = 0. By de�nition dimSγ,τ = 5− δ(γ, τ) We say that τ is a crossing edge at
γ if δ(γ, τ) = 1 and a non-crossing edge otherwise. We de�ne δ(γ) = min{δ(γ, τ) | τ 3 γ}.

• If δ(γ, τ) = 1 (crossing edge), dim(Sγ,τ ) = 4 and a Minimal Determining Set of coe�cients is associated
to the b-spline functions B0

γ,τ = {bσ0
0,0, b

σ0
1,0, b

σ0
0,1, b

σ0
1,1}.

• If δ(γ, τ) = 0 (non-crossing edge), dim(Sγ,τ ) = 5 and a minimal determining set of Sγ,τ is associated
to the b-spline functions Bγ,τ = {bσ0

0,0, b
σ0
1,0, b

σ0
0,1, b

σ0
1,1, b

σ1
1,1}.

These sets are maximal sets of free coe�cients in the linear system de�ning Sγ,τ . They are Minimal
Determining Sets for Sγ,τ .

The space Sγ,τ = Sτ ∩ E⊥τ ∩ kerT τγ′ is de�ned by the equations (2), (3), 〈f, eτi 〉 = 0, i = 1, . . . , l, and
T τγ′(f) = 0.

As Bγ,τ is a maximal set of free coe�cients in this system, it can be transformed by linear combinations
of these equations, into a system of the form[

Aγ,τ Id
]
· c(f) = 0 (8)

where the columns of Aγ,τ are indexed by the coe�cients Bγ,τ and the last identity block indexed by the
set Cγ,τ of remaining coe�cients among all coe�cients of b-splines functions supported along τ . The vector
c(f) is the vector of all the coe�cients of functions supported along τ .

Notice that this matrix Aγ,τ can be precomputed for each edge τ , independently of the structure of the
mesh. It depends only on the glueing data on τ .

3.1.3. Examples of ample separable spaces

Hereafter, we describe cases of ample separable spaces of G1-splines for low d and m. In these tables,
we give the degree d, the knots t, the number m of control points along the edge, the glueing function a(u)
and the dimensions of Sτ ,Sγ,τ , Eτ ,Sγ′,τ for di�erent values of a and b.
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• d = 2, t = [03, 1
4 ,

1
2 ,

3
4 , 1

3], m = 6, a(u) = a (1− 4u)1[0, 14 ] − b (4u− 3)1[ 34 ,1]

a b Sτ Sγ,τ Eτ Sγ′,τ
6= 0 6= 0 10 4 2 4
= 0 6= 0 11 4 3 4
= 0 = 0 12 4 4 4

This construction is closely related to the construction described in Reif (1995) with C1 biquadratic
polynomials on each patch and the extraordinary vertices separated by 4 biquadratic patches.

A construction of G1-splines which are C1 bicubic b-splines on each patch with linear glueing data
has been proposed in Hahmann et al. (2008). It applies under some genericity conditions onM. Each
face has 6× 6 = 36 b-spline coe�cients (m = 6). An explicit computation shows that the dimensions
of Sτ , Sγ,τ , Eτ , Sγ′,τ are respectively 11, 4, 2, 4 for a 6= 0, b 6= 0. Thus the space is not separable.

• d = 3, t = [04, 1
3 ,

2
3 , 1

4], m = 6, a(u) = a (1− 3u)1[0, 13 ] − b (3u− 2)1[ 23 ,1].

a b Sτ Sγ,τ Eτ Sγ′,τ
6= 0 = 0 10 4 2 4
= 0 = 0 12 4 4 4

An explicit computation shows that when a 6= 0, b 6= 0, i.e. when none of the end points of the edge
is a crossing vertex, the space Sτ is not separable.

• d = 3, t = [04, 1
3 ,

1
3 ,

2
3 ,

2
3 , 1

4], m = 8, a(u) = a (1 − 3u)1[0, 13 ] − b (3u − 2)1[ 23 ,1] or a(u) = a (3u −
1)21[0, 13 ] − b (3u− 2)21[ 23 ,1].

a b Sτ Sγ,τ Eτ Sγ′,τ
6= 0 6= 0 14 5 4 5
6= 0 = 0 15 5 6 4
= 0 = 0 16 4 8 4

The case where a is of degree 1 corresponds to the construction in Fan et al. (2008) and Peters et
al. (2010), where the linear function a is replaced by a piecewise linear function. In this case, the
transition map is not necessarily C1.

The second case where a is of degree 2 is a new construction. The glueing data a is C1 for any value
of a and b.

• d = 3, t = [04, 1
5 ,

2
5 ,

3
5 ,

4
5 , 1

4], m = 8, a(u) = a (1−5u)1[0, 15 ]−b (5u−4)1[ 45 ,1] or a(u) = a (1−5u)21[0, 15 ]−
b (5u− 4)21[ 45 ,1]

a b Sτ Sγ,τ Eτ Sγ′,τ
6= 0 6= 0 12 4 4 4
6= 0 = 0 14 4 6 4
= 0 = 0 16 4 8 4

These two cases are also new constructions of G1-splines. The functions are C2 on each face and the
glueing data is C1 for any value of a and b when a is of degree 2.

• d = 4, t = [05, 1
2 ,

1
2 ,

1
2 , 1

5], m = 8, a(u) = a (1− 2u)21[0, 12 ] − b (2u− 1)21[ 12 ,1]

a b Sτ Sγ,τ Eτ Sγ′,τ
6= 0 6= 0 14 5 4 5
6= 0 = 0 15 5 6 4
= 0 = 0 16 4 8 4

7



This corresponds to the construction described in Bonneau et al. (2014) with C1 biquartic b-splines
on each patch. It is also related to the construction in Peters (1995) where biquartic patches with
quadratic transition maps are involved.

• d = 5, t = [06, 16], m = 6,

For this degree, we consider glueing data of degree 1 when the vertices are not crossing vertices (i.e.
a 6= 0, b 6= 0): a(u) = a (1− u)− b u.

a b Sτ Sγ,τ Eτ Sγ′,τ
6= 0 6= 0 12 5 2 5

When one of the vertices is a crossing vertex (i.e. a = 0 or b = 0, we use glueing data of degree 2:
a(u) = a (1− u)2.

a b Sτ Sγ,τ Eτ Sγ′,τ
6= 0 = 0 11 5 2 4
= 0 = 0 12 4 4 4

This corresponds to the G1-space used for the IsoGeometric Analysis application in Section 5.

• d = 7, t = [08, 18], m = 8, a(u) = a (1− u)2 − b u2

a b Sτ Sγ,τ Eτ Sγ′,τ
6= 0 6= 0 15 5 5 5
6= 0 = 0 15 5 6 4
= 0 = 0 16 4 8 4

This is a new construction, which falls in the separable cases studied in Mourrain et al. (2016). The
glueing data is C1 for any value of a and b.

3.2. G1-splines around a vertex

We present now a new method to construct G1-spline basis functions around a vertex γ ∈M0 from the
analysis of Sγ,τ for τ 3 γ, assuming Sτ is ample and separable. Let σ1, . . . , σv be the faces ofM adjacent
to the vertex γ, where v is the valence of γ. We denote byMγ the sub-topological surface induced by these
faces and by gγ the corresponding glueing data. We assume that γ is an interior point (the treatment of a
boundary point will be similar). The edge between the faces σi and σi+1 is τi = (γ, γi) for i = 1, . . . , v (with
the convention that σv+1 = σ1). The glueing data along the edge τi are denoted ai, bi. Let Sγ ⊂ S(Mγ , gγ)
be the space of G1-splines around the vertex γ, with support along the edges τi and with zero Taylor
coe�cients at the exterior vertices γi. Since the elements of Sγ have a support along the edges τi and zero
Taylor coe�cients at the exterior vertices γi, they de�ne G1-splines on the global mesh: Sγ ⊂ S(M, g).

The space Eγ ⊂ Sγ of G1-splines in Sγ supported along the edges τi with zero Taylor coe�cients at γ

and at the exterior vertices γi decomposes as Eγ = ⊕fi=1Eτi where Eτi is the space of G1-splines de�ned
in Section 3.1. Any element in Eγ is a sum of elements with support along the edges τi and zero Taylor
coe�cients at γ and γi, that is an element of Eτi . A basis of Eτi has been computed in Section 3.1.1.

The space Sγ decomposes as Sγ = Eγ ⊕ Vγ where Vγ = E⊥γ ∩ Sγ is the space orthogonal (and thus
supplementary) to Eγ in Sγ (for the classical inner-product on their b-spline coe�cients). We are going to
construct a basis of Vγ , that we will call the vertex basis functions of the vertex γ.

We assume for simplicity that either v = 4 and δ(γ, τi) = 1 for i = 1, . . . , 4 (crossing vertex) or δ(γ, τi) = 0
for i = 1, . . . , v (non-crossing vertex).

Vertex basis algorithm. Let γ ∈ M0 be a vertex with adjacent edges τ1, . . . , τv and adjacent faces
σ1, . . . , σv.
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• If δ(γ, τi) = 1 (crossing vertex), then let

Gγ = [bσ1
0,0, b

σ1
1,0, b

σ1
0,1, b

σ1
1,1]

be the coe�cient matrix of the canonical basis elements bσ1
0,0, b

σ1
1,0, b

σ1
0,1, b

σ1
1,1.

• If δ(γ, τi) = 0, let
Gγ = [bσ1

0,0, b
σ1
1,0, b

σ1
0,1, b

σ1
1,1, . . . , b

σv
1,1]

be the coe�cient matrix of the corresponding canonical basis elements.

For i = 1, . . . , v, we de�ne the coe�cients along the edge τi as follows

Gγ [Cτi , :] := −Aγ,τi Gγ [Bτi , :]

where Bτi are the b-spline basis functions indexing the columns of Aτi and Cτi are indexing the identity
block in (8).

Proposition 3.2. The spline functions Gγ constructed by this algorithm form a basis of Vγ .

Proof. For each edge τi, the restriction of the elements of Gγ to Mτi are in Sγ,τi since, by construction,
we have [

Aγ,τi Id
] [ Gγ [Bτi , :]

Gγ [Cτi , :]

]
=
[
Aγ,τi Id

] [ Gγ [Bτi , :]
−Aγ,τiGγ [Bτi , :]

]
= 0.

so that they satisfy the linear relations de�ning Sγ,τi . As this is true for all the edges τi containing γ, they
are in Vγ .

If δ(γ, τi) = 0 (non-crossing vertex), the coe�cients cσi
0,0, c

σi
1,0, c

σi
0,1, i = 1, . . . , v are linked by the relations

cσi
0,0 = c

σi+1

0,0 , cσi
0,1 = c

σi+1

1,0 and c
σi+1

0,1 −c
σi+1

0,0 = bi(0)(cσi
1,0−c

σi
0,0)+ai(0)(cσi

0,1−c
σi
0,0). As the glueing data satis�es

the cocyle condition 2.3, this system de�nes a linear space of dimension 3. The coe�cients cσ1
1,1, . . . , c

σv
1,1 are

free and the coe�cients in Cτi are determined by the relations (8). Thus the space Vγ de�ned by all these
equations is of dimension 3 + v, which is also the number of elements in Gγ .

Let us show that the elements in Gγ are linearly independent. By the linear transformation of the
algorithm and the cocyle condition, the matrix Gγ [Bγ , :] is not changed and is equal to the identity matrix.
Thus the elements Gγ are independent and, therefore, form a basis of Vγ .

If δ(γ, τi) = 1 (crossing vertex), a similar argument on the coe�cients cσi
0,0, c

σi
1,0, c

σi
0,1, c

σi
1,1, i = 1, . . . , v and

the cocyle condition 2.3 show that Vγ is of dimension 4. Similarly, Gγ [Bγ , :] is the identity matrix and Gγ
is a basis of Vγ . �

3.3. Dimension formula for Sd,t(M, g)

We consider here a degree d, a knot vector t which gives a separable and ample space of G1-splines
Sd,t(M, g).

Theorem 3.3. Assume that Sd,t(M, g) is separable and ample then

dimSd,t(M, g) = ((m− 4)2 + 4)f2 +
∑
τ∈M1

ε(τ)−
∑

(γ,τ)|γ∈τ

δ(γ, τ) + 3 f0 + f0,δ (9)

where

• f2 = |M2| is the number of faces ofM,

• f0 = |M0| is the number of vertices ofM,

• f0,δ is the number of vertices γ ∈M such that δ(γ) = 1,

• ε(τ) = dim(Eτ ),
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• δ(γ, τ) = 5− dim(Sγ,τ ) for an interior edge, δ(γ, τ) = 0 for a boundary edge.

Proof. The dimension is obtained by counting the number of basis functions attached to faces, edges, and
vertices using the construction of the previous section.

For each face σ, the b-spline basis function with interior control points are basis elements. There are
(m− 4)2 such elements per face.

For each edge τ , a basis of the space Eτ are also basis elements of Sγ,τ .
For each vertex γ, the number of basis functions attached to it is 3 + fγ −

∑
τ3γ δ(γ, τ) + δ(γ), where fγ

is the number of faces adjacent to γ. Since each face has 4 vertices,
∑
γ∈M0

fγ = 4 f2.
Let us check that these elements form a basis of the space Sd,t(M). By construction, they are linearly

independent. Given an element g ∈ S1(M) let us prove that g can be decomposed as a linear combination
of the functions associated to the faces, edges and vertices. The elements associated to the faces are b-spline
basis functions. By construction, the elements associated to a vertex γ have one of their b-spline coe�cients
equal to 1 and the other coe�cients indexed by Bγ equal to zero. By subtracting a linear combination of
these elements, we can assume that the coe�cients of g indexed by Bγ for γ ∈ M0 or interior to a face σ
vanish. The G1 constraints induced by the relations (3) at u1 = 0 imply that T τγ (g) = 0 for all γ ∈M0 and
τ ∈M1 s.t. γ ∈ τ . Therefore, g decomposes as

g =
∑
τ∈M1

gτ

where gτ ∈ Eτ is a linear combination of the basis elements associated to the edge τ . Consequently, g belongs
to the vector space spanned by the elements associated to the faces, edges and vertices.

Summing up all these terms gives formula (9) for the dimension of Sd,t(M). �

3.4. Example

We consider the knot vector t = [04, 1
2 ,

1
2 , 1

4] de�ning bicubic C1 splines with m = 6 control points per
edge. We take glueing data of the form a(u) = a (1− 3u)1[0, 13 ] − b (3u− 2)1[ 23 ,1]. Let τ be an interior edge
ofM and let σ0, σ1 be the adjacent faces to τ . We have the separability property for b = 0:

a b Sτ Sγ,τ Eτ Sγ′,τ
6= 0 = 0 11 5 2 4
= 0 = 0 12 4 4 4

The computation of a basis of Eτ for a 6= 0, b = 0 yields

Bτ = [−bσ0
1,2 + bσ1

2,1,−b
σ0
1,3 + bσ1

3,1]

The relations de�ning Sγ,τ are of the form

cσ1
0,0

cσ1
1,0

cσ1
0,1

cσ0
0,2

cσ0
0,3

cσ0
1,2

cσ0
1,3

cσ1
2,0

cσ1
2,1

cσ1
3,0

cσ1
3,1



=



1 0 0 0 0

0 1 0 0 0

2− a a −1 0 0

0 a−3
a 0 3

2a
3
2a

0 a−3
a 0 3

2a
3
2a

0 a−3
a 0 3

2a
3
2a

0 a−3
a 0 3

2a
3
2a

0 a−3
a 0 3

2a
3
2a

0 a−3
a 0 3

2a
3
2a

0 a−3
a 0 3

2a
3
2a

0 a−3
a 0 3

2a
3
2a




cσ0
0,0

cσ0
0,1

cσ0
1,0

cσ0
1,1

cσ1
1,1


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where −Aγ,τ is the matrix appearing in this system.
For a vertex γ of valence 3 (with a = 2 cos( 2π

3 ) = −1) adjacent to the faces σ0, σ1, σ2, the 6 spline basis
functions of Sγ are:

bσ0
0,0 + bσ2

0,0 + 3 bσ2
1,0 + 24 bσ2

2,1 + 12 bσ2
2,0 + 12 bσ2

3,0 + bσ1
0,0 + 3 bσ1

0,1 + 12 bσ1
0,2 + 12 bσ1

0,3 + 24 bσ1
1,3,

bσ0
0,1 + 4 bσ0

0,2 + 4 bσ0
0,3 + 8 bσ0

1,3 − b
σ2
1,0 − 8 bσ2

2,1 − 4 bσ2
2,0 − 4 bσ2

3,0 + bσ1
1,0 + 4 bσ1

2,0 + 4 bσ1
3,0 − b

σ1
0,1 + 8 bσ1

2,1

−4 bσ1
0,2 − 4 bσ1

0,3 − 8 bσ1
1,3,

bσ0
1,0 + 4 bσ0

2,0 + 4 bσ0
3,0 + 8 bσ0

2,1 + 4 bσ2
0,3 + 4 bσ2

0,2 + bσ2
0,1 + 8 bσ2

1,3 − b
σ2
1,0 − 8 bσ2

2,1 − 4 bσ2
2,0 − 4 bσ2

3,0 − b
σ1
0,1

−4 bσ1
0,2 − 4 bσ1

0,3 − 8 bσ1
1,3,

−2 bσ0
2,0 − 2 bσ0

3,0 + bσ0
1,1 − 3 bσ0

2,1 − 2 bσ0
0,2 − 2 bσ0

0,3 − 3 bσ0
1,3 − 2 bσ2

0,3 − 2 bσ2
0,2 − 3 bσ2

1,3 − 2 bσ1
2,0 − 2 bσ1

3,0 − 3 bσ1
2,1,

−2 bσ0
0,2 − 2 bσ0

0,3 − 3 bσ0
1,3 − 3 bσ2

2,1 − 2 bσ2
2,0 − 2 bσ2

3,0 − 2 bσ1
2,0 − 2 bσ1

3,0 + bσ1
1,1 − 3 bσ1

2,1 − 2 bσ1
0,2 − 2 bσ1

0,3 − 3 bσ1
1,3,

−2 bσ0
2,0 − 2 bσ0

3,0 − 3 bσ0
2,1 − 2 bσ2

0,3 − 2 bσ2
0,2 − 3 bσ2

1,3 + bσ2
1,1 − 3 bσ2

2,1 − 2 bσ2
2,0 − 2 bσ2

3,0 − 2 bσ1
0,2 − 2 bσ1

0,3 − 3 bσ1
1,3.

4. Application to point cloud �tting

Let P = {p1, . . . , pn} be a cloud of points in R3 and N = {v1, . . . , vn} their corresponding normals,
representing a smooth surface that has the same topology as the topological complexM. The goal of this
section is to produce a smooth surface that is as close as possible to the cloud of points using the G1-basis
constructed fromM.

Denote by (gi)i∈I , I = {1, .., r}, r ∈ N the �nite basis of the space Sd,t(M, g) of G1 splines over M of
degree d and with knots sequence t. The functions gi are used to parametrise 3d-surfaces, by taking linear
combinations:

s =
∑
i∈I

s̄igi (10)

with coe�cients s̄i ∈ R3 for i ∈ I.
Over each face σ of the meshM, the functions gi are represented as linear combinations of the b-spline

basis function with coe�cients that we denote cσk,l(s). Hereafter, we will also use gi to denote the vector

of all coe�cients cσk,l(gi) for all faces σ ∈ M2 and Ḡ = [gi]i∈I the matrix, which columns are the vectors

gi. The N × 3 matrix C̄ = [cσk,l(s)] which rows are the b-spline coe�cients cσk,l(s) of the surface h will be
written by means of the l × 3 matrix s̄ which rows are the points s̄i:

C̄ = Ḡ

s̄1

...
s̄l

 = Ḡ s̄. (11)

For simplicity, we will use the following notation:

s =

s̄[:, 1]
s̄[:, 2]
s̄[:, 3]

 , C =

C̄[:, 1]
C̄[:, 2]
C̄[:, 3]

 , G = diag(Ḡ, Ḡ, Ḡ),

where, for a matrix M , M [:, i] indicates the ith column of M . With this notation, we have C = G s.
In order to obtain the most accurate representation of P by G1 splines, we compute s by minimizing

a weighted combination of square distance and fairing energies. We recall brie�y these standard energy
terms (see e.g. Greiner et al. (1994); Wang et al. (2006)) and give their matrix formulation in terms of the
coe�cients in the G1 basis.

Distance energy. Given a (uniform) distribution U = {u1, ..., un} of parameters inM and a set P of points
(with normals), we use either

11



• the classical point-wise square distance energy

EP (s) =
∑
u∈U
||pu − s(u)||2

where the pairing between the parameters u ∈ U and points pu ∈ P is obtained from an initial
parameterisation s0, by associating to u ∈ U the closest point pu ∈ P to s0(u) (we use a kd tree
algorithm to compute closest points).

• or the square distance between the planes at the points pi ∈ P with normal vi ∈ N and the points
s(ui) is:

ET (s) =
∑
i=1,..,l

[vi.(pi − s(ui))
t]2

for s ∈ S(M, g).

Other distance minimizations can be used, such as the so-called Squared Distance Minimization Wang et
al. (2006), which involves the principal curvatures.

Fairing energy. To reduce oscillations in the computed surface, we use a regularization term (see e.g. Greiner
et al. (1994))

Fk(g) =

∫ 1

0

∫ 1

0

(∂ks g(s, t))2 + (∂kt g(s, t))2dsdt

In the experimentation, we use the regularization terms F1 and F2. To avoid an explicit computation of the
integrals, we further simplify them into the following expressions involving directly the b-spline coe�cients:

F̃1(g) =
∑

06i,j6n−1

||(∆1c)i,j ||2 + ||(∆2c)i,j ||2, F̃2(g) =
∑

16i,j6n−1

||(∆2
1c)i,j ||2 + ||(∆2

2c)i,j ||2

with (∆1c)i,j = ci+1,j − ci,j , and (∆2c)i,j = ci,j+1 − ci,j , (∆2
1c)i,j = ci,j − (ci+1,j+ci−1,j)

2 and (∆2
2c)i,j =

ci,j − (ci,j+1+ci,j−1)
2 . As the b-spline coe�cients C of h are such that C = G s, these energy terms are of the

form sTGTAiG s where Ai is the coe�cient matrix of F̃i in the b-spline basis (for i = 1, 2).
The �nal formula that we minimize is of the form:

Ttot(s) = w1EP (s) + w2ET (s) + w3F̃1(G s) + w4F̃2(G s)

where wi are weights, which are chosen manually depending on the type of the point cloud; the more the
point cloud is noisy, the larger the fairing energy weights must be. The total energy Ttot(s) is a quadratic
function of s, and its minimum(s) can be obtained by solving ∇Ttot(s) = 0, leading to the following linear
system

(w1D
TD + w2D̃

T D̃ + w3G
TA1G+ w4G

TA2G) s− w1P̃
T D̃ − w2P

TD = 0

4.1. Illustrations

As we said in previous sections the basis functions (gi)i∈I are precomputed. They are represented by
the sparse line vectors of G, this yields sparse matrices D, D̃ and vectors P, P̃ . The matrices Ai for i = 1, 2
are diagonal by blocks of size at most 16, this can be proved by a combinatorial argument. This implies in
particular that the total system is sparse.

We present in Fig. 1 and 2 some results of �tting surfaces, the computations were made with the Julia
programming language, the visualization is done with the software Axl1.

The cloud of points in Fig. 1(c-e) and �rst row of Fig. 2 is taken from a smooth surface, made by
building a sca�olding of a skeleton from Fuentes et al. (2017), then by applying a Catmull-Clark subdivision
algorithm for smoothing.

1axl.inria.fr
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(a) Degree bi-5 Bézier patches with knot vector
t = [06, 16] and quadratic glueing data. F = 96,
N = 1180, P = 24702, eave = 0.0029685196,

emax = 0.00989258.

(b) Degree bi-3 bsplines patches with knots
vector t = [04, 1

3 ,
2
3 , 1

4] and linear glueing data.
cloud of points as in (a). F = 96, N = 1180,

P = 24702, eave = 0.0015991,
emax = 0.01391856.

(c) Degree bi-3 bsplines patches with knots
vector [04, (1/3)2, (2/3)2, 14]. This �tting

exhibits a quality defect along the knots line
that are close to singular vertices, because the
element patches are C1. F = 96, N = 1980,
P = 24702 , eave = 0.00594, emax = 0.050988.

Figure 1: Comparison of �tting of 3d-geometric objects with di�erent basis. The �rst column is for the cloud of points and
the �tting smooth surface, the second one for the �tting surfaces, and the last one is for the cloud of points alone. F is the
number of faces of the quad mesh, N is the dimension of the G1 space, P is the number of points, eave, emax are respectively

the relative average error
∑

u∈U
||pu−s(u)||

P ∆
and relative maximum error maxu∈U

||pu−s(u)||
∆

where ∆ is the diameter of the
point cloud.
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Figure 2: Fitting of 3d-geometric objects. The �rst column is for the cloud of points and the �tting smooth surface, the second
one for the �tting surfaces, and the last one is for the cloud of points alone. We use the same b-spline type as in Fig. 1(e),
with F = 144, N = 2808, P = 36860 , eave = 0.00748197, emax = 0.0324516 for the �rst line example.

5. Application in isogeometric analysis

In this section, the proposed geometrically smooth spline bases will be applied in isogeometric analysis
with complex geometry.

5.1. Model problem and technique details

Consider the following two-dimensional heat di�usion example as an illustrative model problem:

−∆T (x ) = f(x ) in Ω ⊂ R2

T (x ) = 0 on ∂ΩD
(12)

where ∆ is the Laplacian operator, Ω is the computational domain parameterized by the proposed geomet-
rically smooth spline bases , T (x ) is the unknown heat �eld, and f(x ) is the heat source function. The trial
and test spaces are de�ned as:

U = {T ∈ H1(Ω) : T = TD on ∂Ω},
V = {ψ ∈ H1(Ω) : ψ = 0 on ∂Ω}.

(13)

The variational problem can be stated as: �nd the solution Th ∈ Uh ⊂ U such that:∫
Ω

∇Th(x) · ∇ψh(x ) dΩ =

∫
Ω

f(x) · ψh(x) dΩ ∀ψh ∈ Vh ⊂ V. (14)

which can be written as
a(Th, ψh) = 〈f, ψh〉 ∀ψh ∈ Vh, (15)
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where

a(Th, ψh) =

∫
Ω

∇Th(x) · ∇ψh(x) dΩ,

〈f, ψh〉 =

∫
Ω

f(x) · ψh(x) dΩ.

(16)

In the isogeometric analysis framework, the solution �eld Th will be represented by the proposed geo-
metrically smooth spline bases, that is,

Th =

N∑
i=1

gi(u)Ti, (17)

where Ti are unknown variables to be solved, gi(u) are geometrically smooth spline basis functions de�ned
on each face σ from its b-spline coe�cients cσk,l(gi), u

σ = (ξσ, ησ) are the domain parameters associated to

the face σ of the parametric domain P, N is the number of basis functions. The test function ψh is also
de�ned as follows :

ψh = gi(u). (18)

Then a linear system can be obtained from Eq. (16),

AT = b

in which T = [Ti] are unknown variables. The entries in sti�ness matrix A = [Ai,k] and right-hand side
b = [bi] can be computed as follows,

Ai,k =

∫
P
∇ugk(u)B(u)TB(u) ∇ugk(u)J(u) dP

bi =

∫
P
f(F(u)) · gk(u)J(u) dP.

where F(u) = (x(ξ, η), y(ξ, η)) is de�ned as in Eq. (10), J(u) is the Jacobian of the transformation,

J(u) =

∣∣∣∣ xξ yξ
xη yη

∣∣∣∣ ,
B(u) is the transposed of the inverse of the Jacobian matrix.

5.2. Examples

In this subsection, a numerical example is presented to demonstrate the e�ectiveness of the proposed
simulation method with geometrically smooth spline bases.

We consider a heat di�usion problem with the following exact solution

T (x) = 10 sin(
π

30
(x+ y + 30)) sin(

π

30
(x+ y − 30)) sin(

π

30
(x− y − 30)) sin(

π

30
(x− y + 30)). (19)

The computational domain is a square [−30, 30]× [−30, 30], which is parameterized by a quintic G1 spline.
The parametric mesh is shown in Fig. 3(a), and the corresponding parameterization with 52 patches is
presented in Fig 3(b) and (c). The corresponding IGA numerical solution is shown in Fig. 3(d) and (e),
and the corresponding error colormap is shown in Fig. 3(f). We observe that the proposed IGA framework
based on geometrically smooth splines achieves an accuracy similar to the one using C0 multi-patch method.

It should be mentioned that the IGA solution surface is also G1 according to the property of geometrically
smooth splines. The C1 regularity is not required in the discretization of the heat di�usion problem.
However, the solution of this problem is C1 and the experiment shows that the capacity of the G1-spline
functions to approximate such a solution. Moreover, since their dimension is smaller than the corresponding
G0 spline space dimension, the induced linear algebra computation is also less costly.

15



(a) parametric mesh (b) parameterization with 52
Bézier patches

(c) parameterization with
iso-parametric curves

(d) G1 IGA solution surface (e) IGA solution with colormap (f) Level 3 error colormap

(f) Zoom into the level 3 error
colormap

Figure 3: Numerical example of IGA with geometrically smooth splines.

Level of subdivision 0 1 2 3

Dimension 529 1993 7729 30433

L2 Error 0.00215138 0.000427664 3.14061e-005 2.90809e-006

Rate of convergence � 2.33 3.77 3.43

Figure 4: Estimated rate of convergence
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6. Conclusion and future work

We have presented a new method for e�cient construction of G1 spline basis on quadrangular meshes of
arbitrary topology. We provide details about the degrees of freedom that we obtain depending on di�erent
kind of b-spline patches, and glueing data. Among the results, we have tested di�erent bi-3 and bi-5 G1 basis
constructions for �tting point clouds, and we have tested bi-5 G1 splines to solve a heat di�usion problem
by an isogeometric �nite element method.

In future works, we aim at analyzing the convergence rate of the approximation error when we perform
mesh re�nements and at combining �tting techniques for domain parametrizations with isogeometric analysis
methods to reduce the approximate error.
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