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ABSTRACT 
This paper presents the latest results on block turbo 
codes and also an analysis of the possible 
implementations of a block turbo decoder circuit. 
Simulation results show that the SNR (signal to noise 
ratio) required to achieve a BER (Bit Error Rate) of 
1O-j with block turbo codes is 2.5zt0.2 dB fiom their 
Shannon limit for any code rate. We have identified 
three different solutions for implementing the block 
turbo decoder circuit. Afer discussing the advantages 
and disadvantages of the different solutions, we give the 
results of the degradation of the performance of the 
block turbo decoder circuit due to data quantization. 
Finally, in our conclusion, we discuss how to reduce 
the complexity of the algorithm for its implementation. 

1 INTRODUCTION 
The exceptional performance of “turbo codes” was first 
demonstrated by C. Berrou [l] in 1993. To construct 
the “turbo code,” he used two concatenated recursive 
convolutional codes with a non-uniform interleaver 
inserted between the two recursive convolutional codes. 
Although this concatenated code is relatively powerful 
in terms of error correction, one must be very careful 
when decoding concatenated codes. To achieve near 
optimum decoding performance, C. Berrou proposed an 
iterative decoding algorithm based on soft decoding of 
the component codes and a soft decision of the decoded 
bits [2][3]. 
The results of convolutional turbo codes [4] encouraged 
us to search for block turbo codes. To construct the 
block turbo code, we used the principle of product 
codes [5] which were invented quite some time ago. 
Various iterative decoding algorithms have been 
proposed [6][7] for decoding product codes but the 
coding gains obtained with these decoding algorithms 
are well below what one would expect from such 
powerful codes. The main drawback of these algorithms 
is that they use algebraic decoders or hard decoders for 
decoding the component codes. To achieve near 
optimum decoding of product codes, in 1994 R. 
Pyndiah proposed a new iterative decoding algorithm 
[S][9] based on soft decoding of the component codes 
and a soft decision of the decoded bits. He obtained 
results similar to convolutional turbo codes and the 
coding gains were close to the theoretical coding gain 
expected from product codes when using Maximum 
Likelihood Sequence Decoding. 
The object of this paper is to give more details about 
this new algorithm. We shall also analyse the 
complexity of this iterative decoding algorithm from a 
circuit design point of view. 

2 PRINCIPLE AND PROPERTIES OF PRODUCT CODES 
The concept of product codes is a simple and relatively 
efficient method to construct powerful codes (that is 
having a large minimum Hamming distance S) using 
classic linear block codes [5 ] .  Let us consider two 
systematic linear block codes C’ having parameters 
(n,,kl,S1) and C2 having parameters (n2 ,bS2)  where nj, 
ki and 6i (i =1,2) stand for code length, number of 
information symbols and minimum Hamming distance 
respectively. The product code P=C’@C2 is obtained by 
placing (kl.h) information bits in an array of k, rows 
and k, columns, coding the k, rows using code C2 and 
coding the n, columns using code C’, as illustrated in 
figure 1. It is shown [5] that all the n,  rows are code 
words of C2 exactly as the n2 colur?.ns are code words 
of C’ by construction. Furthermore, the parameters of 
the resulting product code P are given by n=n1.n2, 
k k , . k ,  and S=S,.S2 and the code rate R is given by 
R=RI.R2 where Ri is the code rate of code C’. The 
theoretical results given above clearly show that it is 
possible to construct powerful product codes using 
linear block codes. As a general rule, the more powerful 
a code, the more difficult is the decoder. 

Figure I :  Construction ofproduct code P = C’C3.c‘. 

3 SOFI DECODING AND Son DECISION OF BLOCK CODES 
If we consider the transmission of block coded binary 
symbols {-1,+1} using a QPSK modulation over a 
Gaussian channel, the samples R = (Y, ,  .., rr, .., r,) at the 
output of the coherent demodulator, conditionally to a 
transmitted code word E = (e l ,  .., er, .., e,) can be 
modeled by the following equation : (1)  
where N = (nl, .., n,, .., n,) are Additive White Gaussian 
Noise (AWGN) samples of standard deviation cr. 
Optimum sequence decoding of the received vector R is 
given by : D=C’ 

R = E + N 

if Pr{E = C’/R} > Pr{E = C’/ R} tlj  # i (2) 
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where C' = (c,, .., c,, ., c,,) is the ?' code word of code C 
with parameters (n,k,6) and D = (dl, .., d,, ., d,,) is the 
decision corresponding to the maximum likelihood 
transmitted sequence conditionally to R. For received 
samples corrupted by AWGN, decoding rule (2) is 
simplified into : 

D = C' if IR-  < IR- C ~ I '  vj z i (3) 

where: R- C' = E(? -c;)* I .12 ,I, (4) 

is defined as the squared Euclidean distance between R 
and C'. For block codes with a high code rate R, the 
number of code words 2." is relatively large and 
optimum sequence decoding is too complex for 
implementation. In 1972, Chase proposed an algorithm 
[IO] which approximates optimum sequence decoding 
of block codes with low computation complexity and a 
small performance de radation. Instead of reviewing all 
the code wordsj=1..2 , the Chase algorithm searches for 
the code words at the Hamming distance within a 
sphere of radius (6-1) centered on Y = (yI,..,y,,..,y,,) 
where y, is the sign of r, (*1). To further reduce the 
number of reviewed code words, only the most 
probable code words within the sphere are selected by 
using channel information R. This search procedure can 
be decomposed into three steps: m: determine the position of the [U21 least reliable 
binary symbols of Y using R, 
&@: form test patterns TQ defined as all the n- 
dimensional binary vectors with a "1" in the [6/2] least 
reliable positions and "0" in the other positions, two "1" 
in the [8/2] least reliable positions and "0" in the other 
positions, ...,[ 8/21 "1" in the [6/2] leasi reliable positions 
and "0" in the other positions, a: decode Z Q  = Y@TQ usin an algebraic decoder 

The Chase algorithm described above yields the 
maximum likelihood sequence D for a given soft input 
R. We must now compute the soft decisions associated 
with the maximum likelihood sequence D or the 
reliability of each component of D. This reliabiiity 
function is given by the Log Likelihood Ratio (LLR) of 
the decision dj After the computations and the 
simplifications given in [SI, the estimated normalized 
LLR of decision 4, r J  is equal to r. Ius w, which is a 
function of the code words at the minimum Euclidean 
distance from R and {rl} with k j .  The term w, is the 
additional information given by the decoder to the 
reliability of the decoded bit. Since wj is a combination 
of independent and identically distributed random 
variables r,, it is also a random variable with a Gaussian 
distribution. The approximated normalized LLR of 4 
(r;  ) is an estimation of the soft decision of the block 
decoder. It has the same sign as 4 and its absolute value 
indicates the reliability of the decision. For each code 
word C4 found at step3, we compute its Euclidean 
distance from R: 

i? 

and memorize the code words C 8 . 

J P  

M Q  = IR- CQI2 ( 5 )  
As in the Chase algorithm we select the code word Cd at 
the minimum Euclidean distance from R. Then we 
search for the code word C" at a minimum Euclidean 

distance from R such that c; f c;. I f  we find such a 
code word then we compute the soft decision for bit a) 

using the relation given below: 
M E  - Md) 

(6)  or else we use the relation w, = x c; - rlJ 
where p is a constant which is a function of the BER 
and is optimized by simulation. Equations (6) are 
justified by the fact that w, has the same sign as the 
(LLRNh but we have not been able to compute the 
amplitude of reliability since we have not found code 
word Cc. We now have all the elements to perform the 
iterative decoding of product codes or block turbo 
codes which is described in the next section. 

4 ITERATED DECODING OF PRODUCT CODES 
On receiving the matrix p] corresponding to a 
transmitted code word [E] of the product code, the first 
decoder performs the soft decoding of the rows (or 
columns) of the matrix, estimates the normalized LLR 
[RI] as described in section 3 and gives as output 
[w(l)]. Then the next decoder performs the same 
operations on the columns (or rows) using as input: 

where the coefficient a(k) is used to reduce the 
influence of [w(k) ]  in the first iterations when the BER 
is relatively high and thus when p ( k ) ]  is not 
absolutely reliable. The decoding procedure described 
above is then iterated by cascading elementary decoders 
illustrated in figure 2. A close analysis of the iterative 
decoder shows that the parameters a(k) and p(k) are not 
independent and that the optimum value for these 
parameters also depends on the product code used. 

[R(1)1= [RI + a(l)[w(l)l (7) 

t 
columns of matrix 

IR1 

4 Delay line 
[RI 

Figure 2: Block diagram of an elementary decoder. 

This requires an optimization of the parameters for each 
product code. Conceming the set of test patterns used in 
the decoding algorithm, it is clear that the performance 
of the turbo decoder depends on the number of test 
patterns. We shall now give some further results 
concerning block turbo codes. We evaluated the 
performance of different block turbo codes based on 
extended BCH codes when using a QPSK modulation 
on a Gaussian channel. The BER is obtained using 
Monte Carlo simulations for different SNRs (signal to 
noise ratio (EdN,J). We used identical BCH codes for 
coding the rows and columns of the product codes, that 
is C'=C2. The simulation results show that after iteration 
4, the amelioration of the coding gain becomes 
negligible because of the steep slope of the BER curye. 
To evaluate the performance of the turbo decoder, we 
compared the coding gain at iteration 4 of the different 
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1,5 2 25 3 95 4 4 3  5 
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Figure 3: Bit Error Rate as a function of SNR ( E f l J  
after four iterations when using a QPSK modulation. 

Blockturbo R 6 SNR Gain AG 
code at lo-' at lo-' (dB) 

turbo codes with an upper bound of the asymptotic 
coding gain G, in the case of maximum likelihood 
sequence decoding and the SNR required for a given 
BER (lo" for example) at iteration 4 with Shannon's 
theoretical minimum SNR required to achieve an error 
free transmission over a Gaussian channel. The result of 
our comparison is summarized in the table below, 

AS 
(dB) 

2.4 

, I , ,  I (128.113.6) 10.781 36 I 3.3 I 6.1 I 8.4 I 2.3 I 5 

Figure 4: Table comparing the performance of the 
block turbo codes with the theoretical optimum 

performance. 

where AG is the difference between (G,)" and the 
coding gain at a BER of lo" at iteration 4 and AS the 
difference between the SNR at a BER of lo-' at 
iteration 4 and Shannon's theoretical limit. From the 
table in fig. 4 we observe that the block turbo codes are 
2.5 f 0.2 dB from their Shannon limit. AG increases 
with the code rate R and the minimum Hamming 
distance 6 of the block turbo codes. We believe that this 
is due to the fact that the (GQ)" increases with R and 6 
and thus the asymptotic coding gain of the turbo code is 
reached at a lower BER. This explanation is supported 
by the slope of the BER curves which increases with R 
and 6. 

5 INTEGRATION OF A BLOCK TURBO DECODER CIRCUIT 

5.1 - General architecture. 
A first analysis of the block turbo decoder algorithm 
shows that there are two different structures which can 
be adopted for hardware implementation [l 11. The first 
solution is a modular structure where a module 
integrates the elementary decoder illustrated in fig. 2. 
These modules are then pipelined to realize the block 
turbo decoder-1. This solution which is similar to the 
one used for convolutional turbo codes [l] is very 
attractive from a practical point of view. However, each 

additional module introduces a delay given by the time 
required to fill the matrix [RI and to decode the rows 
(or columns) of matrix [RI. Sequential decoding is well 
adapted to the block turbo decoder algorithm since most 
of the procedures in the algorithm are easily 
implementable sequentially, for example: algebraic 
decoding, identification of the positions of the least 
reliable bits, reading and writing of the data in matrix 
[RI. In this solution, the time required to decode one bit 
in the elementary decoder must not exceed the inverse 
of the bit rate. This bit rate must be greater than 1 
Mbit/s in order to keep the delay introduced by the 
block turbo decoder negligible. 
In the second solution, several iterations are 
implemented in the same circuit. This reduces the 
decoding delay which is less than or equal to twice the 
time required to fill matrix [RI whatever the number of 
iterations. However, the time required to decode one bit 
in the elementary decoder must not exceed the bit 
duration divided by twice the number of iterations. The 
number of iterations performed by the block turbo 
decoder is thus limited by the bit rate and the time 
required to decode one bit. In this solution there are two 
alternatives for processing matrix [RI which are: 
sequential processing (block turbo decoder-2) or block 
processing of rows and columns (block turbo decoder- 
3). In sequential processing, the time required to decode 
one bit is relatively high, which limits the number of 
iteratiohs in the circuit. In block processing, the 
processor handles blocks (rows or columns) instead of 
bits. This considerably reduces the time required to 
decode one bit. We can thus integrate more iterations in 
a circuit with a block processor than with a sequential 
processor. However block processing requires a specific 
memory architecture where the rows or columns of data 
[RI and [w] can be read and written blockwise. 

5.2 - Memory block 
Block turbo decoders in general require a large amount 
of memory to store data [RI and [w] which represents 
an important fraction of the surface occupied by the 
circuit. If we consider a g-bit quantization of the data, 
we need a g(n,xn,) memory per matrix. The number of 
matrices for every block turbo decoder shows a clear 
advantage for the second solution when designing a 4- 
iteration turbo decoder since block turbo decoder-2 and 
block turbo decoder-3 require only a 4g(n,xn,) memory 
while block turbo decoder-1 requires a 32q(nlxn,) 
memory. When considering the silicon technologies 
commercially available today, we must limit the block 
turbo codes to those with (n,xn,)1(128)*. Otherwise, 
external memories are required. 
The size of the memory required also depends on the 
number of bits used for the data quantization. We 
simulated the performance of the block turbo decoder 
when using 3, 4 and 5 bits for the linear quantization of 
the data [RI and [w]. The transmission of product code 
BCH(64,57,4)@BCH(64,57,4) over a Gaussian channel 
was used with QPSK signalling as in section 4. We 
observed a maximun degradation of 0.ldB at iteration 4 
when using a 4 bit quantization which is a good 
compromise between complexity and performance. 
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With 0.8pm CMOS standard cell technology, the 
surface necessary for a 4(64x64) memory is about 
4.3”’. Therefore, the size of the sequential memory 
can become very large according to the architecture 
used and the parameter n of the BCH code. 

5.3 - Processing unit 
To evaluate the surface, we considered a turbo decoder 
for the product code given by C’=Cz=BCH(64,57,4). 
The reference library is a 0.8pm CMOS standard cell; 
the data [RI and [w] are coded using q4b i t s  (one bit 
for the sign and three for its reliability); sixteen test 
vectors are used. 
We can decompose the algorithm functionally in the 
following way: 
-read [RI and [w], compute syndrome and initial 
Parity, 
-search for the five least reliable positions, 
-compute the syndromes of test vectors, 
-decode algebraically the test vectors, 
-compute the square Euclidean distances, 
-search for the minimal square Euclidean distance, 
-compute the reliability of every symbol. 
We evaluated the surface necessary for a sequential 
processing structure and a block processing structure. 
For the sequential processing structure, the surface is 
about 22mm2 for the processing unit (number of gates: 
43,000 . If we add the memory surface, we have about 
40” for a half-iteration. In the second structure, this 
surface reaches 75mm2 (number of gates: 102,000). 
These surfaces are greater than those obtained with 
convolutional codes (the first CAS5093 circuit [12] has 
a surface of 64“’ with the same technology). We can 
therefore attempt to reduce this surface by: 

2) 

-using a BCH(32,26,4) code or even a BCH(16,11,4) 
code, but the code rate R is smaller (thus, the memory 
size is divided by 4 or even 16), 
-changing the CMOS technology: 0.6pm or 0.35pm, 
-reducing the number of test vectors: 8 or 4, 
-trying to simplify the weighting method which uses 
more than 50% of processing unit space. 

6 CONCLUSION 
In this paper we have presented a block turbo code 
which is the equivalent of convolutional turbo codes 
[l]. The block turbo codes (product codes) are decoded 
using an iterative decoding algorithm (block turbo 
decoder) [SI based on soft decoding and a soft decision 
of the component codes. We have shown the 
performance of block turbo codes with different code 
lengths and different minimum Hamming distance 6. 
We have observed that U, which is the difference 
between the Shannon limit and the SNR at iteration-4 to 
achieve a BER of lo”, is practically independent of the 
code rate R and 6 (AS = 2.5*0.2 dB). Then, we 
identified three possible solutions for the 
implementation of the block decoder circuit. The 
surface estimated seems too large for codes with n2128. 
At present, a prototype is being developed at TCldcom 
Bretagne. It will validate the new concepts introduced 
by the block turbo-decoders. This breadboard will 

contain eight 10,000 gate FPGA circuits (one per half- 
iteration). The characteristics of this prototype are: 
-a product code with C’=CZ=BCH(32,26,4), 
-sequential decoding, 
-weighting algorithm with 8 test vectors, 
-programmable inputs for the a and f l  parameters. 
We hope that first results will be available before the 
lecture conceming this paper. 
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