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Abstract 9 

Due to the increasing demand for cooling worldwide and the need for reliable and energy-efficient 10 

alternatives to provide it, the analysis of district cooling (DC) networks has become a focus of interest 11 

in recent years. In DC networks, the temperature of the cooling utility returning to the production site 12 

must be close to the design temperature of the installed technology to ensure proper efficiency and 13 

avoid the technical issue known as low ΔT syndrome. Via dynamic optimisation, it is possible to 14 

compute the mass flow profiles in the network that lead to an operation which overcomes this 15 

problem. In this paper, we propose a methodology that provides a simultaneous (equation- oriented) 16 

solution to this dynamic optimisation problem using 2D Orthogonal Collocation on Finite Elements 17 

(OCFE). We apply this methodology to a medium-sized cooling system serving 20 consumers of 18 

different categories with fluctuating cooling demands subject to variable external conditions. The 19 

dynamic simulation and optimisation were performed using insulated and non-insulated piping. The 20 

proposed methodology exhibits low computational cost, demonstrating its potential use for developing 21 

applications for operating and forecasting these systems.    22 

 23 

1 Introduction 24 

Today, heating and cooling account for more than 50% of the total energy demand in Europe [1]. 25 

Furthermore, most of the energy used by this sector still comes from non-renewables, representing a 26 

major source of CO2 emissions that needs to be urgently mitigated [2]. With this in mind, district 27 

energy systems are emerging as an interesting alternative to mitigate the environmental impact of 28 

these emissions [3]. Compared to individual heating and cooling, District Heating and Cooling (DHC) 29 

systems have higher efficiency, are more economically attractive for high demand buildings, could 30 

reduce fuel consumption, improve community energy management and allow better control of 31 

emissions [3]. 32 

 33 

There is a strong motivation to optimise district energy systems as they minimise the cost of 34 

infrastructure and emissions while maximizing the production of the hot or cold utility, and its 35 

efficiency. Such optimisation is particularly challenging because of technical characteristics and the 36 
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size of real-world applications [4]. In general, mathematical optimisation of these systems is very 37 

much skewed in favour of district heating systems, as stated by Werner [5]. However, despite the lack 38 

of analysis of district cooling systems, most of the methodologies applied to the analysis of district 39 

heating systems (DHS) can also be used to study district cooling systems. It is important to point out 40 

that each kind of system presents its own issues, related not only to the kind of utility produced (hot or 41 

cold) but also to the way it improves system efficiency, as will be detailed in the objectives of this 42 

work. Hence the importance of studies focused on district cooling networks. 43 

 44 

Before introducing the applications for optimising district energy systems, it is important to present 45 

a general classification of the type of problems we find in mathematical optimisation. An optimisation 46 

problem consists of one (or sometimes more) objective function that has to be minimised (e.g. 47 

Operational cost, CO2 emissions) or maximised (efficiency, production), subject to the fulfilment of 48 

the physical or operational constraints of the system, which are represented as equality or inequality 49 

constraints, by manipulating a set of decision variables. Depending on the nature of the decision 50 

variables (continuous or discrete), a general categorisation of optimisation problems can be 51 

established, which is independent of the methods implemented to solve the problem as stated by 52 

Biegler and Grossmann [6]. If the problem is described using only continuous variables when 53 

considering the nature of the constraints and the objective function that describes the system (linear or 54 

non-linear), we have linear programming (LP) and non-linear programming (NLP) problems. When 55 

discrete variables are involved, they are classified as mixed-integer linear programming (MILP) and 56 

mixed-integer non-linear programming (MINLP) problems. Finally, when dealing with dynamic 57 

models, two approaches are possible. Either we represent the dynamic problem as a succession of 58 

steady-state problems, known as multi-period optimisation, or we deal with the dynamics of the 59 

system. In the latter case, we can use either Pontryagin’s principle (optimal control) or discretisation, 60 

formulating the dynamic problem as an algebraic problem (NLP, MILP or MINLP), known as 61 

dynamic optimisation. 62 

 63 

According to the classification described above, we can organise studies on the optimisation of 64 

district heating and cooling as presented in Table 1. This detail selected contributions in terms of the 65 

kind of problem that is solved and their main applications (due to the complexity of the models used to 66 

describe these systems, there are few instances of LP applied to district heating and cooling, which is 67 

why no LP problem is reported). More extensive reviews on the applications of optimisation in 68 

District energy systems are presented by Talebi et al. [7], Sameti et al. [4], Gang et al. [8]. Eveloy and 69 

Ayou [9] also present optimisation applications specifically for DCS. They highlight the fact that most 70 

studies have focused on optimising distribution network infrastructure (the selection of technologies, 71 

the number and kinds of users connected to the network, the existence of network elements such as 72 
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pumps, chillers, storage tanks, pipes), considering steady-state models and leading to a MILP or 73 

MINLP formulation. On the other hand, one of the most unexplored subjects of study in the field of 74 

energy systems is the dynamic optimisation and control of these systems, as stated by Gang et al. [8] 75 

and Allegrini et al. [10].  76 

 77 

Table 1. Classification of studies on DHC Optimisation 78 

Continuous Variables Integer variables 

NLP MILP MINLP 

 Data based 

Chow et al. [11] 

- Diversity factor 

Data based 

Deng et al. [12] 

-       Scheduling 

 Steady-State 

Söderman [13] 

- Topology 

- Operation (flow rates) 

Steady-State 

Mertz et al. [14] 

Marty et al. [15] 

- Topology 

- Sizing 

- Operation 

 Multiperiod 

Khir et al. [16] 

- Sizing 

- Topology 

- Operation 

 

Dynamic 

Schweiger et al. [17] 

- Operation 

(Modelica) 

This contribution 

- Operation              

(2D-OCFE) 

 Data based MIQCP 

Schweiger et al. [17] 

- Scheduling 

 

 79 

Among the applications used in district cooling, some studies are based on data. Chow et al. [11] 80 

presented a MILP formulation that optimised the diversity factor, which is the proportion of diverse 81 

types of building (office, residential, shops, hotels and mass transit railway stations), resulting in a 82 

uniform cooling load to ensure a high stability in the cold production system to be installed. They first 83 

calculated typical 24-hour demand profiles for five types of building for 36 typical days (three typical 84 

days per month), using a freeware building energy analysis programme that can predict energy use and 85 

cost for all types of building. With these data, they then implemented a genetic algorithm to solve a 86 

MILP problem that aims to minimize a fluctuation index with respect to the maximum cooling 87 

demand. Here, the optimisation variables are the number of buildings for each of the five categories. In 88 

order to avoid local optimum, they used a genetic algorithm. However, their study does not consider 89 

the topology of the network, which could have a considerable impact on the delay and the formulation 90 

of the fluctuation index. Moving to MINLP applications, Deng et al. [12] presented an approach for 91 

the optimal scheduling of an actual DHC system that minimised its daily operation cost. The system 92 

was composed of an electric chiller system, a ground source heat pump, a thermal storage system and 93 
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a combined cooling, heating and power system. The nonlinearities of the continuous variables 94 

corresponded to the operational conditions of each of the components of the system, while the discrete 95 

variables corresponded to the use (on/off) of the chillers in different periods of energy demand. This 96 

contribution optimised the energy mixing of the system, aiming to cover a given total demand, but 97 

assumed that the equipment always operated at nominal levels. However, they did not consider the 98 

interactions of the clients with the distribution system nor their location with respect to the production 99 

site. 100 

 101 

Continuing with steady-state studies, Söderman [13] presented an optimisation of the structure and 102 

operation of an existing cooling network, based on a steady-state model of the users’ maximum 103 

cooling demand. He also presented a project in which the capacity of the network would be increased 104 

to serve almost twice as many customers. To expand the network, he computed the location of new 105 

energy storage and production sites, as well as the pipe connections of the new interconnected system. 106 

This work included the linearisation of the mathematical model of the network. The problems were 107 

solved using the MILP CPLEX solver. Although this contribution, contrary to the previous one, 108 

presented a detailed analysis of the network, some parameters (pipe diameters) were not reported. 109 

Also, the steady-state assumption could prevent the use of renewables to expand the network. Finally, 110 

the assumption of constant cooling demands could result in an overestimation of the production of 111 

cold. MINLP steady-state applications in heating networks are found in the works of Mertz et al. [14] 112 

and Marty et al. [15]. The former performed a combinatory non-linear optimisation to find the 113 

topology and substation exchanger size that minimised the global cost of a district heating network. 114 

The resulting MINLP problem was solved using DICOPT within GAMS®. Marty et al. [15] 115 

implemented a strategy to simultaneously optimise the district heating network topology, the Organic 116 

Rankine Cycle (ORC) sizing of a geothermal plant, and the distribution of the geothermal fluid 117 

between the ORC and the DHN. To solve the proposed MINLP problem, they used the MINLP 118 

DICOPT solver in the GAMS® environment. Since the main critical point in solving an MINLP 119 

problem is its initialisation, Mertz et al. [14] and Marty et al. [15] also presented their strategies to 120 

overcome this point. However, all of these studies were performed for steady-state conditions, 121 

although the variable customer demand, the thermal storage or, sometimes, the use of intermittent 122 

renewable energy result in the district heating and district cooling networks becoming dynamic 123 

systems.   124 

 125 

The multiperiod application presented by Khir and Haouari [16] developed an approximation for 126 

the optimal design of a DCS whose results comprised the chiller plant size, storage tank size, layout of 127 

the network and the quantities of energy produced and stored during each period. They used the ILOG 128 

CPLEX software package, with the aim of minimising the amount of investment and the operational 129 
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cost of the system. District planning included studies on the influence of the number and kind of 130 

buildings served by the cooling network. Their model considers the demand of the user at each period 131 

but does not consider the dynamics of temperature in the system pipes. 132 

 133 

As already stated, one of the least explored subjects of study in the field of energy systems is the 134 

dynamic optimisation and control of these systems. 135 

 136 

Recent advances in this field include the study by Schweiger et al. [17] dealing with optimal 137 

production planning in district heating systems. They presented a framework to represent on-grid 138 

energy systems and performed a dynamic thermo-hydraulic simulation of energy systems. The 139 

framework was based on the Modelica® modelling language, performing the continuous optimisation 140 

tasks with the OPTIMICA compiler toolkit, and the discrete optimisation in the Python open-source 141 

environment using the Pyomo module. They decomposed the resulting mixed-integer-optimal control 142 

problem into a Mixed Integer Quadratic Constrained Programming (MIQCP) problem (a particular 143 

form of MINLP problem) and a continuous problem. The results of the former provided the status and 144 

heat production of each unit. The discrete variables representing the status of each unit were thus fixed 145 

by this solution from the MIQCP, although the real heat production was calculated in the continuous 146 

problem which was transformed into a Nonlinear Programming (NLP) problem using a direct 147 

collocation method, then solved using the interior point algorithm IPOPT. The objective function 148 

proposed in this work (and which had to be minimised) was the supply temperature of the producer for 149 

the duration of the considered time span. Although this implementation is based on physical models, it 150 

is fully tool-oriented to Modelica users, offering few details on the mathematical modelling and 151 

treatment of the dynamic optimisation problem. This fact makes it difficult to replicate their 152 

methodology on other available modelling and optimisation tools. In the field of the dynamic 153 

optimisation of energy systems, we can also mention the dynamic optimisation of a hybrid Solar 154 

thermal and fossil Fuel system [18]. 155 

To our knowledge, studies on the dynamic optimisation of district energy systems are limited to the 156 

aforementioned works. We hope to contribute to this field and propose a dynamic optimisation of the 157 

return temperature of a district cooling network. The choice of this objective function will be 158 

discussed later; we will first introduce the dynamic problems and the way they can be solved.  159 

 160 

Dynamic optimisation has been used for off-line tasks, including studies on operation in response 161 

to disturbances. As proposed by Schweiger et al. [17] a general form for optimisation problems of this 162 

kind can be represented as: 163 

 164 
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min�,�,�,�	
 � =  ��� , ������ + � ℒ��, �, �, ������
��  (1) 

 . �.    ������� = #��, ����, ����, ����, $%&�,   ���'� = �', (2) 

(�����, ����, ����, $%&� = 0, (3) 

(� ������� = 0, (4) 

�* ≤ ���� ≤ �,,          �* ≤ ���� ≤ ��,         �* ≤ ���� ≤ �,   (5) 

where ���� are the differential state variables, ���� the algebraic state variables, ���� the control 165 

variables, all of which are functions of time � ∈ .�', ��/, and $%& represents the time-independent 166 

parameters. The constraints of this optimisation problem are the Differential and Algebraic Equations 167 

(DAE) (2)-(4). This formulation is known as the problem of Bolza [19], where � is a scalar to be 168 

minimised. The first term corresponds to the Mayer term and the integral term corresponds to the 169 

Lagrange term. Thus, depending on the application, in dynamic optimisation, it is possible to 170 

formulate objective functions of the form of Bolza, Mayer or Lagrange.   171 

 172 

Biegler [20-21]  reported different ways to solve the aforementioned problem. As shown in Figure 173 

1, we can use the variational approach, based on the Pontryagin’s Maximum Principle. However, this 174 

approach could not handle properly with inequality constraints (in our case, we deal with such 175 

constraints since the velocities are bounded). Other strategies applying an NLP solver can be used. 176 

This involves replacing the time-dependent variables by discretised ones, such as coefficients of an 177 

interpolation polynomial, for example, so that an NLP problem can be formulated and solved with 178 

respect to these new discretised variables. The first strategy is the sequential approach: in this case, 179 

only the control variables are discretised. For a set of control variables, a DAE solver in a loop solves 180 

the state variables of the DAE system and returns the state and algebraic variables to the NLP 181 

optimisation level. The control variables (in fact the discretised variables that represent them) are 182 

updated by the NLP solver. This strategy can be time-consuming. In the second strategy, the 183 

simultaneous approach, both state and control variables are discretised in time. Hence, the DAE 184 

system is solved only once, at the optimal point, and therefore this can avoid computational effort to 185 

obtain intermediate solutions for the DAE system. 186 
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 187 
Figure 1. Solution strategies for dynamic optimisation 188 

 189 

Many authors have suggested using Orthogonal Collocation on Finite Elements (OCFE) to 190 

discretise the state and/or control variables when DAEs are constraints of the dynamic optimisation 191 

problem  [20-22] (or [23-25]).  192 

With this in mind, in the present study, we use a simultaneous approach using 2D-OCFE. The 193 

equation that describes the transient temperature profiles in the pipes is a partial differential equation. 194 

Variables are then discretised in time and space. 195 

 196 

In order to contribute to the field of dynamic optimisation of district cooling system (DCS) 197 

operation, we propose a methodology that enables a simultaneous (oriented-equation) solution of this 198 

dynamic optimisation problem using 2D Orthogonal Collocation on Finite Elements (2D-OCFE). We 199 

apply this methodology to a medium-sized cooling system serving 20 consumers of different 200 

categories with fluctuating cooling demands, subject to variable external conditions. The dynamic 201 

simulation and optimisation were performed using insulated and non-insulated piping.  202 

 203 

First, the configuration of the studied cooling network is described, including the consumers’ 204 

demand profile and the external conditions to which it is subject. Next, we present the resulting 205 

problem, then the proposed discretisation strategy, which consists in transforming the Partial 206 

Differential Algebraic Equation (PDAE) problem into a purely algebraic problem, by implementing 207 

2D Orthogonal Collocation on Finite Elements (2D-OCFE) for the dynamic simulation (DS) of the 208 

case study. Based on this formulation, we structure the operational objective function for the 209 

optimisation problem. Finally, we discuss the results of the simulation and optimisation problems. 210 

This work is the first stage of a project that aims to develop a methodology for the optimal 211 

management of a cooling network, considering the dynamics of the whole system, including 212 

conversion, storage, and energy distribution. 213 

 214 
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2 Cooling system 215 

We develop a dynamic analysis of an academic case study, with conditions based on real data. The 216 

system consists of 20 users distributed over an urban area in known locations. Based on this 217 

distribution, we propose a set of nodes and pipes that connect the production site and the users. Next, 218 

we build the cooling demand profile for each user based on typical performances for various kinds of 219 

building, as reported by an industrial supplier of cooling services. Finally, we present the external 220 

conditions to which the system will be subject. 221 

2.1 Configuration of the system 222 

The topology of the system is based on the illustrative example presented by Söderman [13]. From 223 

the coordinates the author presented for the location of the users, it is possible to compute the lengths 224 

of the pipes, as detailed in Table 2. 225 

 226 

Table 2. Lengths of main and lateral pipes of the system 227 

Main pipes Lateral pipes 

Pipe  Length (m) Pipe  Length (m) 

0 0
 50 0123 4��23 40 

1 1
 279.93 0126 4��26 0.1 

2 2
 720.07 0128 4��28 242.99 

3 3
 176.46 012: 4��2: 95.21 

4 4
 124.69 012< 4��2<    110.64 

5 5
 397.32 012> 4��2> 227.56 

6 6
 124.97 012@ 4��2@ 102.58 

7 7
 338.27 012B 4��2B 0.43 

8 8
 198.19 012D 4��2D 147.38 

9 9
 478.17 0123� 4��23� 330.51 

10 10
 147.01 01233 4��233 110.62 

11 11
 73.54 01236 4��236 154.73 

12 12
 279.38 01238 4��238 0.32 

13 13
 382.3 0123: 4��23: 404.71 

14 14
 190.01 0123< 4��23< 95.14 

15 15
 12.13 0123> 4��23> 371.66 

16 16
 268.79 0123@ 4��23@ 363.38 

17 17
 1280.6 0123B 4��23B 371.94 

18 18
 198.28 0123D 4��23D 91.03 

19 19
 32.89 0126� 4��26� 0.1 

20 20
 438.04    

 228 
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Using this information, Figure 2 presents a scheme of the cold network, main pipes (0-20), lateral 229 

pipes �0123 F 0126�� , the nodes and the users, in a simplified way that is useful for modelling 230 

purposes. As shown in Table 2, the complete system also includes a return network, represented by the 231 

return pipes (0r - 20r and 4��23 F 4��26�) with the same lengths as the outward path pipes. Thus, the 232 

whole network is an arrangement of 82 pipes with a total length of almost 19 km (18904.11 m).  233 

 234 

 235 

Figure 2. Representation of the cooling network 236 
 237 

To define the diameters of the pipes, we take into account the recommended flow velocities for 238 

sizing cooling water pipes, as reported by Branan [26] and presented in Table 3. The system must 239 

respect the velocity bounds during the simulation and optimisation analysis.  240 

 241 

Table 3. Maximum allowable speeds in pipes 242 

Pipe size (in) 
Maximum velocity (ms-1) 

in mains pipes in laterals pipes 

2 -- 1.31 

3 0.94 1.32 

4 1.08 1.54 

6 1.29 1.69 

8 1.27 1.76 

10 1.37 1.86 

12 1.56 2.08 

14 1.56 2.19 

16 1.80 2.41 

18 1.90 2.53 
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Pipe size (in) 
Maximum velocity (ms-1) 

in mains pipes in laterals pipes 

20 2.03 -- 

 243 

2.2 Users’ demand profiles 244 

For this work, we built cooling demand profiles based on the daily cooling demand curves 245 

presented by Olama [27] for different kinds of buildings including office, residential, hotel or service, 246 

apartments, shopping and leisure. These profiles represent the variation in demand with respect to the 247 

peak cooling load of the buildings, as seen in Figure 3. 248 

 249 
Figure 3. Demand for different kinds of building 250 

 251 

Using the peak cooling demands presented by Söderman for this system [13], which are based on 252 

real data (Table 4), and the aforementioned profiles we can compute the demand profiles of the 20 253 

consumers. 254 

Table 4. Peak demands for users in the Network 255 

Consumer Type 
Maximum 

load (kW) 
Consumer Type 

Maximum 

load (kW) 

C1 Shop 1640 C11 Residential 800 

C2 Office 700 C12 Office 100 

C3 Leisure 200 C13 Shop 180 

C4 Office 780 C14 Office 1500 

C5 Shop 100 C15 Hotel/Services 650 

C6 Office 900 C16 Hotel/Services 380 

C7 Office 100 C17 Leisure 455 

C8 Residential 250 C18 Hotel/Services 900 

C9 Hotel/Services 400 C19 Leisure 360 
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Consumer Type 
Maximum 

load (kW) 
Consumer Type 

Maximum 

load (kW) 

C10 Office 170 C20 Leisure 1220 

 256 

Considering these data, Figure 4 presents the total cooling demand profile of the district cooling 257 

system and details the specific demand of two consumers (for the sake of clarity). The maximum 258 

demand of the network is 10911 kW and is reported at 17.64 h (tmax). We will use the demand of each 259 

consumer reported at this time QCp(tmax) for dynamic simulation analysis.  260 

 261 

Figure 4. Total and some specific cooling demands of the system 262 
 263 

We will study the system under different external conditions, including various kinds and 264 

characteristics of soil as well as differentiated ambient temperatures corresponding to different climate 265 

zones. 266 

2.3 Studied climate zones 267 

The kind of soil and its moisture affect its thermal conductivity, as reported in the ASHRAE 268 

district cooling guide [28]. 269 

Table 5. Soil thermal conductivities 270 

Soil Moisture (By mass) 
Thermal conductivity (Wm-1K-1) 

Sand Silt Clay 

Low            <4% 0.29 0.14 0.14 

Medium      4%-20% 1.87 1.30 1 

High           >20% 2.16 2.16 2.16 

 271 
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In order to analyse the implementation of a district cooling network in different climate areas and 272 

its impact on the total thermal resistance and on the thermal distribution in the pipes, we chose three 273 

cases (cities) with different daily ambient temperature profiles and soil characteristics, as detailed 274 

below: 275 

 276 

• Ras Al Khaimah (UAE): Low moisture; sandy soil. 277 

• Paris: Medium moisture; clay soil  278 

• Kuala Lumpur (KL): High moisture; clay soil  279 

 280 

Figure 5 details the profile temperature on the hottest day in 2018 for each of the selected cities. 281 

These profiles were built using real data from the Weather Underground global community, which 282 

collects data from more than 250,000 weather stations around the world [29]. 283 

   284 

 285 

Figure 5. Summer temperature profiles in the studied climate zones 286 
 287 

With the system configuration already defined, we can complete the mathematical model that 288 

describes the dynamic operation of the network and develop a proper strategy for its solution. 289 

 290 

3 Mathematical model 291 

The model of the DCS is constituted by the heat transfer equation in each pipe, together with mass 292 

and energy balances at each node of the system, under the following assumptions: 293 

- The system uses water as cooling fluid (G). 294 
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- The mass flow in each pipe is time-dependent and uniform. 295 

- The physical properties of the fluid are constant. 296 

3.1 Heat balance in the pipes 297 

Most of the available literature on dynamic modelling and optimisation of district energy systems 298 

focus their interest in the analysis of district heating systems. Nevertheless, these models can also be 299 

applied to district cooling [30]. Studies on equation-based methods for the analysis of energy networks 300 

[17,31,32] use a dynamic one-dimensional heat transfer equation to describe the temperature transients 301 

in the pipes, defined as: 302 

HI ∙ K$I ∙ L ∙ MN��, O�M� + PQ ��� ∙ K$I ∙ MN��, O�MO = NR F N��, O�ST  (6) 

 303 

where ρI , K$I , L, and PQ  are the density, specific heat capacity, area (cross-section), and mass flow 304 

rate of water in the pipe, respectively; ST is the total thermal resistance per unit length of pipe; N stands 305 

for temperature in the pipe, NR for the temperature of the soil surface, and  � and O for time and 306 

distance dependency.  307 

 308 

Figure 6. Representation of a buried pipe 309 
 310 

This heat equation is subject to the following assumptions: 311 

� Plug flow 312 

� Heat transfer is considered only in the radial direction 313 

� Conduction heat transfer is considered through the pipe, the insulation, the casing and the soil 314 

� Material properties are constant and independent of temperature. 315 

� It does not include thermal interactions between supply and return pipes 316 

� Thermal inertia of the pipes, the casing and the insulation is neglected 317 

� Conductive heat transfer in the fluid is neglected 318 

The total thermal resistance per unit length of pipe, ST , is a function of the thermal conductivities 319 

of the pipe, V	W, the insulation, VWX, the casing, VXY, and the soil, VR, as follows [31]: 320 

 321 
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ST = 12Z&	ℎ\ + ]1 �&W&	�2ZV	W + ]1 �&X&W�2ZVWX + ]1 �&Y&X �2ZVXY + 1^VR  (7) 

 322 

Expressions to compute the conduction shape factor ^ are detailed in Chapter 4 of reference [33], 323 

and the average convection heat transfer coefficient in the pipe ℎ\ can be computed as: 324 

ℎ\ = _�\\\\VI2&	       (8) 

 325 

where we can use the Dittus-Boelter equation [34] to compute the average Nusselt number _�\\\\ . 326 

 327 

The solution of equation (6) has been addressed using mainly discretisation (partial or total) or 1D 328 

analytical solutions coupled with physical approximations. Discretisation strategies include the 329 

implementation of finite volumes [35], finite elements [36], and finite differences [37]. On the other 330 

hand, estimates are based on a succession of steady states, as proposed by Duquette et al. [31], or the 331 

Lagrangian approach of Zhou et al. [38]. In this second group, we can also include the contributions of 332 

Stevanovic et al. [39], van der Heijde et al. [32] and Schweiger et al. [17]. These last two 333 

contributions use an implementation in Modelica®, where the fluid and temperature propagations are 334 

calculated separately from the heat loss, combining a plug flow approach with an ideal mixed volume 335 

model. These methods require a large number of grid points for discretisation, or a large storage 336 

memory to compute the behaviour of the temperature in the pipes for the steady-state-based methods. 337 

It could be pointed out here, that several of these studies ([31, 32, 38]) have validated the previous 338 

model, based on reasonable assumptions, by comparison with experimental data. 339 

 340 

However, for some dynamic modelling applications in chemical engineering [40,41], the 341 

orthogonal collocation method has been used to handle Partial Differential Equation (PDE) problems. 342 

If applied to the space domain, the orthogonal collocation method transforms a PDE system into an 343 

Ordinary Differential Equation (ODE) system (where time is the only integration variable) which is 344 

smaller in size than that obtained using a classical discretisation strategy (e.g. Finite differences). The 345 

resulting ODE system can be solved using classical methods, like Runge-Kutta (RK) as carried out by 346 

Ebrahimzadeh et al. [41], who reported computational times up to 90% lower compared to the Method 347 

of Lines (i.e. finite differences in space and RK in time).  348 

When the nature of the phenomenon demands more accurate measurements, the domain of 349 

integration can be divided into subdomains or finite elements, where the orthogonal collocation 350 

method is implemented, allowing the use of a large number of grid points. Biegler [42] reported better 351 

convergence and lower computational requirements for the OCFE method compared to other 352 

discretisation methods. 353 
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 354 

To describe the dynamics of the district system, we must couple the 82 Partial Differential 355 

Equations (PDE) (6) (one for each pipe) with the mass and energy balances in the connections 356 

between the network and the users, represented by linear and nonlinear algebraic equations presented 357 

in the next section. This leads to a Partial Differential Algebraic Problem (PDAE), which is solved in 358 

the present work using 2D-OCFE, transforming the PDAE system into a set of algebraic equations. 359 

Thus, we can solve the dynamic optimisation of the DCS using a simultaneous strategy. 360 

 361 

 362 

3.2 Heat balances in the nodes 363 

Initial condition 364 

For each pipe `, the initial spatial temperature profile is known from a steady-state simulation:  365 

Na�0, O� = ba�O�      (9) 

Here, ba�O� represents the spatial distribution of temperature along pipe ` at � = 0. The way to 366 

achieve this steady-state simulation will be discussed later. 367 

 368 

Boundary conditions 369 

We assume that chilled water is produced at a constant temperature (277 K). For the pipe leaving 370 

the production site ($ = 0), we then have:  371 

N'��, 0� = 277 K      (10) 

The nodes in the outward path are splitters, where the outlet temperature of the pipe entering the 372 

node is equivalent to the inlet temperature of the pipe leaving it:  373 

 374 N�de��, f�de� = N���, 0�   , $ = 1 … 13,15, … 20 N'��, f'� = Neh��, 0� N���, f�� = Nijkl ��, 0�   ,   $ = 1 … 20 

(11) 

 375 

where fa is the length of pipe `. ` may be $, $
, 012l , 4��2l. 376 

On the other hand, heat balances for the return path and the consumers �K� = �Ke, Km, … , Km'�) will 377 

define the boundary condition of the pipes leaving these elements of the system. As we consider 378 

constant properties, they will be: 379 

 380 
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PQ �n��� ∙ N�n��, 0� = PQ ��oe�n��� ∙ N��oe�n��, f��oe�n� + PQ p��kl ��� ∙ Np��kl ��, fp��kl � ,  
$ = 1 … 12,14, … 19  PQ 'n��� ∙ N'n��, 0� = PQ en��� ∙ Nen��, fen� + PQ ehn��� ∙ Nehn��, fehn�  

PQ �n��� ∙ N�n��, 0� = PQ p��kl ��� ∙ Np��kl ��, fp��kl �    ,   $ = 13 , 20 

 

(12) 

 381 

q2l��� = PQ ijkl ��� ∙ C$I ∙ sNp��kl ��, 0� F Nijkl ��, fijkl �t (13) 

 382 

where Nijkl ��, f�� and Np��kl ��, 0� are the inlet and outlet temperatures of the exchanger. 383 

3.3 Mass Balances in the nodes 384 

For the nodes and consumers, the mass balances are given by: 385 

Outward path 386 PQ ���� = PQ �oe��� + PQ ijkl ���    $ = 1 … 12,14 … 19 PQ ���� = PQ ijkl ���    $ = 13 , 20 PQ '��� = PQ e��� +  PQ eh��� 

(14) 

 387 

Return path 388 PQ �n��� = PQ ��oe�n��� + PQ p��kl ���    $ = 1 … 12,14 … 19 PQ �n��� = PQ p��kl ���    $ = 13 , 20 PQ 'n��� = PQ en +   PQ ehn 

(15) 

 389 

Consumers 390 PQ ijkl ��� = PQ p��kl ���   $ = 1 … 20 (16) 

 391 

With the heat and energy balances of the system already formulated, the next section presents the 392 

analysis of degrees of freedom of the system and the supplementary relationships that we included in 393 

order to have zero degrees of freedom for simulation purposes. 394 

3.4 Degrees of freedom and flow policy 395 

From the set of equations (6) and (9) to (16), the degrees of freedom of the system can be analysed 396 

for the 82 pipes at each instant �, as detailed in Table 6. The number of degrees of freedom of the 397 
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system is 20 at each instant t, representing the profiles to be given for dynamic simulation or computed 398 

via dynamic optimisation. 399 

 400 

Table 6. Analysis of degrees of freedom of the system 401 
Variables Equations 

Variable # of variables Equation # of equations Na�O, �� 82 (6) 82 

 1st order in � and O PDE requires per pipe:   

- 1 Initial Condition                (9) 82 

- 1 Boundary Condition         (10)   1  

                              (11) 40 82 

                              (12) 21 

                              (13) 20 

PQ a��� 82 
(14) 21  

62 (15) 21 

(16) 20 

 402 

Considering this, for dynamic simulation purposes we must complete the degrees of freedom of the 403 

system. We can do this by defining the flow policy we will use to achieve the cooling demand for each 404 

consumer. Some systems operate under constant production conditions, as shown in Figure 7, where 405 

the production of cold �PQ '�  and the mass flow in the main network (PQ � and PQ ijkl) are constant at 406 

the level necessary to cover the peak of the total demand of the system. In this way, the producer 407 

guarantees enough cold in the system during the studied period, but this results in cost overruns for 408 

production and pumping of the chilled water. At each consumer substation, there is a common 409 

pipe KP��� connecting the main and return networks, to regulate the flow to the consumer (u012l���) 410 

over time, sending large quantities of cold water directly to the return network in periods of low 411 

demand, and the total flow of PQ ijkl  to the consumers when their demand corresponds to the peak. The 412 

literature reports this policy as constant-primary secondary-variable flow [27,28].  413 

 414 
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 415 
Figure 7. Constant flow policy diagram 416 

 417 

To represent constant flow in the main network, we first define a constant mass flow leaving the 418 

production site by: 419 PQ '��� = PQ 'vwx (17) 

 420 

Furthermore, in the splitters, we assume that the mass flows entering the consumers at each time 421 �PQ ijkl ���� are proportional to their corresponding maximum peak demand �yz%`�K�� from Table 4). 422 

We can do this by fixing the ratio between these variables for all the consumers over time as: 423 

 424 yz%`�Ke�PQ ijk3 = yz%`�K��PQ ijkl ,   ∀ $ ∈ |2, … , 20} (18) 

 425 

The mass and energy balances presented in section 3.3 are the balances for each consumer for the 426 

boundaries defined by the dotted borderline presented in Figure 7. Hence only the mass flows PQ ijkl  427 

are computed; the pipes KP���, u012l��� and u4��2l��� belong to the user’s substation and their 428 

flows are not considered in this analysis. 429 

 430 

The dynamic response of the system will initially be analysed under constant production mass flow 431 PQ 'vwx as expressed in (17). This value corresponds to the value of the producer mass flow in steady-432 

state, which is computed using relations (18) and imposing a return temperature (19) to complete the 433 

20 degrees of freedom. 434 
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N'n�f'n� = 287 K (19) 

 435 

Then, to simulate the constant flow policy in the dynamic simulation, the 20 degrees of freedom at 436 

each time t are completed using (17) and (18). 437 

 438 

The optimisation analyses include the study of the constant flow policy and optimisation of the 439 

system operation using a dynamic flow policy. In the former case, (17) and (18) will be constraints 440 

and the value P'vwx will be the only optimisation variable. In the latter case, these constraints are not 441 

considered, giving the profiles PQ '��� and PQ ij2l���, $ = 1 … 20 as optimisation variables.  442 

 443 

Finally, as mentioned in section 2.1, the flow velocity ua,~,i inside a pipe `, cannot exceed its 444 

maximum allowed velocity u�	�,a reported in Table 3. 445 

ua,~,i ≤ u�	�,a (20) 

With this inequality, we complete the mathematical model that we will use to describe the 446 

dynamics of the proposed district cooling distribution system.  447 

 448 

4 Formulation of the optimisation problem 449 

With the mathematical model already defined, this section describes the operational optimisation 450 

applications of the DCS. We present the operational objective function, which will be analysed for 451 

different degrees of freedom. Lastly, we detail the methodology used to obtain the initialisation and 452 

the solution of the resulting NLP problem. 453 

 454 

For the present application, we will use a Lagrange problem type formulation, which will measure 455 

the influence of the variations in cold demands q2���� and of the soil surface temperature NR��� on the 456 

systems, with the aim is to achieve a given operational condition over the studied time horizon. 457 

 458 

In our case, the control variables are the mass flow in each pipe PQ a���. They are called control 459 

variables because they are the variables which will have to be manipulated to manage the system 460 

online. It should be noted, however, that the dynamic optimisation we do here is not an online control: 461 

it consists in the offline calculation of the temporal profiles of these control variables. The known soil 462 

temperature NR��� as well as the demand of each consumer q2���� are treated as algebraic variables, 463 

which are not optimisation variables. The velocities ua��� are optimised algebraic variables. The 464 

lengths of the pipes fa are time-independent parameters. In our case, the differential state variables are 465 

the temperature in each pipe, Na, which depend not only on � but also on O. Instead of dealing with 466 
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DAE constraints, we then deal with PDAE constraints. It can be noted that applying a space 467 

discretisation method to the temperatures leads to DAE constraints, while increasing the number of 468 

“state variables” dependent only on � (variable Na��, O� is replaced by 1] variables Na����). 469 

 470 

4.1 Objective function 471 

The efficiency of a DCS is measured in terms of the difference between the temperature of the fluid 472 

leaving the production site and the temperature of the fluid that returns to it (ΔT). Generally, 473 

maintaining a high ΔT reduces the flow rates of the chilled water system and the costs of the 474 

distribution system due to the use of smaller pipe diameters. This results in savings in pumping energy 475 

costs and improves operating costs [27]. Typically, ΔT in the DCS production site is maintained at 476 

around 8-12°C [28,43]. 477 

 478 

When the ΔT is not properly controlled, the DCS could present an important issue known as “low 479 

ΔT syndrome” [27]. Indeed, this low ΔT at the production site is a consequence of a low ΔT at each 480 

consumer, which is a symptom of the low efficiency at the consumer’s substation. Then, in order to 481 

satisfy the consumers’ demands, the system has to pump excess rates of chilled water although the 482 

plant is not designed to operate at this level. A high ∆T design is generally economical to the operation 483 

of a district cooling station, the chilled water distribution network, and individual buildings’ heating, 484 

ventilating and air conditioning (HVAC) systems. This is because of savings in the size of piping and 485 

accessories in the plant and larger savings in piping, pre-insulation, and accessories in the chilled 486 

water distribution network. 487 

To optimize ΔT and meet customer demand, both the flow from the central plant and flow on the 488 

customer’s side must be varied [28]. These variations also represent savings in pumping energy. The 489 

complete dynamic flow policy of the system is represented in Figure 8. This operating policy 490 

eliminates the use of the common pipe shown in the case of the constant flow policy (Figure 7) and the 491 

resulting mixing and possible reduction in the temperature in the return network.  492 

 493 
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 494 

Figure 8. Dynamic flow policy diagram 495 
 496 

The variations in temperature mentioned above represent not only a technical issue but also an 497 

economic impact on the customer. The consumer will be charged 3% for each degree Celsius of the 498 

monthly average return temperature below the system design return temperature [27]. On the other 499 

hand, it is important to avoid high temperatures that might compromise the proper operation of the 500 

production site technology. 501 

 502 

Bearing this in mind, we define � as the quadratic error between the outlet temperature of the users 503 

and a set point. First, we analyse the system under the constant flow policy (21), and then we perform 504 

the optimisation for a dynamic operation (22), for a design outlet temperature of 287K. 505 

 506 

min�Q �k���	
 � �� �Np��2l��� F 287�m ��mh
' ��  

^. �. �6�, �9� �4 �16�, �17�, �18�, �20� 

 

(21) 

Since a constant flow policy is applied, equation (17) is embedded in the set of model equations. 507 

We also apply the flow policy equation  (18), which requires that the ratios of the splitters are 508 

constant. In this optimisation, therefore, the only control variable is the constant flow leaving the 509 

producer PQ '2�~. �%& represents all the other variables of the problem (N��, O�, PQ a�, ��, …) whose 510 

optimal paths minimise the difference between the consumers’ outlet temperature and the proposed 511 

design temperature over time. The flow variables PQ a��� are treated as algebraic variables. 512 

 513 

min�Q ���l �w��	

� �� �Np��2l��� F 287�m ��mh

' ��  

^. �.  �6�, �9� �4 �16�, �20� 

(22) 
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In this case, none of the constant flow policy equations (17) and (18) are included in the model, so 514 

that the mass flow of the producer and the ratios of the splitters are time-dependent and will be the 515 

main control variables. 516 

4.2 Discretisation strategy 517 

As stated in section 1 in the present work, we use 2D-OCFE to transform equation (6) into a set of 518 

algebraic equations, which is highly advantageous and efficient for simultaneous optimisation 519 

applications[21]. To our knowledge, there are no studies related to the dynamic operation of DCSs that 520 

use OCFE to handle the resulting PDAE problem.  521 

 522 

The generalities of the numerical method and its implementation in discretising equation (6) are 523 

presented in Appendix A. Based on this implementation, we present the discretised mathematical 524 

model of the system in Appendix B. 1# elements containing 1� + 1 collocation points are used to 525 

discretise the space domain and 1z elements containing 10 + 1 collocation points are used to discretise 526 

the time domain. The choice of the value of these parameters is discussed in section 5. Finally, in 527 

order to verify the accuracy and the validity of the results obtained with this kind of discretisation, 528 

comparisons with other classical methods are proposed in Appendix C. 529 

4.3 Methodology for the solution of the dynamic simulation and optimisation problems 530 

A good initial guess for the optimisation of dynamic systems is crucial for a fast and reliable 531 

solution to a dynamic optimization problem, as stated by Safdarnejad et al. [44]. Figure 9 describes the 532 

procedure we implemented to obtain the initial guess and solve the PDAE problem. 533 

 534 

Due to the lack of piping data for the selected system [13], we define the diameters using an 535 

iterative procedure, which uses the maximum allowable speed flows as decision criteria. For this 536 

purpose, we first compute a theoretical maximum mass flow in the main pipe using a model without 537 

heat losses that includes only the heat and mass balances in the nodes and consumers, for the 538 

maximum demand (peak demand) of each consumer and a return temperature of 287 K (which is also 539 

the outlet temperature of each consumer exchanger since heat losses are neglected). We then evaluate 540 

the maximum speed constraints consecutively, looking for the smallest diameter of each pipe that 541 

could transport the computed flow without exceeding the allowable speeds. It is important to mention 542 

that the diameters chosen for this iterative step will lead us to a physically achievable operation, but 543 

they are not optimal regarding any economic or operational criteria. The computation of the optimal 544 

diameter of the pipes is beyond the scope of the present work. 545 

 546 
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 547 

Figure 9. Schematic representation of the solution strategy 548 
 549 

With the diameters already defined, we run the model without heat losses for the maximum 550 

demand of the system (demand in � = 17.64 ℎ = ��	�, presented in Figure 4), and the result 551 

represents the initialisation to solve the steady-state (SS) problem. This problem is defined by the 552 

equation system (6), (9) to (18) and (20), with  ��Y� = 0 , external conditions in � = 0 and user demand 553 

fixed to its value at � = ��	�. The main result of this problem is the spatial distribution of 554 

temperature ba�O� for each pipe ` for the constant flow policy, which represents the initial condition 555 

for the dynamic problem and the initial guess for its solution. This distribution is given by the 556 

temperature values at the spatial collocation points ba,�,�. With this, it is possible to solve the fully 557 

dynamic simulation (DS) problem (Equations (6), (9) to (18) and (20)), that describes the behaviour of 558 

the complete system, subject to the environmental and operational perturbations over the selected time 559 

horizon. Finally, we use the solution of the DS as the initial guess for the dynamic optimization (DO) 560 

problem. We implement all the described stages in the GAMS modelling environment and solve the 561 
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different problems using the CONOPT feasible path solver, on a 2.7 GHz quad-core CPU with 8 Gb of 562 

RAM.  563 

 564 

5 Results and discussion 565 

We present the results according to the flowchart presented in Figure 9. First, we analyse the 566 

computed pipe diameters of the cooling network pipes using the model without heat losses. These 567 

diameters become inlet data (parameters) for the forthcoming problems. The second result is the 568 

distribution of temperatures computed by the steady-state simulation for the system under the external 569 

conditions described in section 2.3. Lastly, we present dynamic analyses (DS and DO) of the case with 570 

major variations in the steady-state simulations. 571 

5.1 Pipe diameters 572 

Using the abovementioned iterative procedure with the model without heat losses, we define the 573 

distribution of pipe diameters detailed in Table 7. 574 

 575 

Table 7. Pipe diameters for the DCS 576 

Pipe size (in) Pipes # of pipes 

20 0, 0r 2 

16 1, 1r 2 

14 2, 2r, 14, 14r 2 

12 3, 3r, 4, 4r, 5, 5r, 6, 6r, 15, 15r, 16, 16r, 17, 17r  16 

10 7, 7r, 8, 8r, 18, 18r 6 

8 9, 9r, 10, 10r, 11, 11r, 19, 19r, 20, 20r, in/outC1, in/outC14 14 

6 in/outC2, in/outC4, in/outC6, in/outC11, in/outC15, in/outC18, in/outC20 14 

4 12, 12r, in/outC9, in/outC16, in/outC17, in/outC19 10 

3 13, 13r, in/outC3, in/outC8, in/outC10, in/outC13 10 

2 in/outC5, in/outC7, in/outC12 6 

 Total 82 

 577 

These diameters ensure the operation of the system under the proposed demand profiles and they 578 

will be fixed parameters for the subsequent problems. 579 

 580 

Under these conditions, the producer pumps a total flow of 259.66 kg s-1 of chilled water, to supply 581 

the cooling demand corresponding to the maximum demand of the network ���	��. The distribution of 582 

diameters presented here is consistent because the sizes of the pipes decrease the further away they are 583 

from the production site. Furthermore, the smallest pipes feed those users with lower cooling 584 

demands. With these data, we define the global thermal resistance per unit length S’ of the pipes. To 585 

compute the thermal resistances, we assume that all the pipes are buried at the same depth of one 586 
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meter (� in Figure 6). The thermal conductivities and thickness of the insulation correspond to the 587 

values reported by the North American Insulation Manufacturers Association [45]. 588 

 589 

 Figure 10 shows the variation in the global thermal resistance with respect to the pipe diameters 590 

for insulated and non-insulated pipes, for the characteristic terrain and initial soil temperature for each 591 

of the proposed climate zones detailed in section 2.3. These values will also be input parameters for 592 

the forthcoming problems. 593 

 594 

 595 

Figure 10. Variation in total thermal resistance 596 
 597 

We can show that in all cases, as the pipe diameter increases, the value of the global thermal 598 

resistance decreases, resulting in a major variation for insulated pipes.  For both kinds of pipe, 599 

installation under KL conditions has a lower thermal resistance. The discontinuity of R’ for the 600 

insulated pipes corresponds to a change in the insulation thickness, which is one inch for pipes with 601 

diameters smaller than 8 inches and 1.5 inches for the others. Furthermore, for large insulated pipes 602 

(16” and 20”) the resistance in KL is equivalent to that computed for non-insulated pipes under UAE 603 

conditions. These values will have a major influence on the spatial distributions of temperature, as we 604 

will discuss in the next subsection.  605 

5.2 Steady-state simulations 606 

With all the elements of the distribution network already established, it is necessary to define the 607 

number of elements �1#� and points �1� + 1� that will be used to solve the DS and DO problems. To 608 

do this, we perform several simulations, changing the number of elements (1# = 1,2,3,5� and points 609 

inside each element �1� + 1 = 4,6,11� (e.g. the degree of the Lagrange interpolation polynomial is =610 
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3,5,10 ), and compare the results. We chose the combination of elements and points with the lowest 611 

CPU time where the solution did not present significant variations compared with the solution 612 

obtained with the maximum number of points. Using this procedure, we chose 1# = 1 and  1� + 1 =613 11. Later, using the same procedure for dynamic simulations, we define 1z = 24 and 10 + 1 = 6. 614 

 615 

We completed the steady-state simulation for the climate (using NR �� = 0�  as external 616 

temperature) and soil conditions presented in section 2.3 using insulated and non-insulated pipes. For 617 

each climate zone, the simulation was first performed for a system with insulated pipes, fixing the 618 

return temperature b'n,j�,j�  to compute the producer mass flow PQ '2�~. This latter is set as a parameter 619 

for the system with non-insulated pipes, where we compute the return temperature in order to compare 620 

the influence of the insulation under the same flow conditions. Table 8 details these results. 621 

 622 

Table 8. Results for steady-state simulations 623 

 Insulated pipes Non-insulated pipes 

KL Paris UAE KL Paris UAE PQ '2�~ �`(  de� 263.6 261.4 262.9 263.6 261.4 262.9 b'n,j�,j� ��� 287 287 287 287.7 287.2 287.1 

 624 

As expected, the system that reported the lowest thermal resistance (KL) demands more cold water 625 

from the provider to achieve the proposed return temperature using insulated pipes. On the other hand, 626 

although the UAE presents the biggest thermal resistance, this location also represents the hottest 627 

external temperatures, resulting in a bigger mass flow compared with the network installed in Paris. 628 

Moving to the systems with non-insulated pipes, the variation in the return temperature increases as 629 

the thermal resistance decreases. Although the non-insulated system in UAE presents a slightly 630 

smaller variation than that in Paris, the producer must pump more cold water, resulting ultimately in a 631 

greater operational cost. 632 

 633 

 Figure 11 details the spatial distribution of temperature over the left outward branch of the network 634 

(C1 to C13 in Figure 2; the production site is located at O = 0). The solution of the steady-state model 635 

for each climate condition takes less than 0.5 s.  636 

 637 



27 

 

 638 

Figure 11. Spatial distribution of temperature in the outward path for the left side of the network 639 
 640 

We observe in all cases that the water in the pipes increases in temperature as it moves further from 641 

the production site. As expected, results under the humid conditions in Kuala Lumpur present the 642 

biggest temperature increments. Although the variations in spatial temperature are of the order of 0.5 643 

K or less, its computation will have a large impact on the dynamic study of the system under variable 644 

flows. Furthermore, the computed mass flows aim to cover the maximum demand of the system.  645 

 646 

These results agree with the total pipe resistances presented in Figure 10. The system with the 647 

lowest thermal resistance values has the greatest spatial temperature variations. In the light of these 648 

results, the dynamic analysis of the system will be performed for the external conditions in KL. 649 

5.3 Dynamic simulation 650 

As stated in equation (17), the producer mass flow is fixed at its computed steady-state value 651 

(Table 8) for the dynamic simulations. Figure 12 details the temperature profile at the outlet of 652 

consumers 1 and 11, for both insulated and non-insulated pipes. We chose these consumers because of 653 

their high demand and to show the impact of the distance from the producer site. The CPU times 654 

reported for solving the dynamic simulation problem were 56.7 s for the system with insulated pipes 655 

and 46.8 s for the network without insulation. 656 
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 657 

Figure 12. Outlet temperature in consumers 1 and 11 for constant flow policy under KL conditions 658 
 659 

Using the constant flow policy, the consumers’ outlet temperature will vary over time in line with 660 

the corresponding demand. This results in a non-uniform return temperature to the production site, as 661 

shown in Figure 13.  For both insulated and non-insulated pipes, the return temperature (N'n��, f'n�) is 662 

influenced by the total demand profile. These profiles exhibit a lag time compared to the profile of the 663 

total demand. This lag time represents the interval of time it takes for the fluid leaving each user to 664 

arrive at the production site. These variations in return temperature represent a technical issue at the 665 

production site due to the need for production at the cold utility to stay close to the design temperature 666 

[46]. Furthermore, the operation under this flow policy drives the system to the undesired low ΔT 667 

syndrome, with ΔT values at the production site as low as 6.28K. 668 
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 669 

Figure 13. Return temperature under constant flow policy for KL conditions 670 
 671 

As stated in section 4.3, the solution described for the dynamic simulation problem will be used as 672 

the initial guess for the optimisation problems, whose results are detailed in the next section. 673 

5.4 Dynamic optimisation 674 

The DO problem stated in the formulation (21) aims to evaluate the potential of the constant flow 675 

policy to maintain the system under the desired conditions of operation. For this problem, the only 676 

control variable is the constant flow at the production site. Figure 14 presents the temperature profiles 677 

of the return and outlet pipes of the chosen consumers for both insulated and non-insulated pipes. In 678 

terms of CPU time, the solution of problem (21) required 70 s and 58 s for insulated and non-insulated 679 

pipes respectively.  680 

 681 
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 682 
Figure 14. Optimisation of the constant flow operation 683 

 684 

For insulated pipes, the optimal producer mass flow is 228.36 kg s-1, while for the non-insulated 685 

system it is 248.40 kg s-1, which represents an increment of 8.7% in the quantity of chilled water 686 

produced for the non-insulated system. Although the system presents a higher ΔT (7.25 K) compared 687 

with the simulation results, the return temperature still presents variations, which would compromise 688 

the operation of the central cooling plant [46].  689 

 690 

As expected, for consumer C11 the outlet temperature is higher when using non-insulated pipes. On 691 

the other hand, under the same conditions, consumer C1 presents a lower outlet temperature. This is 692 

due to the influence of distance on the inlet temperature of each consumer, and the larger mass flows 693 

for the non-insulated systems. Figure 15 details the inlet temperature profiles for consumers C1 and 694 

C11, located at 370 m and 3219 m from the producer, respectively. 695 

 696 

 697 

Figure 15. Inlet Temperature profile for selected consumers under constant flow 698 
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 699 

We can show the influence of distance from the source when we use non-insulated pipes. The 700 

difference in the values of the outlet temperature for C1 when the kind of pipe is changed ranges from 701 

0.05 K to 0.06 K, while for C11 this difference ranges from 0.89 K to 1.2 K. C1 is, therefore, operating 702 

at almost the same temperature in both cases, but due to the increment of the inlet mass flow to the 703 

consumer (31.77 kg s-1 to 34.57 kg s-1), the outlet temperature is lower when using non-insulated 704 

pipes. This phenomenon was also observed in consumers C2, C3, C4 (1446 m from production site), 705 

C14, C15 and C16 (892 m from production site). 706 

 707 

The previous results show that when working with the constant flow policy, it is not possible to 708 

operate the system under the desired parameters. Although the return temperature is warmer, its 709 

variation due to the demand profiles of the consumers prevents proper operation of the cooling 710 

network. 711 

 712 

By implementing a dynamic flow policy, on the other hand, as stated in the optimisation problem in 713 

(22), the system will operate with more uniform return temperatures, using insulated and non-insulated 714 

pipes, as detailed in Figure 16. 715 

 716 
Figure 16. Temperature profiles for dynamic flow policy 717 

 718 

Solving this problem took 517 s and 334 s for insulated and non-insulated pipes respectively. It is 719 

important to note that this problem has a total of 2520 degrees of freedom, which corresponds to the 720 

value of the 20 inlet mass flows and production in the 120 collocation points in time.  721 

 722 

As expected, the return pipe in the insulated network presents a lower temperature than the non-723 

insulated one. Nevertheless, the only way to achieve the desired outlet temperature in the non-724 



32 

 

insulated pipe for all consumers involved exceeding the maximum allowed speed in the pipes, as 725 

shown in Table 9. Although the velocity violations are small (the largest is 0.24 ms-1 for pipes 13 and 726 

13r) they should involve changing the corresponding pipes to implement a system without insulation. 727 

However, for the sake of simplicity and to avoid having to recalculate previous simulations, we did not 728 

change the diameters, but we increased the maximum velocity slightly. Contrary to Branan [26], the 729 

American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) [47,48] does 730 

not report a maximum allowable velocity depending on pipe size and indicates that in any case 731 

(irrespective of application, size or material) the velocity in the pipes cannot exceed 4.6 ms-1. As 732 

detailed in Table 9, none of the pipes reports values even close to 2m/s. Although in these cases the 733 

velocity bounds have been violated, the computed solution leads to reliable system operation. This 734 

shows the lack of precision when using an approximation without heat losses to define the diameters 735 

of the pipes, and the advantage of including the pipe diameter as an optimisation variable in future 736 

studies.  737 

 738 

Table 9. Pipes exceeding allowed velocities in non-insulated network 739 

pipes v (ms-1) 
maximum 

velocity (ms-1) 
pipes v (ms-1) 

maximum 

velocity (ms-1) 

9/9r 1.37 1.27 in/out8 1.42 1.32 

13/13r 1.18 0.94 in/out12 1.36 1.31 

19/19r 1.28 1.27 in/out20 1.72 1.69 

    740 

Figure 17 presents the optimal inlet mass flows for the selected consumers and for the production 741 

site. The computed mass flows consider the heat gains required along the pipes to meet the fluctuating 742 

consumer demand, reducing the variation in the outlet temperature for each consumer and hence, the 743 

uncontrolled deviation in the return temperature.   744 

 745 
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 746 
Figure 17. Optimal production and inlet mass flow for chosen consumers 747 

As expected, the non-insulated system requires more cold water. However, due to the heat gains 748 

and the kind of demand, this difference is not proportional among all the users, as can be seen when 749 

comparing the profiles of C11 (3219 m from production site) and C1 (370 m from production site). 750 

 751 

Finally, it is possible to compute the total production required per day using the pumping 752 

methodologies presented here for the two kinds of piping as� PQ '�����mh' . We present these results in 753 

Table 10, where DO.1 and DO.2 refer to the solution of problems (21) and (22) respectively. 754 

 755 

Table 10. Total chilled water production for the studied pumping methods 756 

Total production Ton 

DS DO.1-insu DO.1-Ninsu DO.2-insu DO.2-Ninsu 

22775.13 19730.68 21462.09 18141.78 19329.01 

 757 

The optimal dynamic policy (DO.2) represents a reduction of 8.06% (insulated) and 9.94% (non-758 

insulated) compared with the computed productions using a constant flow (DO.1). Compared with the 759 

production using the constant flow policy in dynamic simulation, the reductions are 20.34% and 760 

15.42% respectively. The system operates at the desired levels of temperature only if a complete 761 

dynamic policy is used.  762 

6 Conclusions 763 

In this contribution, we presented an innovative solution methodology, based on 2D-OCFE, for the 764 

dynamic simulation and dynamic optimisation with a non-restrictive computational time of district 765 

cooling systems. The chosen model was based on reasonable assumptions and was already validated 766 

with experimental data in other studies [31, 32, 38]. Using this method, it was possible to fully 767 
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discretise the initial differential problem, transforming the differential operators into algebraic 768 

combinations of the state variable at some collocation points in time and space. This results in a 769 

simultaneous solution of the optimisation problem, which involved solving steady-state and dynamic 770 

simulations to properly initialise it. Using this methodology, we analyse a medium-sized cooling 771 

network, including environmental and demand variations over a time horizon of 24 h.  772 

 773 

The proposed strategy allowed solving the discretised model (that accounted with more than 774 

360000 variables) with CPU times around 50 s for dynamic simulation and less than 600 s for 775 

dynamic optimization. Via dynamic simulation, we computed the operational response of the system 776 

when a constant flow policy is implemented, resulting in undesirable levels of temperature of the 777 

water returning to the production site leading to a low ΔT in the production site (as low as 6.28 K). 778 

Considering this, we proposed an objective function to control the temperature of the water leaving the 779 

clients implementing a dynamic flow policy to avoid the reported low ΔT syndrome. 780 

We computed the optimal paths for mass flow at the production site and the consumer substations 781 

to optimise the operation of the network using insulated and non-insulated pipes. Optimisation allowed 782 

to synchronize the energy production with the total demand of the system resulting in a lower 783 

production of chilled water to supply the consumer’s demand for the two kinds of piping (20.34% and 784 

15.42% respectively) compared with the production computed via dynamic simulation.  785 

 786 

The results of the optimisation presented here show the capability of the proposed methodology to 787 

improve the operating conditions of DCSs under varying cooling demands and external conditions. 788 

It might be interesting to make a comparison with experimental data in order to consolidate our 789 

methodology or to validate some numerical values used in the model (i.e. thermal conductivity of the 790 

soil, convective heat transfer coefficient…). Given the reported CPU times, this method represents a 791 

suitable starting point for a more complex analysis of DCSs, including optimal simultaneous operation 792 

and design.  793 

 794 

We are currently working on the techno-economic analysis of the system, aiming to include the 795 

diameter of the pipes as optimisation variables and to compute properly the electrical requirement to 796 

pump the chilled water to the consumers. In future work, we intend to study the network when chilled 797 

water storage technology is included and to develop the MIDO model in order to choose the most 798 

appropriate technology for producing chilled water. 799 

 800 

 801 

 802 

 803 

 804 
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Appendix A.  Generalities and implementation of OCFE 805 

 806 

A collocation method approximates the unknown solution (the state variable) of an ordinary 807 

differential equation as a finite sum of known trial functions and enforces the ordinary differential 808 

equation to be satisfied at some collocation points. If the trial functions are Lagrange basis 809 

polynomials, if the integration variable is normalised, and the collocation points are chosen as roots of 810 

orthogonal polynomials, then the method is called orthogonal collocation. When using the OCFE 811 

method, the state variable is approximated by a different interpolating polynomial on each finite 812 

element, and the state variable continuity must be ensured at the boundaries.  813 

 814 

A.1. One-dimensional case: 815 

 816 

Let us consider an example where the spatial variable is the only integration variable (1D case), it 817 

can be the model of our DCS in steady-state conditions. If the whole domain is divided into 1# 818 

elements (O�de and O� being the boundaries of the fth element and f� its length) and if the state 819 

variable is approximated by a polynomial of order 1� (e.g. 1� + 1 collocation points are used on each 820 

element), then the state variable (e.g. temperature) can be expressed on the fth element as the following 821 

Lagrange interpolation polynomial: 822 

 823 

N��� = � N�,�
j�

��' ℓ���� (A-1) 

 824 

 825 

with: 826 

� = O F O�deO�FO�de =  O F O�def�    , ���0,1� (A-2) 

the normalised spatial variable, and 827 

ℓ���� = � � F �a�� F �a
j�

a�'a��
 

(A-3) 

the jth Lagrange basis polynomial of degree 1�. 828 

 829 

With such trial functions (e.g. Lagrange basis polynomial), the coefficient of the jth trial function on 830 

the fth element represents the variable at the collocation point �� (i.e. N���� = N�,�). 831 

 832 
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Then the implementation of the collocation method consists in writing that the differential equation 833 

is satisfied on each collocation point ��. In each element #: the state variable is replaced by N�,�, the 834 

derivative can be calculated by deriving the Lagrange interpolation polynomial, leading to a linear 835 

combination of the 1� + 1 coefficients N�,a    �` = 0, … 1��. Then the differential equation satisfied at 836 

this collocation point �� finally leads to an algebraic equation involving the 1� + 1 coefficients 837 N�,a    �` = 0, … 1��. Finally, by solving the system of all these 1# × �1� + 1� algebraic equations we 838 

obtain the 1# × �1� + 1� values N�,� of the temperature at these collocation points.  839 

In order to estimate the derivative terms, Hedengren et al. [22] have proposed a convenient method, 840 

which includes the boundary condition. We have adapted it to collocation on finite elements and 841 

describe it below. It begins with a classical formulation of the Lagrange interpolation polynomial on 842 

the fth element (equation (A-4)): 843 

N��� = �' + �e� + �m�m + ���� + ⋯ + �j��j� (A-4) 

The first step is then to find a matrix ¡� that relates the values of the derivative at the collocation 844 

points and the coefficients as follows:  845 

¢££
£££
££¤

�N�� ��1��N�� ��2�
⋮�N�� ��1��¦§§

§§§
§§̈ = ¡O  

©
ªªª
«

¢£
£££
£¤ N#,1

N#,2
⋮

N#,1�¦§
§§§
§̈ F

¢£
£££
£¤N#,0
N#,0

⋮
N#,0¦§

§§§
§̈
¬

®  (A-5) 

The coefficient �' corresponds to the boundary condition of the element #,  N�,', when the initial 846 

position is defined as zero. For the first element, this value (Ne,'� must be given, whereas for the 847 

following elements it corresponds to the final value of the previous element. Then, substituting the 848 

approximation of the state variable and its derivative in the previous expression N�,' will be cancelled 849 

and it follows: 850 

¢££
£¤ 1   2�1   3�12    ⋯    1��11�F11   2�2   3�22    ⋯    1��21�F1⋮1   2�1�   3�1�2    ⋯    1��1�1�F1¦§§

§̈ ¯ �1�2⋮�1�
° = ¡O  

¢££
£¤ �1   �12    ⋯   �11��2   �22    ⋯   �21�⋮�1�   �1�2    ⋯   �1�1�¦§§

§̈ ¯ �1�2⋮�1�
° (A-6) 

 851 

Finally, considering the change of variable, this leads to: 852 
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¢££
£££
££¤ s�N�Ot�,es�N�Ot�,m⋮
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§§§
§§̈ = 1f� ∙ ¡�

©
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«

¢£
£££
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£££
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   (A-7) 

= 1f� .
¢££
£¤ 1   2�e   3�em    ⋯    1��ej�de1   2�m   3�mm    ⋯    1��mj�de⋮1   2�j�   3�j�m    ⋯    1��j�j�de¦§§
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§̈ F

¢£
£££
£¤N�,'N�,'⋮
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§§§
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Once the collocation points are defined, we can calculate the collocation matrix ¡� and discretise 853 

the derivative terms using equation (A-7) to obtain a set of algebraic equations whose resolution will 854 

give the solution to the differential problem. For the present application, we use the nodes of the 855 

shifted Legendre Gauss Lobatto quadrature as collocation points [49]. Thus, 0 and 1 are nodes and 856 

there are 1� F 1 internal nodes. It follows that: 857 

N�,' = N�de,j�        # = 2, … 1# (A-8) 

Then, on each element, the ODE has to be written only on 1� points (��, � = 1 … 1�) since the 858 

boundary condition (e.g. N�,' = N�f��' + O�de� = N�O�de�) of each element is known. When dealing 859 

with a steady-state simulation, the above methodology has been applied to our DCS and the 860 

temperature, which depends only on O, has been noted N�� #0Oz�, O� = b�O�.  861 

 862 

In the following subsection, we present the implementation of the method for both time ��� and 863 

space domains �O�. 864 

 865 

A.2. Implementation of 2D-OCFE 866 

The orthogonal collocation on finite elements method in 2 dimensions can be formulated as an 867 

extension of the 1D derivation, as stated by Surjanhata[50], Finlayson[40] and Esche et al.[23], using 868 

the corresponding variables for each direction as well as a different polynomial or number of roots. 869 

First, the time horizon is divided into 1z intervals (finite elements), and inside each interval, 10 870 

collocation points are chosen. Similarly, each pipe has 1# segments with 1� collocation points. 871 

Therefore, we define sets z ∈ �1,2, … , 1z�, 0 ∈ �0,1, … , 10�, # ∈ �1,2, … , 1#�, � ∈ �0,1, … , 1��. We 872 

also introduce the normalised time for element e (similarly to the normalised spatial variable): 873 
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± = � F �~de�~F�~de =  � F �~deΔ�~    , ±��0,1� (A-9) 

Let us then consider the temperature of the spatial-time domain corresponding to element e in time 874 

and element # in space. This is now approximated by the following function of � and ± (degree 10 in ± 875 

and 1� in �): 876 

N�±, �� = � � N~,i,�,�
j�

��' ℓi�±�ℓ����ji
i�'  (A-10) 

The properties of the Lagrange basis polynomials lead to N�±i , ��� = N~,i,�,� and therefore: 877 

N�±, ��� = � N~,i,�,�
ji

i�' ℓi�±� (A-11) 

and: 878 

N�±i, �� = � N~,i,�,�
j�

��' ℓ���� (A-12) 

 879 

To compute  ���³ �±i, ��� we will derive the Lagrange interpolation polynomial described by 880 

equation (A-11). This represents the evolution in time of the temperature in the present element �z� for 881 

the given position �#, �� and involves coefficients N~,�,�,� with z, #, � fixed, and ] varying from 0 to 10 882 

(and passing through the particular value 0), which are represented by  in  Figure A-1. The same 883 

logic applies to compute 
���´ �±i , ��� : we will derive the Lagrange interpolation polynomial described 884 

by equation (A-12) which represents the evolution in space of the temperature in the present element 885 �#� for the given time �z, 0�. It involves the coefficients N~,i,�,� with z, 0, # fixed, and ] varying from 0 886 

to 1� (passing through the particular point �), and represented by   in Figure A-1. 887 

 888 
Figure A-1. Representation of the temperature discretisation (one element per domain) 889 

 890 
 891 
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Finally, we add a subscript to take the issue of the pipe into account. Then the temperature of each 892 

pipe ` (` may be $, $
 , 012l , 4��2l) Na��, O� is expressed with the use of the 1z × �10 + 1� × 1# ×893 �1� + 1�  coefficients Na,~,i,�,�. 894 

 895 

Then, applying the same methodology as for 1D-OCFE, we can approximate 
��µ��  and ��µ��   as: 896 

¢££
£££
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©
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¢££
£¤
¢££
¤Na,~,',�,�Na,~,',�,�⋮Na,~,',�,�¦§§̈¦§§

§̈
¬
® = ¢£

£¤ ¹�3�`, z, #, ��¹�6�`, z, #, ��⋮¹���º3�`, z, #, ��¦§
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¢££
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£¤ sMNaMO t~,i,�,esMNaMO t~,i,�,m⋮sMNaMO t~,i,�,j�¦§§

§§§
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== 1f� ∙ ¡� ©
«¢££

¤ Na,~,i,�,eNa,~,i,�,m⋮Na,~,i,�,j�¦§§̈ F ¢££
¤Na,~,i,�,'Na,~,i,�,'⋮Na,~,i,�,'¦§§̈¬

® = ¢££
£¤ ¹�3�`, z, 0, #�¹�6�`, z, 0, #�⋮¹��»º3�`, z, 0, #�¦§§

§̈
 (A-14) 

 897 

In equations (A-13) and (A-14) ¡� and  ¡� represent the collocation matrices for the normalised 898 

domains with respective element sizes ∆�~ and f�. Finally, ¹���`, z, #, �� and ¹�»�`, z, 0, #� denote the 899 

algebraic combinations to describe the variational terms. 900 

 901 

For the first element on each domain, the values of the boundary conditions, Na,e,',�,� and Na,~,i,e,', 902 

must be known. The way to achieve this will be explained in the next section. Then, for subsequent 903 

elements, these values correspond to those of the final point of the prior element. For the present 904 

application, we use the nodes of the shifted Legendre Gauss Lobatto quadrature as collocation points 905 

so that 0 and 1 are nodes. 906 

 907 

Then for the other spatial-time points (other than z, 0, #, �  and z, 0, #, 0) (e.g. ��� , ±i�, � =908 1 … 1� , 0 = 1 … 10� )  we assume that equation (6) is satisfied. Na�±i, ���  is then replaced by Na,~,i,�,� 909 

and the derivatives are expressed by equations (A-13) and (A-14). 910 

 911 

In Appendix B, we describe the implementation of 2D-OCFE to transform the heat equation into a 912 

set of algebraic equations, which, when coupled with the heat and mass balances, represent the 913 

dynamics of the DCS. 914 

 915 
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Appendix B. Discretised model 916 

This appendix details the discretised model based on the equations presented in section 3. 917 

 918 

B.1.   Heat balances 919 

As described in the previous section, 2D-OCFE will be applied to the PDE (6). To do this, the mass 920 

flow in each pipe, which is only time-dependent, also needs to be discretised as follows: 921 

 922 

PQ a�±� = � PQ a,~,i
ji

i�' ℓi�±� (B-1) 

The profile of the soil temperature NR��� is known and corresponds to one of the profiles in section 923 

2.3. When the PDE is applied in an element e in time at a collocation point ±i we use the 924 

corresponding soil temperature which has been noted NR,~,i.  925 

NR,~,i = NR�±i∆�~ + �~de� (B-2) 

In the same way, the temporal profile of the demand of each customer is known and we note: 926 

q2l,~,i = q2l�±i∆�~ + �~de� (B-3) 

As explained in the previous section, before applying orthogonal collocation, boundary conditions 927 

must be known, which will be explained later. Once these boundary conditions are known 928 

(Na,e,',�,�  �� = 1 … 1�� and Na,~,i,e,' �0 = 1, … 10�), using equations (A-13) and (A-14), we can 929 

represent equation (6) for each pipe at each spatial-time point other than the boundary points, 930 �±i , ���, 0 = 1 … 10, � = 1 … 1�, by:  931 

ρ¼ ∙ K$I ∙ La ∙ ¹���`, z, #, �� + PQ a,~,i ∙ K$I ∙ ¹�»�`, z, 0, #� = NR,~,i F Na,~,i,�,�ST  (B-4) 

By implementing this, we represent the PDE (6) as a set of �1z × 10 × 1# × 1�� equations per 932 

pipe. The boundary conditions Na,~,',�,�  and Na,~,i,�,'  are obtained from the configuration of the 933 

problem and from the heat and mass balances as follows: 934 

o For elements  z > 1 and # >  1, for each pipe, the initial conditions correspond to the final 935 

point of the previous one, as already stated.  936 Na,~,',�,� = Na,~de,ji,�,� , z = 2 … 1z , # = 1 … 1# , � = 1 … 1� (B-5) 

Na,~,i,�,' = Na,~,i,�de,j� ,        # = 2 … 1#  , z = 1 … 1z, 0 = 1, … 10 (B-6) 

and 937 
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Na,~,',�,' = Na,~de,ji,�de,j� , z = 2 … 1z , # = 2 … 1#  (B-7) 

o The element z = 1 equation (9) leads to the following 1# × �1� + 1� equations in terms of 938 

discretised variables: 939 Na,e,',�,� =  ba�f��� + O�de� = ba,�,� (B-8) 

o For element # = 1, this condition depends on the pipe. 940 

� Equations (10) to (13) lead to the following: 1z × �10 + 1� F 1 equations in terms of 941 

discretised variables: 942 N',~,i,e,' = 277 K (B-9) 

 943 N�,~,i,j�,j� = N�oe,~,i,e,' = Nijkl ,~,i,e,'   , $ = 1 … 12,14, … 19 N',~,i,j�,j� = Ne,~,i,e,' = Neh,~,i,e,' N�,~,i,j�,j� =  Nijkl ,~,i,e,'   ,   $ = 13 , 20 

(B-10) 

 944 PQ $&,z,0 ∙ N$&,z,0,1,0 = PQ $&oe,z,0 ∙ N��oe�n,z,0,1#,1� + PQ 4��K$ ,z,0 ∙ N4��K$ ,z,0,1#,1� ,  $ = 1 … 12,14, … 19 PQ �'�n,z,0 ∙ N�'�n,z,0,1,0 = PQ �1�&,z,0 ∙ N�e�n,z,0,1#,1� + PQ �eh�n,z,0 ∙ N�eh�n,z,0,1#,1�  N���n,~,i,e,' =  Np��kl ,~,i,j�,j�   ,   $ = 13 , 20 

(B-11) 

q2l,~,i = PQ ijkl ,~,i ∙ C$I ∙ �Np��kl ,~,i,e,' F Nijkl ,~,i,j�,j��  (B-12) 

Finally, Figure B-1 summarises variables Na,~,i,�,� and their associated equations.  945 
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 946 
Figure B-1. Associated equations for the solution of the PDE on a pipe 947 

 948 

 949 

B.2.   Mass balances 950 

In this section, the mass balance equations and the constraints concerning the velocity and the flow 951 

policy involve only time-dependent variables. Therefore, each of these equations from the original 952 

PDAE problem leads to a corresponding set of 1z × �10 + 1� equations, replacing PQ a��� and ua��� 953 

by PQ a,~,i and ua,~,i. In this section, these equations are written in terms of discretised variables. 954 

 955 

Mass balance equations (14), (15) and (16) lead to: 956 PQ �,~,i = PQ �oe,~,i + PQ ijkl ,~,i    $ = 1 … 12,14 … 19 PQ �,~,i = PQ ijkl ,~,i    $ = 13 , 20 PQ ',~,i = PQ 1,~,i +  PQ 14,~,i 
(B-13) 

 957 PQ �n,~,i = PQ ��oe�n,~,i + PQ p��kl ,~,i    $ = 1 … 12,14 … 19 PQ �n,~,i = PQ p��kl ,~,i    $ = 13 , 20 PQ 'n,~,i = PQ 1&,~,i +  PQ 14&,~,i 
(B-14) 

 958 
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PQ ijkl ,~,i = PQ p��kl ,~,i    $ = 1 … 20 (B-15) 

Flow policy equations (17) and (18) lead to: 959 

PQ ',~,i = PQ 'vwx (B-16) 

 960 yz%`�1�PQ ijk3 ,~,i = yz%`�$�PQ ijkl ,~,i ,   ∀ $ ∈ |2, … , 20} (B-17) 

 961 

and the flow velocity equation (20) leads to: 962 

ua,~,i ≤ u�	�,a (B-18) 

 963 

Finally, the 1�i�~R × 1~ × �1i + 1� variables PQ `,~,i , with 1�i�~R = 82, are associated with: 964 21 × 1~ × �1i + 1� equations (B-13).  965 21 × 1~ × �1i + 1� equations (B-14). 966 20 × 1~ × �1i + 1� equations (B-15). 967 1 × 1~ × �1i + 1� equations (B-16). 968 19 × 1~ × �1i + 1� equations (B-17). 969 

 970 

Together with the variables Ǹ ,~,i,�,� associated with the equations described in the previous section, 971 

they constitute the algebraic system that must be solved. 972 

 973 

The set of equations (B-4) to (B-18) results from the implementation of 2D-OCFE in the original 974 

PDAE problem. This formulation will allow us to perform the dynamic simulation analysis of the case 975 

study, whose main output will be the temperature profiles of the pipes that make up the system.976 

Appendix C. Validation of the discretization method 977 

 978 

To validate the proposed 2D-OCFE method for solving the dynamic one-dimensional heat transfer 979 

equation in pipes, we analyse a simple case study. The problem is solved using a well- known 980 

discretisation strategy (second-order centred finite differences for time and space) as a reference 981 

scenario, which will be compared to the solution obtained via 2D-OCFE. 982 

We propose to study the propagation of a temperature wave in the inlet of a 12-inch non-insulated 983 

pipe with a length of 1km, a constant flow velocity of 0.97m/s, and external temperature (NR) varying 984 

linearly from 25°C to 27°C, for 1 hour. 985 
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 986 

First, we defined the number of discretisation points for the reference scenario. For this, we made 987 

several runs by incrementing the number of points on each domain (O, �) and comparing the results 988 

from each run until the change in the computed values was negligible. Next, we chose a reference 989 

scenario computed with 1200 discrete points in time and 200 in distance using the method of second-990 

order centred finite differences. The computational time for this scenario was 24.84 s. 991 

 992 

Then we implemented the proposed 2D-OCFE method to solve this problem using different 993 

combinations of the number of elements (1z and 1#) and collocation points ��10 + 1� and (1� + 1�� 994 

on each domain, and comparing each result with the reference scenario. Table C-1 details some of the 995 

implemented combinations, their corresponding % of error with respect to the reference scenario and 996 

the computational time. 997 

 998 
Table C-1. 2D-OCFE combinations results 999 ¾¿ ¾À+1 ¾Á ¾Â + Ã Error [%] CPU time (s) 

30 6 2 6 [-0.0056, 0.0044] 0.047 

30 6 3 6 [-0.0027,0.0054] 0.047 

30 6 4 6 [-0.0049, 0.0056] 0.062 

30 6 5 6 [-0.0028, 0.0052] 0.094 

 1000 

We can see that via 2D-OCFE the number of points required is considerably reduced, from 1200 to 1001 

180 in time and from 200 to 30 (at most) in distance, achieving accurate results with respect to the 1002 

reference scenario, given the reported errors, with computational times more than 250 times smaller 1003 

than implementing a conventional discretisation strategy. 1004 

 1005 

Finally, Figure C-1 shows the inlet temperature wave and the variation in temperature at the pipe 1006 

outlet for some of the runs made to define the reference scenario (1200 t) using 200 discretisation 1007 

points in distance. These are compared to the response using 2D-OCFE (last case in Figure C-1)Here, 1008 

we show that by using 2D-OCFE it is possible to compute more accurate results than with some 1009 

conventional discretisation using 150 and 500 points in time. 1010 

 1011 

These results validate the accuracy of the proposed 2D-OCFE, and thus we can replicate it for the 1012 

analysis of district cooling systems. 1013 

 1014 

 1015 
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 1016 
Figure C-1. Pipe inlet temperature variation and comparison of outlet responses 1017 

 1018 
 1019 

Nomenclature 1020 

Symbols 1021 ℎ\ Convective heat transfer coefficient, Wm-2K-1 1022 K$ Specific Heat Capacity, J kg-1K-1 1023 f Pipe length, m 1024 f� Length of spatial finite element 1025 PQ  Mass flow rate, kg s-1 1026 _� Spatial collocation matrix 1027 _� Temporal collocation matrix 1028 & radius, m 1029 ST  Total thermal resistance, m K W-1 1030 � Time, s 1031 N Temperature, K 1032 u Velocity, m s-1 1033 ∆N Temperature difference, K 1034 ∆�~ Size of temporal finite element 1035 

Greek symbols 1036 V  Conductivity, W m-1 K-1 1037 H  Density, kg m-3 1038 � Normalised spatial variable 1039 ± Normalised time variable 1040 
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b Steady-state temperature 1041 

Sets and indices 1042 K� Set of consumers 1043 ¹�� Linear transformation for time derivative 1044 ¹�» Linear transformation for space derivative 1045 z Index for time elements 1046 # Index for distance elements 1047 0 Index for time collocation points in time 1048 � Index for distance collocation points 1049 ` Index of pipes 1050 $ Sub-index for main pipes 1051 012� Sub-index for pipes entering clients 1052 4��2� Sub-index for pipes leaving clients 1053 

Subscripts 1054 & Return pipe 1055   Soil 1056 G Water 1057 

 1058 

 1059 
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