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Abstract—Mining frequent episodes aims at recovering sequen-
tial patterns from temporal data sequences, which can then be
used to predict the occurrence of related events in advance. On
the other hand, gradual patterns that capture co-variation of
complex attributes in the form “When X increases/decreases, Y
increases/decreases” play an important role in many real world
applications where huge volumes of complex numerical data must
be handled. More recently, they have received attention from the
data mining community for exploring temporal data and methods
have been defined to automatically extract gradual patterns from
temporal data. However, to the best of our knowledge, no method
has been proposed to extract gradual patterns that always appear
at the identical time intervals in the sequences of temporal data,
despite the knowledge that such patterns may bring in certain
applications. In this paper, we propose to extract co-variations of
periodically repeating attributes from the sequences of temporal
data that we call seasonal gradual patterns. We discuss the specific
features of these patterns and propose an approach for their
extraction by exploiting motif mining algorithms in a sequence,
and justify its applicability to the gradual case. Illustrative results
obtained from a real world data set are described and show the
interest for such patterns.

Index Terms—data mining, gradual patterns, temporality,
seasonal tendencies

I. INTRODUCTION

Due to the abundance of data collection devices and sensors,
numerical data are ubiquitous and produced in increasing
quantities. They are produced in many domains including
e-commerce, biology, medicine, environment and ecology,
telecommunications, and system supervision. In recent years,
the analysis of numerical data has received attention from the
data mining community and methods have been defined for
dealing with such data. These methods have allowed to auto-
matically extract different kinds of knowledge from numerical
data express under form of patterns such as quantitative item
set/association rules [1]–[3], interval patterns [4] and gradual
pattern mining [5]. More recently, gradual patterns that model
frequent co-variations between numerical attributes, such as
“the more experience, the higher the salary, and the lower the
free time” aroused great interest in a multitude of areas. For
example, in medicine, gradual patterns make it possible to cap-
ture the correlations between memory and feeling points from
the Diagnostic and statistical manual of mental disorders [6];
in biology, they help to analyze genome data for discovering
correlations between genomic expressions; in health, where
researchers often seek to explain the differences between
micro sequences (DNA, gene or protein) according to clinical
characteristics (grade of a tumor, number of recurrences, etc.);
in financial markets, where one would like to discover co-
evolution between financial indicators, or in marketing for

analyzing client databases. Several works have addressed the
mining of gradual patterns and different algorithms have been
designed for discovering gradual patterns from numerical data
(e.g., [5], [7]–[11]).

Most of these algorithms use data mining techniques to
extract gradual patterns. However, they are not relevant for
extracting gradual patterns in certain application domains
where numerical data present particular forms (e.g., temporal,
stream, relational, or noisy data). So, some recent works have
instead focused on extracting variants of gradual patterns
on the numerical data supplied with specific constraints for
expressing another kind of knowledge. For instance, in [12], an
approach based on B-Trees and OWA (Ordered Weighted Ag-
gregation) operator [13], [14] is proposed to mine data streams
for gradual patterns. [15] propose the relational gradual pattern
concept, which enables to examine the correlations between
attributes from a graduality point of view in multi-relational
data.

Fuzzy gradual patterns are revisited in [16] for noisy data
where it is often hardly possible to compare attribute values,
either because the values are taken from noisy data, or because
it is difficult to consider that a small difference between two
values is meaningful. An example of a fuzzy gradual pattern
could be expressed as “the closer the age of an employee to
46, the higher his/her income”. Recently, in [17], the authors
proposed an approach to extract gradual patterns in temporal
data with an application on paleoecological databases to
grasp functional groupings of coevolution of paleoecological
indicators that model the evolution of the biodiversity over
time. [18] introduce a generic method for extracting and
analyzing gradual patterns in spatial data at several levels of
granularity. The authors apply their method on the Health
data to measure potentially avoidable hospitalization related
with both societal and financial issues in public policies.
More recently, in [19] propose fuzzy temporal gradual patterns
to integrate the fact that a temporal lag may exist between
changes in some attributes and their impact on others. These
fuzzy temporal gradual patterns alow to detect the cases
of relevant correlations between the attributes of a database
whose changes in the value one attribute causes a ripple effect
on other attributes with respect to time.

The works described above shed light to the interest for
gradual patterns in many domains and show that according
to the requirements linked to data structures, new methods
are needed to extract the forms of gradual patterns expressing
typical knowledge to the data context. Let us mention that the
quantity of gradual patterns generated from a database can be



high, which makes it hard for exploitation by a user. More-
over, each gradual pattern extracted is provided with a sub-
sequence set of objects, called extension, supporting it. These
extensions associated to gradual patterns, whose number can
be important, are often useful in several application domains
for deriving new and relevant knowledge to the expert. To this
end, recently [20] propose a Sequential Pattern Mining based
approach for efficient extraction of frequent gradual patterns
with their corresponding sequence of tuples. For instance, in
[18], the authors show on geographical data that the analysis
of the different sequence of objects associated to the gradual
patterns allows to identify how an object participates in the
associations between attribute variations. Therefore, it is often
important for an algorithm to return a reasonable quantity of
patterns with their associated extension. This reinforced the
need to design the pattern mining algorithms adapted to the
issues raised by the considered data. In this framework, recall
that the approach proposed by [17] only extracts the gradual
patterns associated to the sequence of consecutive objects and
that follow a temporal order. Although this approach deals
with temporally annotated numerical data, it can be only used
on the data constituted as a single valued sequence. When
considering the databases constituted as many ordered value
sequences, state of the art gradual pattern mining algorithms
do not allow extracting another kind of knowledge that is
typical of sequential data.

Starting from all these observations, in this paper we
propose an approach for extracting seasonal gradual patterns,
(the latter term proposed by [17]) but always associated to
the same sub-sequence of objects in all value sequences. We
justify the interest for such patterns in the e-commerce domain
where it is very important to understand seasonal patterns. In
fact, the knowledge brought by such patterns can be used in
logistics for decision marking in, e.g., inventory and supply
chain management. Our approach can be seen as an extending
gradual patterns in the temporal context via the seasonality
notion such that we include the seasonal correlations between
attributes. Let us recall that gradual patterns can be compared
to fuzzy gradual rules that have first been used for command
systems some years ago [21]. In fact, fuzzy gradual rules that
refers to patterns like ”the closer the wall, the stronger the
brake force” are expressed in the same way as the gradual
patterns, but they were not discovered automatically from data.

II. PRELIMINARIES

This section formally describes the problem of mining
frequent gradual itemsets (patterns) in a numerical database.
We present some of the state-of-the-art approaches proposed
to automatically extract such patterns. Finally, the problem of
enumerating all motifs in a sequence (EMS) that we exploit
for our approach is also presented.

A. Gradual patterns mining problem

The problem of mining gradual patterns consists in mining
attribute co-variations in a numerical dataset of the form “The
more/less X, . . . , the more/less Y”. We assume herein that

TABLE I
DATABASE ∆1

tid age salary cars loans
t1 22 1000 2 4
t2 24 1200 3 3
t3 28 1850 2 5
t4 20 1250 4 2
t5 18 1100 4 2
t6 35 2200 4 2
t7 38 3200 1 1
t8 44 3400 3 6
t9 52 3800 3 3

t10 41 5000 2 7

we are given a database ∆ containing a set of objects T that
defines a relation on an attribute set I with numerical values.
Let t[i] denote the value of attribute i over object t for all
t ∈ T .

In Table I, we give an illustrative example of a nu-
merical database built over the set of attributes I =

{age, salary, cars, loans}.
Each attribute will hereafter be considered twice: once to in-

dicate its increasing and once to indicate its decreasing, using
the ↑ and ↓ variation symbols, where ↑ stands for increasing
and ↓ stands for decreasing variation. In the following, for all
t, t ′ ∈ T and for all i ∈ I, we denote ”t[i] ↑ t ′[i]” (respectively
”t[i] ↓ t ′[i]”) to mean that the value of attribute i increases
(respectively decreases) from t to t ′.

Definition 1 (Gradual item): Let ∆ be a data set defined on
a numerical attribute set I. A gradual item is defined under
the form i∗, where i is an attribute of I and ∗ ∈ {↑, ↓}.

If we consider the numerical database of Table I, age↑

(respectively age↓) is a gradual item meaning that the values
of attribute age are increasing (respectively decreasing).

A gradual pattern is thus defined as follows:
Definition 2 (Gradual pattern): A gradual pattern g =

(i∗11 , ..., i
∗k
k
) is a non-empty set of gradual items. A k-itemset

is an itemset containing k (k > 1) gradual items.
For example, g1 = {age↑, salary↑} is a gradual pattern (2-

itemsets) meaning that ”the higher the age, the higher the
salary”.

A gradual itemset imposes a variation constraint on several
attributes simultaneously. The length of a gradual itemset is
equal to the number of gradual items that it contains.

The support (frequency) of a gradual pattern amounts to
the extent to which a gradual pattern is present in a given
database. Several support definitions have been proposed in
the literature (e.g., [5], [7], [8], [22]), showing that gradual
patterns can follow different semantics. In [7] the computation
of the support of gradual patterns is based on linear regression.
[22] and [8] consider the proportion of couples of tuples that
verifies the constraints expressed by all the gradual items of
the pattern while in [5], the support is defined as the size of
the longest sequence of tuples supporting the gradual pattern.
More recently, [17] define the support of a gradual pattern
respecting the temporal order as the proportion of couples of
consecutive tuples supporting the gradual pattern. In this paper,



we adopt this last definition of support, which is more adapted
to our issue. To define this support, we introduce the following
definitions:

Definition 3 (Gradual tuple motif): Let g = (i∗11 , . . . , i
∗k
k
) be

a gradual itemset and M = t1t2 . . . tn be a motif of consecutive
tuples. M is gradual with respect to g if for all p such that
1 ≤ p ≤ k and for all j such that 1 ≤ j < n, the following
constraint is satisfied:

tj[ip] ∗p tj+1[ip] (1)

Considering the database of Table I, M1 = t1t2t3 is a gradual
tuple motif with respect to g1 = {age↑, salary↑}.

It is important to note that there may be several gradual
tuple motifs respecting g.

Definition 4 (Maximal gradual tuple motif): Let g =

(i∗11 , ..., i
∗k
k
) be a gradual itemset and M a gradual tuple motif

respecting g. M is maximal if for any motif M ′ respecting g,
M 1 M ′.

For instance, when considering the data from Table I and the
gradual pattern g1. The gradual tuple motif M2 = t6t7t8t9 is not
maximal with respect to g1 because the motif M3 = t5t6t7t8t9
is gradual with respect to g1 and contains M2. M3 is a maximal
gradual tuple motif with respect to g1.

Definition 5 (Cover): Let g be a gradual itemset of a
numerical database ∆. We define Cover(g,∆) as the set of
maximal gradual tuple motifs in respect to g in ∆.

Considering the database of Table I and the previous gradual
itemset g1, Cover(g1,∆1) = {t1t2t3, t5t6t7t8t9}.

Definition 6 (Gradual tuple motif sequence): Let g be a

gradual itemset of a database ∆ and
◦

f be a function such that
◦

f (M1, . . . , Mn) = M1 ◦ . . . ◦ Mn where Mj(1 ≤ j ≤ n) is a
gradual tuple motif. Then we define the gradual tuple motif

sequence of g in ∆ noted M∆g as M∆g =
◦

f (cover(g,∆)).
A gradual tuple motif sequence is just a concatenation of

gradual tuple motifs. Referring back to our previous example
from Table I, we have M∆1

g1 = t1t2t3 ◦ t5t6t7t8t9.

III. PROBLEM STATEMENT

In this section, we describe the type of data used, the notion
of seasonal gradual patterns, and its examples.

A. Temporal data sequences

Our approach finds its application on a numerical database
∆ constituted of temporal data sequences. More precisely, the
database ∆ consists of object sequences S = 〈S1, . . . , Sn〉

described by the set of numerical attributes I = {i1, . . . , ik},
with S j = {d1, . . . , dl}, a set of periods considered. Table II is
an example of temporal data sequences which gives informa-
tion about customer purchases for a e-commerce website on
three purchase cycles (sequences) S1, S2, S3. Each sequence
contains the data for eight dates (d1, . . . , d8). Without loss of
generality, we assume that there are no other purchase dates
between two consecutive dates and that the purchases are made
continuously between two consecutive cycles.

B. Seasonal gradual patterns

In the case of a single object sequence, a gradual pattern
corresponds to the one extracted by [17]. However, in seasonal
gradual pattern context, we seek for the gradual patterns
respected by the same gradual tuple motifs. To address this
issue, we propose the definition of seasonal gradual patterns
in which the notion of seasonality is introduced. Let us
consider the temporal data sequence of Table II. These data
are extracted from a dataset regarding customer orders made
at multiples marketplaces.

The goal is to extract frequent co-variations between at-
tribute values that occur frequently in identical periods, e.g.
seasonal gradual patterns. We want to extract these patterns
with the gradual tuple motifs associated that will represent
the seasonality of each pattern. To illustrate our approach, we
start by introducing some definitions.

Definition 7: Let ∆ be a temporal data sequence over a set
of numerical attributes I = {i1, . . . , ik}, and of tuple sequences
S = 〈S1, . . . , Sn〉. Given gradual item i∗ with i ∈ I, we define
Mi∗ as Mi∗ = f̊ (MS1

i∗ . . . MSn

i∗ ).
Mi∗ is the sequence formed of gradual tuple motifs that

respect gradual item i∗.
Example 1: Referring back to the example from Table II, we

have: MS1

age↑
= d1d2d3 ◦ d5d6d7d8, MS2

age↑
= d1d2d3d4 ◦ d7d8 ,

MS3

age↑
= d1d2d3◦d4d5d6d7. Then Mage↑ = d1d2d3◦d5d6d7d8◦

d1d2d3d4 ◦ d7d8 ◦ d1d2d3 ◦ d4d5d6d7.
Note that a given gradual item i∗ corresponds to a unique

gradual tuple motif sequence Mi∗ . Let us now give some basic
definitions and notations necessary to introduce our approach.

Let Mi∗ be a motif sequence of gradual tuples. We denote
by O = {1 . . . |Mi∗ |} the set of positions of the tuples in Mi∗ .

Definition 8 (Inclusion): A gradual tuple motif M = t1 . . . tm
appears in a gradual tuple motif sequence Mg = s1 . . . sn at the
position l ∈ O denoted M ⊆l Mg, if ∀ j ∈ {1 . . .m}, tj = sl+j−1
and tj , o. We note by LMg (M) = {l ∈ O|M ⊆l Mg} the
support of M in Mg. We say that M ⊆ Mg iff ∃l ∈ O such
that M ⊆l Mg.

Definition 9 (Frequent gradual tuple motif): Let Mg be a
gradual tuple motif sequence and M gradual tuple motif. Given
a positive number θ ≥ 1, called quorum, we say that M is
frequent in Mg when |LMg (M)| ≥ θ.

In the rest of the paper, given a gradual tuple motif sequence
Mg, the set of all frequent maximal gradual tuple motifs of
Mg for the quorum θ is denoted by EθMg

. We now consider a
new kind of items that we call seasonal gradual items defined
as follows:

Definition 10 (Seasonal gradual item): Let ∆ be a tem-
poral data sequence over a set of numerical attributes I =
{i1, . . . , ik} and θ a support threshold. A seasonal gradual item
with respect to θ is defined under form i(∗,m), where ∗ ∈ {↑, ↓}
and m ∈ EθMi∗

.
Example 2: If we consider the temporal data sequence

of Table II, age(↑,d1d2d3) is a seasonal gradual item with
respect to θ = 3 expressing that the values of the attribute
age are increasing more frequently on the period ¡¡d1d2d3¿¿.



TABLE II
CUSTOMER PURCHASES DATABASE: ∆2

Sid purchase timestamp age (a) freight value (f) payment installments (pi) payment value (pv)

S1

d1 22 8.72 2 18.12
d2 24 22.76 3 141.46
d3 28 19.22 4 179.12
d4 20 17.20 1 72.20
d5 18 8.72 1 28.62
d6 35 27.36 3 175.26
d7 38 16.05 4 65.95
d8 44 15.17 4 75.16

S2

d1 32 16.05 3 35.95
d2 34 19.77 4 161.42
d3 36 30.53 5 159.06
d4 40 16.13 5 114.13
d5 25 14.23 2 50.13
d6 23 12.805 2 32.70
d7 20 13.11 1 54.36
d8 41 14.05 4 46.45

S3

d1 28 77.45 3 1376.45
d2 33 15.10 4 43.09
d3 38 11.85 6 29.75
d4 35 16.97 5 62.15
d5 38 8.96 4 118.86
d6 44 8.71 5 88.90
d7 52 7.78 6 17.28
d8 41 57.58 4 187.57

age(↑,d5d6d7) is not a seasonal gradual item with respect to
θ = 3 as the support of d5d6d7 in Mage↑ is equal to 2 (observed
on S1 and S3, not on S2).

Definition 11 (Seasonal gradual itemset): A seasonal grad-
ual itemset (pattern)
g = {i(∗1,m)1 , . . . , i(∗k,m)

k
} is a non-empty set of seasonal gradual

items, with m ∈ EθMg
and θ a support threshold.

Example 3: Consider the temporal data sequence of Table
II,
g1 = {age(↑,d1d2d3), payment installments(↑,d1d2d3)} is a sea-
sonal gradual pattern meaning that ”an increase of age comes
along with an increase of payment installments more fre-
quently on the period ”d1d2d3”.

Definition 12 (Frequent seasonal gradual patterns mining
problem): Let ∆ be a temporal data sequence and θ a minimum
support threshold. The problem of mining seasonal gradual
patterns is to find the set of all frequent seasonal gradual
patterns of ∆ with respect to θ.

Let us indicate that, in the classical patterns mining frame-
work, the problem of enumerating all motifs possibly inter-
spersed with a wildcard symbol, in a sequence of items that
has been extensively investigated in e.g., ( [23]–[26]) is related
to the frequent seasonal gradual patterns mining problem. In
fact, for a gradual item i∗, mining all frequent maximal gradual
tuple motifs of Mi∗ corresponds to the problem of enumerating
all maximal frequent motifs with a wildcards symbol in a
sequence of tuples.

IV. EXTRACTING SEASONAL GRADUAL PATTERNS

In this section, we describe how to extract seasonal gradual
patterns from a numerical temporal data sequence. We first

transform the frequent seasonal gradual patterns mining prob-
lem into the problem of enumerating all motifs with a wildcard
symbol in a tuple sequences database. This transformation is
given by the following definition.

Definition 13: Let ∆ be a temporal data sequence over a set
of numerical attributes I = {i1, . . . , ik}. We define Γ(∆) the
tuple sequences database associated to ∆ as
Γ(∆) = {(i↑1, M

i
↑

1
), (i↓1, M

i
↓

1
), . . . , (i↑

k
, M

i
↑

k

), (i↓
k
, M

i
↓

k

)}.

TABLE III
TUPLE SEQUENCES DATABASE Γ(∆2) OBTAINED FROM DATABASE ∆2

Gradual Items Tuple Sequences
a↑ d1d2d3 ◦ d5d6d7d8 ◦ d1d2d3d4 ◦ d7d8 ◦ d1d2d3 ◦ d4d5d6d7
a↓ d3d4d5 ◦ d8d1 ◦ d4d5d6d7 ◦ d8d1 ◦ d3d4 ◦ d7d8
f ↑ d1d2 ◦ d5d6 ◦ d8d1d2d3 ◦ d6d7d8d1 ◦ d3d4 ◦ d7d8
f ↓ d2d3d4d5 ◦ d6d7d8 ◦ d3d4 ◦ d5d6 ◦ d1d2d3 ◦ d4d5d6d7
pi↑ d1d2d3 ◦ d4d5d6d7d8 ◦ d1d2d3d4 ◦ d5d6 ◦ d7d8 ◦ d1d2d3 ◦ d5d6d7
pi↓ d3d4d5 ◦ d7d8d1 ◦ d3d4d5d6d7 ◦ d8d1 ◦ d3d4d5 ◦ d7d8
pv↑ d1d2d3 ◦ d5d6 ◦ d7d8 ◦ d1d2 ◦ d6d7 ◦ d8d1 ◦ d3d4d5 ◦ d7d8
pv↓ d3d4d5 ◦ d6d7 ◦ d8d1 ◦ d2d3d4d5d6 ◦ d7d8 ◦ d1d2d3 ◦ d5d6d7

Example 4: For instance, the tuple sequences database
associated to database ∆2 of Table II is given by Table III.

Proposition 1 illustrates the mapping between the set of
seasonal gradual items of ∆2 and the maximal motifs of Γ(∆2).

Proposition 1: Let ∆ be a temporal data sequence and θ a
minimal support threshold (quorum). g = {i(∗1,m)1 , . . . , i(∗k,m)

k
}

is a seasonal gradual pattern of ∆ iff ∀1 ≤ p ≤ k,
|LM

i
∗p
p

(m)| ≥ θ with Cover(m, Γ(∆)) = g. Moreover

Cover(g,∆) is the set of maximal tuple motifs m of Γ(∆) with
Cover(m, Γ(∆)) = g.

As mentioned above, there are different support definitions
for the classical gradual patterns. The support to measure the
graduality of seasonal gradual pattern is defined as follows:



Definition 14 (Seasonal gradual pattern support com-
putation): Let ∆ be a temporal data sequence and g =

{i(∗1,m)1 , . . . , i(∗k,m)
k

} be a seasonal gradual pattern of ∆. The
support of g can be defined as follows: Supp(g,∆) =
min{ |LM

i
∗p
p

(m) |,1≤p≤k }×|m |

|∆ |
.

Given a predefined minimal support threshold θ and a
seasonal gradual pattern g, we say that g is frequent if its
support is greater than or equal to θ. The support definition of
seasonal gradual pattern satisfies the classical anti-monotony
property.

Proposition 2: Let M be a maximal gradual tuple motif of
Γ(∆) then g = cover(M, Γ(∆)) is a seasonal gradual pattern in
∆. with

Supp(g,∆) ≥
min{ |LM

i
∗p
p

(M) |,1≤p≤k }×|M |

|∆ |
.

The originality of seasonal gradual patterns as opposed to
classical gradual patterns is that they allow to also discover
seasonality inside the data in terms of graduality.

After reducing the frequent seasonal gradual patterns mining
problem from numerical database to a maximal motif mining
problem as illustrated by Table III, we use MaxMotif algorithm
proposed by [23] on each gradual tuple motif sequence to
extract the frequent gradual tuple motifs for given a minimal
support threshold. MaxMotif algorithm is a polynomial space
and polynomial delay algorithm for maximal pattern discov-
ery of the class of motifs with wildcard or joker symbol.
It is considered as the most effective specialized approach
for enumerating motifs in a sequence. In our approach, we
only consider patterns with solid characters, without wildcard
symbol. The wildcard symbol for our approach is the character
introduced to build gradual tuple motif sequences from gradual
tuple motifs as given by definition 6 (we consider the character
’o’ as wildcard symbol for our study). The complexity of our
proposed approach depends on the complexity of MaxMotif
algorithm.

Lemma 1: Let ∆ be a temporal data sequence over a attribute
set I, and Mi∗ (i ∈ I) be a gradual tuple motif sequence
extracted from ∆. Then |Mi∗ | ≤ |∆|.

Proof 1: Trivial by using definitions 3 and 7.

V. EXPERIMENTAL RESULTS

The major interest of seasonal gradual patterns is that
they are well adapted to capture some common co-variations
repeated with identical periods on attributes in the ordered
data set. One such kind of data that receives a lot of attention
nowadays is temporal data, i.e. data produced with a temporal
order on the objects, often in e-commerce domain. In order
to illustrate the proposed method and show its interest, an
experiment study has been conducted on a real data set of
customer purchases taking from Brazilian E-Commerce Public
Data set1. This data set contains purchases 99441 transactions
of customer purchases on 19 attributes, with an attribute order
date on which transactions are ordered. Attribute order date

1https://www.kaggle.com/anshumoudgil/olist-a-brazilian-e-
commerce/report

contains different values (different days) which will represent
items of the tuple sequences database and other numerical
attributes. For our experiments, we retrieve the order days
from the order date attribute and consider them as temporal
variables (d1, d2, . . . , dm). The used data set contains 0.56% of
missing data, we removed all transactions with missing data
and obtained a data set with 99000 transactions.

The experiments are carried out on a 2.8GHz Intel Core i7
CPU, 32GB memory with 8 cores. We focus on the variation
of the number of frequent closed seasonal gradual patterns
according to the minimum support threshold (MinSupp) value,
and the computation time required for discovering these sea-
sonal gradual patterns We also show interesting knowledge
brought by such patterns in the e-commerce domain. For
extracting of maximal motifs in the obtained tuple sequences
database, we use MaxMotif [23] algorithm which is a linear
time algorithm for maximal motif mining. This algorithm is
extremely efficient as it can handle huge sequences of over to
10 million length. According to the lemme 1, for the data set
used, the longest gradual tuple motif sequence has a length
less than or equal to 99000 (the number of transactions).

Figure 1 focus on the variation of the number of frequent
closed seasonal gradual patterns according to the minimum
support threshold. This figure shows an decrease of number
of patterns when the minimal support increases, the number of
extracted patterns is even less than 100 for a support threshold
less than 0.25 which is easily exploitable by the user.
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Fig. 1. Number of seasonal gradual patterns with minSupp variation.

Figure 2 shows the computation time evolution taken by our
approach for discovering seasonal gradual patterns according
to the minimal support. We observe an decrease of computa-
tion time when the support threshold decreases.

Figure 1 and 2 indicate that the number of seasonal gradual
patterns is usually small and does not require much time for
their extraction, which facilitates their practical exploitation.
Table IV shows some interesting seasonal gradual patterns
extracted from a e-commerce data set using our approach.
Gradual pattern number 4 states that the higher the price, the
lower is the freight value and the higher is the payment value
frequently on the temporal sequence 〈d21d22d23d24d25〉. This
trend of co-variation between the price of products and freight
value is also revealed in pattern number 6 with another at-
tribute on another period 〈d18d19d20d21〉. These patterns could
be useful to recommend and to manage business strategies.



TABLE IV
SOME FREQUENT CLOSED SEASONAL GRADUAL PATTERNS

No. Seasonal gradual patterns Support

1 {age(↑,d1d2d3), payment installments(↑,d1d2d3) } 0.59
2 {age(↑,d7d8d9d10d11), payment value(↓,d7d8d9d10d11) } 0.23
3 {product photos qty(↑,d2d3d4d5), payment value(↓,d2d3d4d5) } 0.3
4 {price(↑,d21d22d23d24d25), f reight value(↓,d21d22d23d24d25), payment value(↑,d21d22d23d24d25) } 0.46
5 {product weight g(↑,d13d14d15), f reight value(↓,d13d14d15), price(↑,d13d14d15) } 0.33
6 {Delivery delay(↑,d18d19d20d21), f reight value(↓,d18d19d20d21), price(↑,d18d19d20d21) } 0.47
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Fig. 2. Evolution of the computation time for discovering seasonal gradual
patterns vs the variation of the minSupp value.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose the seasonal gradual pattern con-
cept which enables us to extract seasonal correlations between
attributes from a graduality point of view in a temporal data
sequence. The proposed approach formulate in the temporal
context, a seasonal gradual patterns mining problem as a
problem of finding repeated patterns (frequent pattern) in
a sequence with wildcards and exploit existing algorithms
for enumeration of maximal motifs in a sequence. We also
propose a definition of the associated support measure at a
seasonal gradual pattern to efficiently mine frequent patterns in
temporal data sequence context. The experimental evaluation
on the e-commerce real world data shows the feasibility of
our proposed approach and its practical interest for the e-
commerce domain.

Future directions aim firstly to enrich the experimental study
of the proposed method, to check its applicability to other
temporal data sets, data on the flow of product stocks for
example. Seasonal gradual patterns extracted from such data
set will allow to data experts to detect seasonal co-variations
between quantity of products for better management of the
supply chain. Another work is to define the approaches for
extracting seasonal gradual patterns whose the seasonality are
not constituted of consecutive periods.
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