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Due to the increasing demand for cooling worldwide and the need for reliable and energy-efficient alternatives to provide it, the analysis of district cooling (DC) networks has become a focus of interest in recent years. In DC networks, the temperature of the cooling utility returning to the production site must be close to the design temperature of the installed technology to ensure proper efficiency and avoid the technical issue known as low ΔT syndrome. Via dynamic optimisation, it is possible to compute the mass flow profiles in the network that lead to an operation which overcomes this problem. In this paper, we propose a methodology that provides a simultaneous (equation-oriented) solution to this dynamic optimisation problem using 2D Orthogonal Collocation on Finite Elements (OCFE). We apply this methodology to a medium-sized cooling system serving 20 consumers of different categories with fluctuating cooling demands subject to variable external conditions. The dynamic simulation and optimisation were performed using insulated and non-insulated piping. The proposed methodology exhibits low computational cost, demonstrating its potential use for developing applications for operating and forecasting these systems.

Introduction

Today, heating and cooling account for more than 50% of the total energy demand in Europe [START_REF] Möller | Heat Roadmap Europe: Identifying local heat demand and supply areas with a European thermal atlas[END_REF]. Furthermore, most of the energy used by this sector still comes from non-renewables, representing a major source of CO2 emissions that needs to be urgently mitigated [START_REF] Pacesila | Analysis of renewable energies in European Union[END_REF]. With this in mind, district energy systems are emerging as an interesting alternative to mitigate the environmental impact of these emissions [START_REF] Lake | Review of district heating and cooling systems for a sustainable future[END_REF]. Compared to individual heating and cooling, District Heating and Cooling (DHC) systems have higher efficiency, are more economically attractive for high demand buildings, could reduce fuel consumption, improve community energy management and allow better control of emissions [START_REF] Lake | Review of district heating and cooling systems for a sustainable future[END_REF].

There is a strong motivation to optimise district energy systems as they minimise the cost of infrastructure and emissions while maximizing the production of the hot or cold utility, and its efficiency. Such optimisation is particularly challenging because of technical characteristics and the 2 size of real-world applications [START_REF] Sameti | Optimization approaches in district heating and cooling thermal network[END_REF]. In general, mathematical optimisation of these systems is very much skewed in favour of district heating systems, as stated by Werner [START_REF] Werner | International review of district heating and cooling[END_REF]. However, despite the lack of analysis of district cooling systems, most of the methodologies applied to the analysis of district heating systems (DHS) can also be used to study district cooling systems. It is important to point out that each kind of system presents its own issues, related not only to the kind of utility produced (hot or cold) but also to the way it improves system efficiency, as will be detailed in the objectives of this work. Hence the importance of studies focused on district cooling networks.

Before introducing the applications for optimising district energy systems, it is important to present a general classification of the type of problems we find in mathematical optimisation. An optimisation problem consists of one (or sometimes more) objective function that has to be minimised (e.g. Operational cost, CO2 emissions) or maximised (efficiency, production), subject to the fulfilment of the physical or operational constraints of the system, which are represented as equality or inequality constraints, by manipulating a set of decision variables. Depending on the nature of the decision variables (continuous or discrete), a general categorisation of optimisation problems can be established, which is independent of the methods implemented to solve the problem as stated by Biegler and Grossmann [START_REF] Biegler | Retrospective on optimization[END_REF]. If the problem is described using only continuous variables when considering the nature of the constraints and the objective function that describes the system (linear or non-linear), we have linear programming (LP) and non-linear programming (NLP) problems. When discrete variables are involved, they are classified as mixed-integer linear programming (MILP) and mixed-integer non-linear programming (MINLP) problems. Finally, when dealing with dynamic models, two approaches are possible. Either we represent the dynamic problem as a succession of steady-state problems, known as multi-period optimisation, or we deal with the dynamics of the system. In the latter case, we can use either Pontryagin's principle (optimal control) or discretisation, formulating the dynamic problem as an algebraic problem (NLP, MILP or MINLP), known as dynamic optimisation.

According to the classification described above, we can organise studies on the optimisation of district heating and cooling as presented in Table 1. This detail selected contributions in terms of the kind of problem that is solved and their main applications (due to the complexity of the models used to describe these systems, there are few instances of LP applied to district heating and cooling, which is why no LP problem is reported). More extensive reviews on the applications of optimisation in District energy systems are presented by Talebi et al. [START_REF] Talebi | A Review of District Heating Systems: Modeling and Optimization[END_REF], Sameti et al. [START_REF] Sameti | Optimization approaches in district heating and cooling thermal network[END_REF], Gang et al. [START_REF] Gang | District cooling systems: Technology integration, system optimization, challenges and opportunities for applications[END_REF]. Eveloy and Ayou [START_REF] Eveloy | Sustainable District Cooling Systems: Status, Challenges, and Future Opportunities, with Emphasis on Cooling-Dominated Regions[END_REF] also present optimisation applications specifically for DCS. They highlight the fact that most studies have focused on optimising distribution network infrastructure (the selection of technologies, the number and kinds of users connected to the network, the existence of network elements such as a combined cooling, heating and power system. The nonlinearities of the continuous variables corresponded to the operational conditions of each of the components of the system, while the discrete variables corresponded to the use (on/off) of the chillers in different periods of energy demand. This contribution optimised the energy mixing of the system, aiming to cover a given total demand, but assumed that the equipment always operated at nominal levels. However, they did not consider the interactions of the clients with the distribution system nor their location with respect to the production site.

Continuing with steady-state studies, Söderman [START_REF] Söderman | Optimisation of structure and operation of district cooling networks in urban regions[END_REF] presented an optimisation of the structure and operation of an existing cooling network, based on a steady-state model of the users' maximum cooling demand. He also presented a project in which the capacity of the network would be increased to serve almost twice as many customers. To expand the network, he computed the location of new energy storage and production sites, as well as the pipe connections of the new interconnected system. This work included the linearisation of the mathematical model of the network. The problems were solved using the MILP CPLEX solver. Although this contribution, contrary to the previous one, presented a detailed analysis of the network, some parameters (pipe diameters) were not reported. Also, the steady-state assumption could prevent the use of renewables to expand the network. Finally, the assumption of constant cooling demands could result in an overestimation of the production of cold. MINLP steady-state applications in heating networks are found in the works of Mertz et al. [START_REF] Mertz | A MINLP optimization of the configuration and the design of a district heating network: Academic study cases[END_REF] and Marty et al. [START_REF] Marty | Simultaneous optimization of the district heating network topology and the Organic Rankine Cycle sizing of a geothermal plant[END_REF]. The former performed a combinatory non-linear optimisation to find the topology and substation exchanger size that minimised the global cost of a district heating network.

The resulting MINLP problem was solved using DICOPT within GAMS®. Marty et al. [START_REF] Marty | Simultaneous optimization of the district heating network topology and the Organic Rankine Cycle sizing of a geothermal plant[END_REF] implemented a strategy to simultaneously optimise the district heating network topology, the Organic Rankine Cycle (ORC) sizing of a geothermal plant, and the distribution of the geothermal fluid between the ORC and the DHN. To solve the proposed MINLP problem, they used the MINLP DICOPT solver in the GAMS® environment. Since the main critical point in solving an MINLP problem is its initialisation, Mertz et al. [START_REF] Mertz | A MINLP optimization of the configuration and the design of a district heating network: Academic study cases[END_REF] and Marty et al. [START_REF] Marty | Simultaneous optimization of the district heating network topology and the Organic Rankine Cycle sizing of a geothermal plant[END_REF] also presented their strategies to overcome this point. However, all of these studies were performed for steady-state conditions, although the variable customer demand, the thermal storage or, sometimes, the use of intermittent renewable energy result in the district heating and district cooling networks becoming dynamic systems.

The multiperiod application presented by Khir and Haouari [16] developed an approximation for the optimal design of a DCS whose results comprised the chiller plant size, storage tank size, layout of the network and the quantities of energy produced and stored during each period. They used the ILOG CPLEX software package, with the aim of minimising the amount of investment and the operational cost of the system. District planning included studies on the influence of the number and kind of buildings served by the cooling network. Their model considers the demand of the user at each period but does not consider the dynamics of temperature in the system pipes.

As already stated, one of the least explored subjects of study in the field of energy systems is the dynamic optimisation and control of these systems.

Recent advances in this field include the study by Schweiger et al. [START_REF] Schweiger | District heating and cooling systems -Framework for Modelica-based simulation and dynamic optimization[END_REF] dealing with optimal production planning in district heating systems. They presented a framework to represent on-grid energy systems and performed a dynamic thermo-hydraulic simulation of energy systems. The framework was based on the Modelica® modelling language, performing the continuous optimisation tasks with the OPTIMICA compiler toolkit, and the discrete optimisation in the Python open-source environment using the Pyomo module. They decomposed the resulting mixed-integer-optimal control problem into a Mixed Integer Quadratic Constrained Programming (MIQCP) problem (a particular form of MINLP problem) and a continuous problem. The results of the former provided the status and heat production of each unit. The discrete variables representing the status of each unit were thus fixed by this solution from the MIQCP, although the real heat production was calculated in the continuous problem which was transformed into a Nonlinear Programming (NLP) problem using a direct collocation method, then solved using the interior point algorithm IPOPT. The objective function proposed in this work (and which had to be minimised) was the supply temperature of the producer for the duration of the considered time span. Although this implementation is based on physical models, it is fully tool-oriented to Modelica users, offering few details on the mathematical modelling and treatment of the dynamic optimisation problem. This fact makes it difficult to replicate their methodology on other available modelling and optimisation tools. In the field of the dynamic optimisation of energy systems, we can also mention the dynamic optimisation of a hybrid Solar thermal and fossil Fuel system [START_REF] Powell | Dynamic optimization of a hybrid solar thermal and fossil fuel system[END_REF].

To our knowledge, studies on the dynamic optimisation of district energy systems are limited to the aforementioned works. We hope to contribute to this field and propose a dynamic optimisation of the return temperature of a district cooling network. The choice of this objective function will be discussed later; we will first introduce the dynamic problems and the way they can be solved. Dynamic optimisation has been used for off-line tasks, including studies on operation in response to disturbances. As proposed by Schweiger et al. [START_REF] Schweiger | District heating and cooling systems -Framework for Modelica-based simulation and dynamic optimization[END_REF] a general form for optimisation problems of this kind can be represented as:
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where are the differential state variables, the algebraic state variables, the control variables, all of which are functions of time ∈ . ' , /, and $%& represents the time-independent parameters. The constraints of this optimisation problem are the Differential and Algebraic Equations (DAE) ( 2)-( 4). This formulation is known as the problem of Bolza [START_REF] Longuski | Optimal Control with Aerospace Applications[END_REF], where is a scalar to be minimised. The first term corresponds to the Mayer term and the integral term corresponds to the Lagrange term. Thus, depending on the application, in dynamic optimisation, it is possible to formulate objective functions of the form of Bolza, Mayer or Lagrange.

Biegler [START_REF] Biegler | Nonlinear programming strategies for dynamic chemical process optimization[END_REF][START_REF] Biegler | Advanced optimization strategies for integrated dynamic process operations[END_REF] reported different ways to solve the aforementioned problem. As shown in Figure 1, we can use the variational approach, based on the Pontryagin's Maximum Principle. However, this approach could not handle properly with inequality constraints (in our case, we deal with such constraints since the velocities are bounded). Other strategies applying an NLP solver can be used.

This involves replacing the time-dependent variables by discretised ones, such as coefficients of an interpolation polynomial, for example, so that an NLP problem can be formulated and solved with respect to these new discretised variables. The first strategy is the sequential approach: in this case, only the control variables are discretised. For a set of control variables, a DAE solver in a loop solves the state variables of the DAE system and returns the state and algebraic variables to the NLP optimisation level. The control variables (in fact the discretised variables that represent them) are updated by the NLP solver. This strategy can be time-consuming. In the second strategy, the simultaneous approach, both state and control variables are discretised in time. Hence, the DAE system is solved only once, at the optimal point, and therefore this can avoid computational effort to obtain intermediate solutions for the DAE system. problem [START_REF] Biegler | Nonlinear programming strategies for dynamic chemical process optimization[END_REF][START_REF] Biegler | Advanced optimization strategies for integrated dynamic process operations[END_REF][START_REF] Hedengren | Nonlinear modeling, estimation and predictive control in APMonitor[END_REF] (or [START_REF] Esche | Optimal Operation of a Membrane Reactor Network[END_REF][START_REF] Jacobsen | Model predictive control with a rigorous model of a Solid Oxide Fuel Cell[END_REF][START_REF] Mittal | Solution of diffusion-dispersion models using a computationally efficient technique of orthogonal collocation on finite elements with cubic Hermite as basis[END_REF]).

With this in mind, in the present study, we use a simultaneous approach using 2D-OCFE. The equation that describes the transient temperature profiles in the pipes is a partial differential equation.

Variables are then discretised in time and space.

In order to contribute to the field of dynamic optimisation of district cooling system (DCS) operation, we propose a methodology that enables a simultaneous (oriented-equation) solution of this dynamic optimisation problem using 2D Orthogonal Collocation on Finite Elements (2D-OCFE). We apply this methodology to a medium-sized cooling system serving 20 consumers of different categories with fluctuating cooling demands, subject to variable external conditions. The dynamic simulation and optimisation were performed using insulated and non-insulated piping.

First, the configuration of the studied cooling network is described, including the consumers' This work is the first stage of a project that aims to develop a methodology for the optimal management of a cooling network, considering the dynamics of the whole system, including conversion, storage, and energy distribution.

Cooling system

We develop a dynamic analysis of an academic case study, with conditions based on real data. The system consists of 20 users distributed over an urban area in known locations. Based on this distribution, we propose a set of nodes and pipes that connect the production site and the users. Next, we build the cooling demand profile for each user based on typical performances for various kinds of building, as reported by an industrial supplier of cooling services. Finally, we present the external conditions to which the system will be subject.

Configuration of the system

The topology of the system is based on the illustrative example presented by Söderman [START_REF] Söderman | Optimisation of structure and operation of district cooling networks in urban regions[END_REF]. From the coordinates the author presented for the location of the users, it is possible to compute the lengths of the pipes, as detailed in Table 2. Using this information, Figure 2 presents a scheme of the cold network, main pipes (0-20), lateral pipes 01 2 3 F 01 2 6 , the nodes and the users, in a simplified way that is useful for modelling purposes. As shown in Table 2, the complete system also includes a return network, represented by the return pipes (0r -20r and 4 2 3 F 4 2 6 ) with the same lengths as the outward path pipes. Thus, the whole network is an arrangement of 82 pipes with a total length of almost 19 km (18904.11 m).

Figure 2. Representation of the cooling network

To define the diameters of the pipes, we take into account the recommended flow velocities for sizing cooling water pipes, as reported by Branan [START_REF] Branan | 1 -Fluid Flow[END_REF] and presented in Table 3. The system must respect the velocity bounds during the simulation and optimisation analysis. 

Users' demand profiles

For this work, we built cooling demand profiles based on the daily cooling demand curves presented by Olama [START_REF] Olama | District Cooling: Theory and Practice[END_REF] for different kinds of buildings including office, residential, hotel or service, apartments, shopping and leisure. These profiles represent the variation in demand with respect to the peak cooling load of the buildings, as seen in Figure 3.

Figure 3. Demand for different kinds of building

Using the peak cooling demands presented by Söderman for this system [START_REF] Söderman | Optimisation of structure and operation of district cooling networks in urban regions[END_REF], which are based on real data (Table 4), and the aforementioned profiles we can compute the demand profiles of the 20 consumers. Considering these data, Figure 4 presents the total cooling demand profile of the district cooling system and details the specific demand of two consumers (for the sake of clarity). The maximum demand of the network is 10911 kW and is reported at 17.64 h (tmax). We will use the demand of each consumer reported at this time QCp(tmax) for dynamic simulation analysis. We will study the system under different external conditions, including various kinds and characteristics of soil as well as differentiated ambient temperatures corresponding to different climate zones.

Studied climate zones

The kind of soil and its moisture affect its thermal conductivity, as reported in the ASHRAE district cooling guide [START_REF] Phetteplace | District Cooling Guide[END_REF]. In order to analyse the implementation of a district cooling network in different climate areas and its impact on the total thermal resistance and on the thermal distribution in the pipes, we chose three cases (cities) with different daily ambient temperature profiles and soil characteristics, as detailed below:

• Ras Al Khaimah (UAE): Low moisture; sandy soil.

• Paris: Medium moisture; clay soil • Kuala Lumpur (KL): High moisture; clay soil Figure 5 details the profile temperature on the hottest day in 2018 for each of the selected cities.

These profiles were built using real data from the Weather Underground global community, which collects data from more than 250,000 weather stations around the world [START_REF]Weather Forecast & Reports -Long Range & Local[END_REF]. With the system configuration already defined, we can complete the mathematical model that describes the dynamic operation of the network and develop a proper strategy for its solution.

Mathematical model

The model of the DCS is constituted by the heat transfer equation in each pipe, together with mass and energy balances at each node of the system, under the following assumptions:

-The system uses water as cooling fluid (G).

-The mass flow in each pipe is time-dependent and uniform.

-The physical properties of the fluid are constant.

Heat balance in the pipes

Most of the available literature on dynamic modelling and optimisation of district energy systems focus their interest in the analysis of district heating systems. Nevertheless, these models can also be applied to district cooling [START_REF] Oppelt | Dynamic thermo-hydraulic model of district cooling networks[END_REF]. Studies on equation-based methods for the analysis of energy networks [START_REF] Schweiger | District heating and cooling systems -Framework for Modelica-based simulation and dynamic optimization[END_REF][START_REF] Duquette | Thermal performance of a steady state physical pipe model for simulating district heating grids with variable flow[END_REF][START_REF] Van Der Heijde | Dynamic equation-based thermo-hydraulic pipe model for district heating and cooling systems[END_REF]] use a dynamic one-dimensional heat transfer equation to describe the temperature transients in the pipes, defined as:

H I • K$ I • L • MN , O M + PQ • K$ I • MN , O MO = N R F N , O S T (6) 
where ρ I , K$ I , L, and PQ are the density, specific heat capacity, area (cross-section), and mass flow rate of water in the pipe, respectively; S T is the total thermal resistance per unit length of pipe; N stands for temperature in the pipe, N R for the temperature of the soil surface, and and O for time and distance dependency. 

It does not include thermal interactions between supply and return pipes

Thermal inertia of the pipes, the casing and the insulation is neglected Conductive heat transfer in the fluid is neglected

The total thermal resistance per unit length of pipe, S T , is a function of the thermal conductivities of the pipe, V W , the insulation, V WX , the casing, V XY , and the soil, V R , as follows [START_REF] Duquette | Thermal performance of a steady state physical pipe model for simulating district heating grids with variable flow[END_REF]:

S T = 1 2Z& ℎ \ + ]1 & W & 2ZV W + ]1 & X & W 2ZV WX + ]1 & Y & X 2ZV XY + 1 ^VR (7) 
Expressions to compute the conduction shape factor ^ are detailed in Chapter 4 of reference [START_REF] Bergman | Fundamentals of Heat and Mass Transfer[END_REF],

and the average convection heat transfer coefficient in the pipe ℎ \ can be computed as:

ℎ \ = _ \\\\ V I 2& (8) 
where we can use the Dittus-Boelter equation [START_REF] Winterton | Where did the Dittus and Boelter equation come from?[END_REF] to compute the average Nusselt number _ \\\\ .

The solution of equation ( 6) has been addressed using mainly discretisation (partial or total) or 1D analytical solutions coupled with physical approximations. Discretisation strategies include the implementation of finite volumes [START_REF] Greyvenstein | An implicit method for the analysis of transient flows in pipe networks[END_REF], finite elements [START_REF] Gabrielaitienė | Thermo-Hydraulic Finite Element Modelling of District Heating Network by the Uncoupled Approach[END_REF], and finite differences [START_REF] Hassine | Impact of load structure variation and solar thermal energy integration on an existing district heating network[END_REF]. On the other hand, estimates are based on a succession of steady states, as proposed by Duquette et al. [START_REF] Duquette | Thermal performance of a steady state physical pipe model for simulating district heating grids with variable flow[END_REF], or the Lagrangian approach of Zhou et al. [START_REF] Zhou | Dynamic modeling of thermal conditions for hot-water district-heating networks[END_REF]. In this second group, we can also include the contributions of Stevanovic et al. [START_REF] Stevanovic | Prediction of thermal transients in district heating systems[END_REF], van der Heijde et al. [START_REF] Van Der Heijde | Dynamic equation-based thermo-hydraulic pipe model for district heating and cooling systems[END_REF] and Schweiger et al. [START_REF] Schweiger | District heating and cooling systems -Framework for Modelica-based simulation and dynamic optimization[END_REF]. These last two contributions use an implementation in Modelica®, where the fluid and temperature propagations are calculated separately from the heat loss, combining a plug flow approach with an ideal mixed volume model. These methods require a large number of grid points for discretisation, or a large storage memory to compute the behaviour of the temperature in the pipes for the steady-state-based methods.

It could be pointed out here, that several of these studies ( [START_REF] Duquette | Thermal performance of a steady state physical pipe model for simulating district heating grids with variable flow[END_REF][START_REF] Van Der Heijde | Dynamic equation-based thermo-hydraulic pipe model for district heating and cooling systems[END_REF][START_REF] Zhou | Dynamic modeling of thermal conditions for hot-water district-heating networks[END_REF]) have validated the previous model, based on reasonable assumptions, by comparison with experimental data.

However, for some dynamic modelling applications in chemical engineering [START_REF] Finlayson | Orthogonal Collocation in Chemical Reaction Engineering[END_REF][START_REF] Ebrahimzadeh | Simulation of transient gas flow using the orthogonal collocation method[END_REF], the orthogonal collocation method has been used to handle Partial Differential Equation (PDE) problems.

If applied to the space domain, the orthogonal collocation method transforms a PDE system into an Ordinary Differential Equation (ODE) system (where time is the only integration variable) which is smaller in size than that obtained using a classical discretisation strategy (e.g. Finite differences). The resulting ODE system can be solved using classical methods, like Runge-Kutta (RK) as carried out by Ebrahimzadeh et al. [START_REF] Ebrahimzadeh | Simulation of transient gas flow using the orthogonal collocation method[END_REF], who reported computational times up to 90% lower compared to the Method of Lines (i.e. finite differences in space and RK in time).

When the nature of the phenomenon demands more accurate measurements, the domain of integration can be divided into subdomains or finite elements, where the orthogonal collocation method is implemented, allowing the use of a large number of grid points. Biegler [START_REF] Biegler | Nonlinear Programming: Concepts, Algorithms, and Applications to Chemical Processes[END_REF] reported better convergence and lower computational requirements for the OCFE method compared to other discretisation methods.

To describe the dynamics of the district system, we must couple the 82 Partial Differential Equations (PDE) (6) (one for each pipe) with the mass and energy balances in the connections between the network and the users, represented by linear and nonlinear algebraic equations presented in the next section. This leads to a Partial Differential Algebraic Problem (PDAE), which is solved in the present work using 2D-OCFE, transforming the PDAE system into a set of algebraic equations.

Thus, we can solve the dynamic optimisation of the DCS using a simultaneous strategy.

Heat balances in the nodes

Initial condition

For each pipe `, the initial spatial temperature profile is known from a steady-state simulation:

N a 0, O = b a O (9) 
Here, b a O represents the spatial distribution of temperature along pipe ` at = 0. The way to achieve this steady-state simulation will be discussed later.

Boundary conditions

We assume that chilled water is produced at a constant temperature (277 K). For the pipe leaving the production site ($ = 0), we then have:

N ' , 0 = 277 K (10)
The nodes in the outward path are splitters, where the outlet temperature of the pipe entering the node is equivalent to the inlet temperature of the pipe leaving it:

N de , f de = N , 0 , $ = 1 … 13,15, … 20 N ' , f ' = N eh , 0 N , f = N ij k l , 0 , $ = 1 … 20 (11) 
where f a is the length of pipe `. ` may be $, $ , 01 2 l , 4 2 l .

On the other hand, heat balances for the return path and the consumers K = K e , K m , … , K m' ) will define the boundary condition of the pipes leaving these elements of the system. As we consider constant properties, they will be:

PQ n • N n , 0 = PQ oe n • N oe n , f oe n + PQ p k l • N p k l , f p k l , $ = 1 … 12,14, … 19 PQ ' n • N ' n , 0 = PQ e n • N e n , f e n + PQ eh n • N eh n , f eh n PQ n • N n , 0 = PQ p k l • N p k l , f p k l , $ = 13 , 20 (12) 
q 2 l = PQ ij k l • C$ I • sN p k l , 0 F N ij k l , f ij k l t (13) 
where N ij k l , f and N p k l , 0 are the inlet and outlet temperatures of the exchanger.

Mass Balances in the nodes

For the nodes and consumers, the mass balances are given by: Outward path

PQ = PQ oe + PQ ij k l $ = 1 … 12,14 … 19 PQ = PQ ij k l $ = 13 , 20 PQ ' = PQ e + PQ eh (14) 
Return path 

PQ n = PQ oe n + PQ p k l $ = 1 …
Consumers

PQ ij k l = PQ p k l $ = 1 … 20 (16) 
With the heat and energy balances of the system already formulated, the next section presents the analysis of degrees of freedom of the system and the supplementary relationships that we included in order to have zero degrees of freedom for simulation purposes.

Degrees of freedom and flow policy

From the set of equations ( 6) and ( 9) to ( 16), the degrees of freedom of the system can be analysed for the 82 pipes at each instant , as detailed in Table 6. The number of degrees of freedom of the system is 20 at each instant t, representing the profiles to be given for dynamic simulation or computed via dynamic optimisation. Considering this, for dynamic simulation purposes we must complete the degrees of freedom of the system. We can do this by defining the flow policy we will use to achieve the cooling demand for each consumer. Some systems operate under constant production conditions, as shown in Figure 7, where the production of cold PQ ' and the mass flow in the main network (PQ and PQ ij k l ) are constant at the level necessary to cover the peak of the total demand of the system. In this way, the producer guarantees enough cold in the system during the studied period, but this results in cost overruns for production and pumping of the chilled water. At each consumer substation, there is a common pipe KP connecting the main and return networks, to regulate the flow to the consumer (u01 2 l ) over time, sending large quantities of cold water directly to the return network in periods of low demand, and the total flow of PQ ij k l to the consumers when their demand corresponds to the peak. The literature reports this policy as constant-primary secondary-variable flow [START_REF] Olama | District Cooling: Theory and Practice[END_REF][START_REF] Phetteplace | District Cooling Guide[END_REF]. 

PQ ' = PQ 'vwx (17) 
Furthermore, in the splitters, we assume that the mass flows entering the consumers at each time PQ ij k l are proportional to their corresponding maximum peak demand yz%` K from Table 4).

We can do this by fixing the ratio between these variables for all the consumers over time as:

yz%` K e PQ ij k 3 = yz%` K PQ ij k l , ∀ $ ∈ |2, … , 20} (18) 
The mass and energy balances presented in section 3.3 are the balances for each consumer for the boundaries defined by the dotted borderline presented in Figure 7. Hence only the mass flows PQ ij k l are computed; the pipes KP , u01 2 l and u4 2 l belong to the user's substation and their flows are not considered in this analysis.

The dynamic response of the system will initially be analysed under constant production mass flow PQ 'vwx as expressed in [START_REF] Schweiger | District heating and cooling systems -Framework for Modelica-based simulation and dynamic optimization[END_REF]. This value corresponds to the value of the producer mass flow in steadystate, which is computed using relations [START_REF] Powell | Dynamic optimization of a hybrid solar thermal and fossil fuel system[END_REF] and imposing a return temperature [START_REF] Longuski | Optimal Control with Aerospace Applications[END_REF] to complete the 20 degrees of freedom.

N ' n f ' n = 287 K (19)
Then, to simulate the constant flow policy in the dynamic simulation, the 20 degrees of freedom at each time t are completed using [START_REF] Schweiger | District heating and cooling systems -Framework for Modelica-based simulation and dynamic optimization[END_REF] and [START_REF] Powell | Dynamic optimization of a hybrid solar thermal and fossil fuel system[END_REF].

The optimisation analyses include the study of the constant flow policy and optimisation of the system operation using a dynamic flow policy. In the former case, ( 17) and ( 18) will be constraints and the value P 'vwx will be the only optimisation variable. In the latter case, these constraints are not considered, giving the profiles PQ ' and PQ ij2 l , $ = 1 … 20 as optimisation variables.

Finally, as mentioned in section 2.1, the flow velocity u a,~,i inside a pipe `, cannot exceed its maximum allowed velocity u • €,a reported in Table 3.

u a,~,i ≤ u • €,a (20) 
With this inequality, we complete the mathematical model that we will use to describe the dynamics of the proposed district cooling distribution system.

Formulation of the optimisation problem

With the mathematical model already defined, this section describes the operational optimisation applications of the DCS. We present the operational objective function, which will be analysed for different degrees of freedom. Lastly, we detail the methodology used to obtain the initialisation and the solution of the resulting NLP problem.

For the present application, we will use a Lagrange problem type formulation, which will measure the influence of the variations in cold demands q 2 • and of the soil surface temperature N R on the systems, with the aim is to achieve a given operational condition over the studied time horizon.

In our case, the control variables are the mass flow in each pipe PQ a . They are called control variables because they are the variables which will have to be manipulated to manage the system online. It should be noted, however, that the dynamic optimisation we do here is not an online control:

it consists in the offline calculation of the temporal profiles of these control variables. The known soil temperature N R as well as the demand of each consumer q 2 • are treated as algebraic variables, which are not optimisation variables. The velocities u a are optimised algebraic variables. The lengths of the pipes f a are time-independent parameters. In our case, the differential state variables are the temperature in each pipe, N a , which depend not only on but also on O. Instead of dealing with DAE constraints, we then deal with PDAE constraints. It can be noted that applying a space discretisation method to the temperatures leads to DAE constraints, while increasing the number of "state variables" dependent only on (variable N a , O is replaced by 1] variables N a' ).

Objective function

The efficiency of a DCS is measured in terms of the difference between the temperature of the fluid leaving the production site and the temperature of the fluid that returns to it (ΔT). Generally, maintaining a high ΔT reduces the flow rates of the chilled water system and the costs of the distribution system due to the use of smaller pipe diameters. This results in savings in pumping energy costs and improves operating costs [START_REF] Olama | District Cooling: Theory and Practice[END_REF]. Typically, ΔT in the DCS production site is maintained at around 8-12°C [START_REF] Phetteplace | District Cooling Guide[END_REF][START_REF]District heating and cooling connection handbook[END_REF].

When the ΔT is not properly controlled, the DCS could present an important issue known as "low ΔT syndrome" [START_REF] Olama | District Cooling: Theory and Practice[END_REF]. Indeed, this low ΔT at the production site is a consequence of a low ΔT at each consumer, which is a symptom of the low efficiency at the consumer's substation. Then, in order to satisfy the consumers' demands, the system has to pump excess rates of chilled water although the plant is not designed to operate at this level. A high ∆T design is generally economical to the operation of a district cooling station, the chilled water distribution network, and individual buildings' heating, ventilating and air conditioning (HVAC) systems. This is because of savings in the size of piping and accessories in the plant and larger savings in piping, pre-insulation, and accessories in the chilled water distribution network.

To optimize ΔT and meet customer demand, both the flow from the central plant and flow on the customer's side must be varied [START_REF] Phetteplace | District Cooling Guide[END_REF]. These variations also represent savings in pumping energy. The complete dynamic flow policy of the system is represented in Figure 8. This operating policy eliminates the use of the common pipe shown in the case of the constant flow policy (Figure 7) and the resulting mixing and possible reduction in the temperature in the return network. The variations in temperature mentioned above represent not only a technical issue but also an economic impact on the customer. The consumer will be charged 3% for each degree Celsius of the monthly average return temperature below the system design return temperature [START_REF] Olama | District Cooling: Theory and Practice[END_REF]. On the other hand, it is important to avoid high temperatures that might compromise the proper operation of the production site technology.

Bearing this in mind, we define as the quadratic error between the outlet temperature of the users and a set point. First, we analyse the system under the constant flow policy [START_REF] Biegler | Advanced optimization strategies for integrated dynamic process operations[END_REF], and then we perform the optimisation for a dynamic operation [START_REF] Hedengren | Nonlinear modeling, estimation and predictive control in APMonitor[END_REF], for a design outlet temperature of 287K. 

Since a constant flow policy is applied, equation ( 17) is embedded in the set of model equations.

We also apply the flow policy equation [START_REF] Powell | Dynamic optimization of a hybrid solar thermal and fossil fuel system[END_REF], which requires that the ratios of the splitters are constant. In this optimisation, therefore, the only control variable is the constant flow leaving the producer PQ '2 ~. ‰%& represents all the other variables of the problem (N , O , PQ a , , …) whose optimal paths minimise the difference between the consumers' outlet temperature and the proposed design temperature over time. The flow variables PQ a are treated as algebraic variables.

min •Q Š‹ OE l w • † ‡ N p 2 l F 287 m mh ' ˆ ^. . 6 , 9 4 16 , 20 (22) 
In this case, none of the constant flow policy equations ( 17) and [START_REF] Powell | Dynamic optimization of a hybrid solar thermal and fossil fuel system[END_REF] are included in the model, so that the mass flow of the producer and the ratios of the splitters are time-dependent and will be the main control variables.

Discretisation strategy

As stated in section 1 in the present work, we use 2D-OCFE to transform equation ( 6) into a set of algebraic equations, which is highly advantageous and efficient for simultaneous optimisation applications [START_REF] Biegler | Advanced optimization strategies for integrated dynamic process operations[END_REF]. To our knowledge, there are no studies related to the dynamic operation of DCSs that use OCFE to handle the resulting PDAE problem.

The generalities of the numerical method and its implementation in discretising equation ( 6 

Methodology for the solution of the dynamic simulation and optimisation problems

A good initial guess for the optimisation of dynamic systems is crucial for a fast and reliable solution to a dynamic optimization problem, as stated by Safdarnejad et al. [START_REF] Safdarnejad | Initialization strategies for optimization of dynamic systems[END_REF]. Figure 9 describes the procedure we implemented to obtain the initial guess and solve the PDAE problem.

Due to the lack of piping data for the selected system [START_REF] Söderman | Optimisation of structure and operation of district cooling networks in urban regions[END_REF], we define the diameters using an iterative procedure, which uses the maximum allowable speed flows as decision criteria. For this purpose, we first compute a theoretical maximum mass flow in the main pipe using a model without heat losses that includes only the heat and mass balances in the nodes and consumers, for the maximum demand (peak demand) of each consumer and a return temperature of 287 K (which is also the outlet temperature of each consumer exchanger since heat losses are neglected). We then evaluate the maximum speed constraints consecutively, looking for the smallest diameter of each pipe that could transport the computed flow without exceeding the allowable speeds. It is important to mention that the diameters chosen for this iterative step will lead us to a physically achievable operation, but they are not optimal regarding any economic or operational criteria. The computation of the optimal diameter of the pipes is beyond the scope of the present work. With the diameters already defined, we run the model without heat losses for the maximum demand of the system (demand in = 17.64 ℎ = • € , presented in Figure 4), and the result represents the initialisation to solve the steady-state (SS) problem. This problem is defined by the equation system ( 6), ( 9) to ( 18) and ( 20), with 6), ( 9) to ( 18) and ( 20)), that describes the behaviour of the complete system, subject to the environmental and operational perturbations over the selected time horizon. Finally, we use the solution of the DS as the initial guess for the dynamic optimization (DO)

problem. We implement all the described stages in the GAMS modelling environment and solve the different problems using the CONOPT feasible path solver, on a 2.7 GHz quad-core CPU with 8 Gb of RAM.

Results and discussion

We present the results according to the flowchart presented in Figure 9. First, we analyse the computed pipe diameters of the cooling network pipes using the model without heat losses. These diameters become inlet data (parameters) for the forthcoming problems. The second result is the distribution of temperatures computed by the steady-state simulation for the system under the external conditions described in section 2.3. Lastly, we present dynamic analyses (DS and DO) of the case with major variations in the steady-state simulations.

Pipe diameters

Using the abovementioned iterative procedure with the model without heat losses, we define the distribution of pipe diameters detailed in Table 7. These diameters ensure the operation of the system under the proposed demand profiles and they will be fixed parameters for the subsequent problems.

Under these conditions, the producer pumps a total flow of 259.66 kg s -1 of chilled water, to supply the cooling demand corresponding to the maximum demand of the network • € . The distribution of diameters presented here is consistent because the sizes of the pipes decrease the further away they are from the production site. Furthermore, the smallest pipes feed those users with lower cooling demands. With these data, we define the global thermal resistance per unit length S' of the pipes. To compute the thermal resistances, we assume that all the pipes are buried at the same depth of one meter ( in Figure 6). The thermal conductivities and thickness of the insulation correspond to the values reported by the North American Insulation Manufacturers Association [START_REF]Guide to Insulating Chilled Water Systems with Mineral Fiber Pipe Insulation. First Edition[END_REF].

Figure 10 shows the variation in the global thermal resistance with respect to the pipe diameters for insulated and non-insulated pipes, for the characteristic terrain and initial soil temperature for each of the proposed climate zones detailed in section 2.3. These values will also be input parameters for the forthcoming problems. We can show that in all cases, as the pipe diameter increases, the value of the global thermal resistance decreases, resulting in a major variation for insulated pipes. For both kinds of pipe, installation under KL conditions has a lower thermal resistance. The discontinuity of R' for the insulated pipes corresponds to a change in the insulation thickness, which is one inch for pipes with diameters smaller than 8 inches and 1.5 inches for the others. Furthermore, for large insulated pipes (16" and 20") the resistance in KL is equivalent to that computed for non-insulated pipes under UAE conditions. These values will have a major influence on the spatial distributions of temperature, as we will discuss in the next subsection.

Steady-state simulations

With all the elements of the distribution network already established, it is necessary to define the number of elements 1# and points 1Ž + 1 that will be used to solve the DS and DO problems. To do this, we perform several simulations, changing the number of elements (1# = 1,2,3,5 and points inside each element 1Ž + 1 = 4,6,11 (e.g. the degree of the Lagrange interpolation polynomial is = 3,5,10 ), and compare the results. We chose the combination of elements and points with the lowest CPU time where the solution did not present significant variations compared with the solution obtained with the maximum number of points. Using this procedure, we chose 1# = 1 and 1Ž + 1 = 11. Later, using the same procedure for dynamic simulations, we define 1z = 24 and 10 + 1 = 6.

We completed the steady-state simulation for the climate (using N R = 0 as external temperature) and soil conditions presented in section 2.3 using insulated and non-insulated pipes. For each climate zone, the simulation was first performed for a system with insulated pipes, fixing the return temperature b ' n ,j ,j' to compute the producer mass flow PQ '2 ~. This latter is set as a parameter

for the system with non-insulated pipes, where we compute the return temperature in order to compare the influence of the insulation under the same flow conditions. Table 8 details these results. As expected, the system that reported the lowest thermal resistance (KL) demands more cold water from the provider to achieve the proposed return temperature using insulated pipes. On the other hand, although the UAE presents the biggest thermal resistance, this location also represents the hottest external temperatures, resulting in a bigger mass flow compared with the network installed in Paris.

Moving to the systems with non-insulated pipes, the variation in the return temperature increases as the thermal resistance decreases. Although the non-insulated system in UAE presents a slightly smaller variation than that in Paris, the producer must pump more cold water, resulting ultimately in a greater operational cost.

Figure 11 details the spatial distribution of temperature over the left outward branch of the network (C1 to C13 in Figure 2; the production site is located at O = 0). The solution of the steady-state model for each climate condition takes less than 0.5 s. We observe in all cases that the water in the pipes increases in temperature as it moves further from the production site. As expected, results under the humid conditions in Kuala Lumpur present the biggest temperature increments. Although the variations in spatial temperature are of the order of 0.5 K or less, its computation will have a large impact on the dynamic study of the system under variable flows. Furthermore, the computed mass flows aim to cover the maximum demand of the system.

These results agree with the total pipe resistances presented in Figure 10. The system with the lowest thermal resistance values has the greatest spatial temperature variations. In the light of these results, the dynamic analysis of the system will be performed for the external conditions in KL.

Dynamic simulation

As stated in equation ( 17), the producer mass flow is fixed at its computed steady-state value (Table 8) for the dynamic simulations. Figure 12 details the temperature profile at the outlet of consumers 1 and 11, for both insulated and non-insulated pipes. We chose these consumers because of their high demand and to show the impact of the distance from the producer site. The CPU times reported for solving the dynamic simulation problem were 56.7 s for the system with insulated pipes and 46.8 s for the network without insulation. Using the constant flow policy, the consumers' outlet temperature will vary over time in line with the corresponding demand. This results in a non-uniform return temperature to the production site, as shown in Figure 13. For both insulated and non-insulated pipes, the return temperature (N ' n , f ' n ) is influenced by the total demand profile. These profiles exhibit a lag time compared to the profile of the total demand. This lag time represents the interval of time it takes for the fluid leaving each user to arrive at the production site. These variations in return temperature represent a technical issue at the production site due to the need for production at the cold utility to stay close to the design temperature [START_REF] Lo | Optimizing the cost and energy performance of district cooling system with the low delta-T syndrome[END_REF]. Furthermore, the operation under this flow policy drives the system to the undesired low ΔT syndrome, with ΔT values at the production site as low as 6.28K. As stated in section 4.3, the solution described for the dynamic simulation problem will be used as the initial guess for the optimisation problems, whose results are detailed in the next section.

Dynamic optimisation

The DO problem stated in the formulation ( 21) aims to evaluate the potential of the constant flow policy to maintain the system under the desired conditions of operation. For this problem, the only control variable is the constant flow at the production site. Figure 14 presents the temperature profiles of the return and outlet pipes of the chosen consumers for both insulated and non-insulated pipes. In terms of CPU time, the solution of problem (21) required 70 s and 58 s for insulated and non-insulated pipes respectively. For insulated pipes, the optimal producer mass flow is 228.36 kg s -1 , while for the non-insulated system it is 248.40 kg s -1 , which represents an increment of 8.7% in the quantity of chilled water produced for the non-insulated system. Although the system presents a higher ΔT (7.25 K) compared with the simulation results, the return temperature still presents variations, which would compromise the operation of the central cooling plant [START_REF] Lo | Optimizing the cost and energy performance of district cooling system with the low delta-T syndrome[END_REF].

As expected, for consumer C11 the outlet temperature is higher when using non-insulated pipes. On the other hand, under the same conditions, consumer C1 presents a lower outlet temperature. This is due to the influence of distance on the inlet temperature of each consumer, and the larger mass flows for the non-insulated systems. Figure 15 details the inlet temperature profiles for consumers C1 and C11, located at 370 m and 3219 m from the producer, respectively. We can show the influence of distance from the source when we use non-insulated pipes. The difference in the values of the outlet temperature for C1 when the kind of pipe is changed ranges from 0.05 K to 0.06 K, while for C11 this difference ranges from 0.89 K to 1.2 K. C1 is, therefore, operating at almost the same temperature in both cases, but due to the increment of the inlet mass flow to the consumer (31.77 kg s -1 to 34.57 kg s -1 ), the outlet temperature is lower when using non-insulated pipes. This phenomenon was also observed in consumers C2, C3, C4 (1446 m from production site), C14, C15 and C16 (892 m from production site).

The previous results show that when working with the constant flow policy, it is not possible to operate the system under the desired parameters. Although the return temperature is warmer, its variation due to the demand profiles of the consumers prevents proper operation of the cooling network.

By implementing a dynamic flow policy, on the other hand, as stated in the optimisation problem in [START_REF] Hedengren | Nonlinear modeling, estimation and predictive control in APMonitor[END_REF], the system will operate with more uniform return temperatures, using insulated and non-insulated pipes, as detailed in Figure 16. As expected, the return pipe in the insulated network presents a lower temperature than the noninsulated one. Nevertheless, the only way to achieve the desired outlet temperature in the non-insulated pipe for all consumers involved exceeding the maximum allowed speed in the pipes, as shown in Table 9. Although the velocity violations are small (the largest is 0.24 ms -1 for pipes 13 and 13r) they should involve changing the corresponding pipes to implement a system without insulation.

However, for the sake of simplicity and to avoid having to recalculate previous simulations, we did not change the diameters, but we increased the maximum velocity slightly. Contrary to Branan [START_REF] Branan | 1 -Fluid Flow[END_REF], the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) [START_REF] Heating | ASHRAE handbook: fundamentals[END_REF][START_REF] Hyman | District Heating and Cooling[END_REF] does not report a maximum allowable velocity depending on pipe size and indicates that in any case (irrespective of application, size or material) the velocity in the pipes cannot exceed 4.6 ms -1 . As detailed in Table 9, none of the pipes reports values even close to 2m/s. Although in these cases the velocity bounds have been violated, the computed solution leads to reliable system operation. This

shows the lack of precision when using an approximation without heat losses to define the diameters of the pipes, and the advantage of including the pipe diameter as an optimisation variable in future studies. Figure 17 presents the optimal inlet mass flows for the selected consumers and for the production site. The computed mass flows consider the heat gains required along the pipes to meet the fluctuating consumer demand, reducing the variation in the outlet temperature for each consumer and hence, the uncontrolled deviation in the return temperature. As expected, the non-insulated system requires more cold water. However, due to the heat gains and the kind of demand, this difference is not proportional among all the users, as can be seen when comparing the profiles of C11 (3219 m from production site) and C1 (370 m from production site).

Finally, it is possible to compute the total production required per day using the pumping methodologies presented here for the two kinds of piping as" PQ ' mh '

. We present these results in Table 10, where DO.1 and DO.2 refer to the solution of problems ( 21) and ( 22) respectively. The optimal dynamic policy (DO.2) represents a reduction of 8.06% (insulated) and 9.94% (noninsulated) compared with the computed productions using a constant flow (DO.1). Compared with the production using the constant flow policy in dynamic simulation, the reductions are 20.34% and 15.42% respectively. The system operates at the desired levels of temperature only if a complete dynamic policy is used.

Conclusions

In this contribution, we presented an innovative solution methodology, based on 2D-OCFE, for the dynamic simulation and dynamic optimisation with a non-restrictive computational time of district cooling systems. The chosen model was based on reasonable assumptions and was already validated with experimental data in other studies [START_REF] Duquette | Thermal performance of a steady state physical pipe model for simulating district heating grids with variable flow[END_REF][START_REF] Van Der Heijde | Dynamic equation-based thermo-hydraulic pipe model for district heating and cooling systems[END_REF][START_REF] Zhou | Dynamic modeling of thermal conditions for hot-water district-heating networks[END_REF]. Using this method, it was possible to fully discretise the initial differential problem, transforming the differential operators into algebraic combinations of the state variable at some collocation points in time and space. This results in a simultaneous solution of the optimisation problem, which involved solving steady-state and dynamic simulations to properly initialise it. Using this methodology, we analyse a medium-sized cooling network, including environmental and demand variations over a time horizon of 24 h.

The proposed strategy allowed solving the discretised model (that accounted with more than 360000 variables) with CPU times around 50 s for dynamic simulation and less than 600 s for dynamic optimization. Via dynamic simulation, we computed the operational response of the system when a constant flow policy is implemented, resulting in undesirable levels of temperature of the water returning to the production site leading to a low ΔT in the production site (as low as 6.28 K).

Considering this, we proposed an objective function to control the temperature of the water leaving the clients implementing a dynamic flow policy to avoid the reported low ΔT syndrome.

We computed the optimal paths for mass flow at the production site and the consumer substations to optimise the operation of the network using insulated and non-insulated pipes. Optimisation allowed to synchronize the energy production with the total demand of the system resulting in a lower production of chilled water to supply the consumer's demand for the two kinds of piping (20.34% and 15.42% respectively) compared with the production computed via dynamic simulation.

The results of the optimisation presented here show the capability of the proposed methodology to improve the operating conditions of DCSs under varying cooling demands and external conditions.

It might be interesting to make a comparison with experimental data in order to consolidate our methodology or to validate some numerical values used in the model (i.e. thermal conductivity of the soil, convective heat transfer coefficient…). Given the reported CPU times, this method represents a suitable starting point for a more complex analysis of DCSs, including optimal simultaneous operation and design.

We are currently working on the techno-economic analysis of the system, aiming to include the diameter of the pipes as optimisation variables and to compute properly the electrical requirement to pump the chilled water to the consumers. In future work, we intend to study the network when chilled water storage technology is included and to develop the MIDO model in order to choose the most appropriate technology for producing chilled water.

Then the implementation of the collocation method consists in writing that the differential equation is satisfied on each collocation point • ' . In each element #: the state variable is replaced by N ,' , the derivative can be calculated by deriving the Lagrange interpolation polynomial, leading to a linear combination of the 1Ž + 1 coefficients N ,a `= 0, … 1Ž . Then the differential equation satisfied at this collocation point • ' finally leads to an algebraic equation involving the 1Ž + 1 coefficients N ,a `= 0, … 1Ž . Finally, by solving the system of all these 1# × 1Ž + 1 algebraic equations we obtain the 1# × 1Ž + 1 values N ,' of the temperature at these collocation points.

In order to estimate the derivative terms, Hedengren et al. [START_REF] Hedengren | Nonlinear modeling, estimation and predictive control in APMonitor[END_REF] have proposed a convenient method, which includes the boundary condition. We have adapted it to collocation on finite elements and describe it below. It begins with a classical formulation of the Lagrange interpolation polynomial on the f th element (equation (A-4)):

N • = ž ' + ž e • + ž m • m + ž Ÿ • Ÿ + ⋯ + ž j' • j' (A-4)
The first step is then to find a matrix ¡ € that relates the values of the derivative at the collocation points and the coefficients as follows:
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The coefficient ž ' corresponds to the boundary condition of the element #, N ,' , when the initial position is defined as zero. For the first element, this value (N e,' must be given, whereas for the following elements it corresponds to the final value of the previous element. Then, substituting the approximation of the state variable and its derivative in the previous expression N ,' will be cancelled and it follows:
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Finally, considering the change of variable, this leads to: In the following subsection, we present the implementation of the method for both time and space domains O .
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A.2. Implementation of 2D-OCFE

The orthogonal collocation on finite elements method in 2 dimensions can be formulated as an extension of the 1D derivation, as stated by Surjanhata [START_REF] Surjanhata | On orthogonal collocation solutions of partial differential equations[END_REF], Finlayson [START_REF] Finlayson | Orthogonal Collocation in Chemical Reaction Engineering[END_REF] and Esche et al. [START_REF] Esche | Optimal Operation of a Membrane Reactor Network[END_REF], using the corresponding variables for each direction as well as a different polynomial or number of roots.

First, the time horizon is divided into 1z intervals (finite elements), and inside each interval, 10 collocation points are chosen. Similarly, each pipe has 1# segments with 1Ž collocation points.

Therefore, we define sets z ∈ 1,2, … , 1z , 0 ∈ 0,1, … , 10 , # ∈ 1,2, … , 1# , Ž ∈ 0,1, … , 1Ž . We also introduce the normalised time for element e (similarly to the normalised spatial variable):

Finally, we add a subscript to take the issue of the pipe into account. Then the temperature of each pipe ` (` may be $, $ , 01 2 l , 4 2 l ) N a , O is expressed with the use of the 1z × 10 + 1 × 1# × 1Ž + 1 coefficients N a,~,i, ,' .

Then, applying the same methodology as for 1D-OCFE, we can approximate In equations (A-13) and (A-14) ¡ and ¡ € represent the collocation matrices for the normalised domains with respective element sizes ∆ ~ and f . Finally, ¹ Š `, z, #, Ž and ¹ € » `, z, 0, # denote the algebraic combinations to describe the variational terms.

For the first element on each domain, the values of the boundary conditions, N a,e,', ,' and N a,~,i,e,' , must be known. The way to achieve this will be explained in the next section. Then, for subsequent elements, these values correspond to those of the final point of the prior element. For the present application, we use the nodes of the shifted Legendre Gauss Lobatto quadrature as collocation points so that 0 and 1 are nodes.

Then for the other spatial-time points (other than z, 0, #, Ž and z, 0, #, 0) (e.g. • ' , ± i , Ž = 1 … 1Ž , 0 = 1 … 10 ) we assume that equation ( 6) is satisfied. N a ± i , • ' is then replaced by N a,~,i, ,'

and the derivatives are expressed by equations (A-13) and (A-14).

In Appendix B, we describe the implementation of 2D-OCFE to transform the heat equation into a set of algebraic equations, which, when coupled with the heat and mass balances, represent the dynamics of the DCS. 
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  demand profile and the external conditions to which it is subject. Next, we present the resulting problem, then the proposed discretisation strategy, which consists in transforming the Partial Differential Algebraic Equation (PDAE) problem into a purely algebraic problem, by implementing 2D Orthogonal Collocation on Finite Elements (2D-OCFE) for the dynamic simulation (DS) of the case study. Based on this formulation, we structure the operational objective function for the optimisation problem. Finally, we discuss the results of the simulation and optimisation problems.
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  ) are presented in Appendix A. Based on this implementation, we present the discretised mathematical model of the system in Appendix B. 1# elements containing 1Ž + 1 collocation points are used to discretise the space domain and 1z elements containing 10 + 1 collocation points are used to discretise the time domain. The choice of the value of these parameters is discussed in section 5. Finally, in order to verify the accuracy and the validity of the results obtained with this kind of discretisation, comparisons with other classical methods are proposed in Appendix C.
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  , external conditions in = 0 and user demand fixed to its value at = • € . The main result of this problem is the spatial distribution of temperature b a O for each pipe ` for the constant flow policy, which represents the initial condition for the dynamic problem and the initial guess for its solution. This distribution is given by the temperature values at the spatial collocation points b a, ,' . With this, it is possible to solve the fully dynamic simulation (DS) problem (Equations (
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  Once the collocation points are defined, we can calculate the collocation matrix ¡ € and discretise the derivative terms using equation (A-7) to obtain a set of algebraic equations whose resolution will give the solution to the differential problem. For the present application, we use the nodes of the shifted Legendre Gauss Lobatto quadrature as collocation points[START_REF] Canuto | Spectral Approximation[END_REF]. Thus, 0 and 1 are nodes and there are 1Ž F 1 internal nodes. It follows that:N ,' = N de,j' # = 2, … 1# (A-8)Then, on each element, the ODE has to be written only on 1Ž points (• ' , Ž = 1 … 1Ž) since the boundary condition (e.g. N ,' = N f • ' + O de = N O de ) of each element is known. When dealing with a steady-state simulation, the above methodology has been applied to our DCS and the temperature, which depends only on O, has been noted N #0Oz , O = b O .
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Table 2 . Lengths of main and lateral pipes of the system Main pipes Lateral pipes Pipe Length (m) Pipe

 2 

	Length (m)

Table 3 . Maximum allowable speeds in pipes Pipe size (in) Maximum velocity (ms -1 ) in mains pipes in laterals pipes
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	2	--	1.31
	3	0.94	1.32
	4	1.08	1.54
	6	1.29	1.69
	8	1.27	1.76
	10	1.37	1.86
	12	1.56	2.08
	14	1.56	2.19
	16	1.80	2.41
	18	1.90	2.53

Table 4 . Peak demands for users in the Network

 4 

	Consumer	Type	Maximum load (kW)	Consumer	Type	Maximum load (kW)
	C1	Shop	1640	C11	Residential	800
	C2	Office	700	C12	Office	100
	C3	Leisure	200	C13	Shop	180
	C4	Office	780	C14	Office	1500
	C5	Shop	100	C15	Hotel/Services	650
	C6	Office	900	C16	Hotel/Services	380
	C7	Office	100	C17	Leisure	455
	C8	Residential	250	C18	Hotel/Services	900
	C9	Hotel/Services	400	C19	Leisure	360

Table 5 . Soil thermal conductivities Soil Moisture (By mass) Thermal conductivity (Wm -1 K -1 )
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			Sand	Silt	Clay
	Low	<4%	0.29	0.14	0.14
	Medium 4%-20%	1.87	1.30	1
	High	>20%	2.16	2.16	2.16

Table 6 . Analysis of degrees of freedom of the system
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		Variables	Equations		
	Variable	# of variables	Equation	# of equations
	N a O,	82	(6) 1 st order in and O PDE requires per pipe: -1 Initial Condition (9) -1 Boundary Condition (10)	1	82 82
			(11)	40	82
			(12)	21	
			(13)	20	
			(14)	21	
	PQ a	82	(15) (16)	21 20	62

Table 7 . Pipe diameters for the DCS Pipe size (in)
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	Pipes	# of pipes

Table 8 . Results for steady-state simulations Insulated pipes Non-insulated pipes
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		KL	Paris	UAE	KL	Paris	UAE
	PQ '2 ~ `( de b ' n ,j ,j' "	263.6 287	261.4 287	262.9 287	263.6 287.7	261.4 287.2	262.9 287.1

Table 9 . Pipes exceeding allowed velocities in non-insulated network
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	pipes	v (ms -1 )	maximum velocity (ms -1 )	pipes	v (ms -1 )	maximum velocity (ms -1 )
	9/9r	1.37	1.27	in/out8	1.42	1.32
	13/13r	1.18	0.94	in/out12	1.36	1.31
	19/19r	1.28	1.27	in/out20	1.72	1.69

Table 10 . Total chilled water production for the studied pumping methods Total production Ton
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	DS	DO.1-insu DO.1-Ninsu DO.2-insu DO.2-Ninsu
	22775.13	19730.68	21462.09	18141.78	19329.01

Appendix A. Generalities and implementation of OCFE

A collocation method approximates the unknown solution (the state variable) of an ordinary differential equation as a finite sum of known trial functions and enforces the ordinary differential equation to be satisfied at some collocation points. If the trial functions are Lagrange basis polynomials, if the integration variable is normalised, and the collocation points are chosen as roots of orthogonal polynomials, then the method is called orthogonal collocation. When using the OCFE method, the state variable is approximated by a different interpolating polynomial on each finite element, and the state variable continuity must be ensured at the boundaries.

A.1. One-dimensional case:

Let us consider an example where the spatial variable is the only integration variable (1D case), it can be the model of our DCS in steady-state conditions. If the whole domain is divided into 1# elements (O de and O being the boundaries of the f th element and f its length) and if the state variable is approximated by a polynomial of order 1Ž (e.g. 1Ž + 1 collocation points are used on each element), then the state variable (e.g. temperature) can be expressed on the f th element as the following Lagrange interpolation polynomial:

with:

the normalised spatial variable, and

(A-3) the j th Lagrange basis polynomial of degree 1Ž.

With such trial functions (e.g. Lagrange basis polynomial), the coefficient of the j th trial function on the f th element represents the variable at the collocation point • ' (i.e. N • ' = N ,' ).

Let us then consider the temperature of the spatial-time domain corresponding to element e in time and element # in space. This is now approximated by the following function of • and ± (degree 10 in ± and 1Ž in •):

The properties of the Lagrange basis polynomials lead to N ± i , • ' = N ~,i, ,' and therefore:

and:

To compute 

Appendix B. Discretised model

This appendix details the discretised model based on the equations presented in section 3.

B.1. Heat balances

As described in the previous section, 2D-OCFE will be applied to the PDE (6). To do this, the mass flow in each pipe, which is only time-dependent, also needs to be discretised as follows:

The profile of the soil temperature N R is known and corresponds to one of the profiles in section 2.3. When the PDE is applied in an element e in time at a collocation point ± i we use the corresponding soil temperature which has been noted N R,~,i .

In the same way, the temporal profile of the demand of each customer is known and we note:

As explained in the previous section, before applying orthogonal collocation, boundary conditions must be known, which will be explained later. Once these boundary conditions are known (N a,e,', ,' Ž = 1 … 1Ž and N a,~,i,e,' 0 = 1, … 10 ), using equations (A-13) and (A-14), we can represent equation [START_REF] Biegler | Retrospective on optimization[END_REF] for each pipe at each spatial-time point other than the boundary points,

By implementing this, we represent the PDE (6) as a set of 1z × 10 × 1# × 1Ž equations per pipe. The boundary conditions N a,~,', ,' and N a,~,i, ,' are obtained from the configuration of the problem and from the heat and mass balances as follows:

o For elements z > 1 and # > 1, for each pipe, the initial conditions correspond to the final point of the previous one, as already stated. N ,~,i,j ,j' = N ij k l ,~,i,e,' , $ = 13 , 20 

B.2. Mass balances

In this section, the mass balance equations and the constraints concerning the velocity and the flow policy involve only time-dependent variables. Therefore, each of these equations from the original PDAE problem leads to a corresponding set of 1z × 10 + 1 equations, replacing PQ a and u a by PQ a,~,i and u a,~,i . In this section, these equations are written in terms of discretised variables.

Mass balance equations ( 14), ( 15) and ( 16) lead to: 

Flow policy equations ( 17) and ( 18) lead to:

and the flow velocity equation ( 20) leads to:

Finally, the 1 i ~R × 1 ~× 1 i + 1 variables PQ `,~,i , with 1 i ~R = 82, are associated with:

Together with the variables N `,~,i, ,' associated with the equations described in the previous section, they constitute the algebraic system that must be solved.

The set of equations (B-4) to (B-18) results from the implementation of 2D-OCFE in the original PDAE problem. This formulation will allow us to perform the dynamic simulation analysis of the case study, whose main output will be the temperature profiles of the pipes that make up the system.

Appendix C. Validation of the discretization method

To validate the proposed 2D-OCFE method for solving the dynamic one-dimensional heat transfer equation in pipes, we analyse a simple case study. The problem is solved using a well-known discretisation strategy (second-order centred finite differences for time and space) as a reference scenario, which will be compared to the solution obtained via 2D-OCFE.

We propose to study the propagation of a temperature wave in the inlet of a 12-inch non-insulated pipe with a length of 1km, a constant flow velocity of 0.97m/s, and external temperature (N R ) varying linearly from 25°C to 27°C, for 1 hour.

First, we defined the number of discretisation points for the reference scenario. For this, we made several runs by incrementing the number of points on each domain (O, ) and comparing the results from each run until the change in the computed values was negligible. Next, we chose a reference scenario computed with 1200 discrete points in time and 200 in distance using the method of secondorder centred finite differences. The computational time for this scenario was 24.84 s.

Then we implemented the proposed 2D-OCFE method to solve this problem using different combinations of the number of elements (1z and 1#) and collocation points 10 + 1 and (1Ž + 1 on each domain, and comparing each result with the reference scenario. Table C-1 details some of the implemented combinations, their corresponding % of error with respect to the reference scenario and the computational time.