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In this paper, we propose M/G/c/c+r queuing system as a model for performance evaluation of cloud server
farms. Analytical resolution of this queuing system remains, to this day, an open and challenging issue
because an exact analytical solution is difficult to reach. Therefore, we provide new approximate formulas to
compute the transition-probability matrix of this system. In order to examine the accuracy of our approximate
formulas, we test them numerically on some examples. Then, we compute the steady-state probabilities and
some performance indicators such as blocking probability, mean response time, probability of immediate
service and delay probability.

Cloud Computing, Performance Analysis, M/G/c/c + r Queue, Embedded Markov Chain, Transition-
probability Matrix.

1. INTRODUCTION

With accelerated advancement of cloud computing
and the advent of new networking technologies, a
wide spectrum of cloud services have been nowa-
days developed. The success of the large deploy-
ment of such services by cloud service providers
closely depend on guaranteeing the advertised qual-
ity characteristics expressed toward diverse perfor-
mance and quality of service (QoS) attributes and
achieved through adopting appropriate resource pro-
visioning strategies. The performance of cloud ser-
vice is a key enabler of the overall performance of the
next generation information infrastructure. Thorough
assessment of cloud service is undoubtedly benefi-
cial to both consumers and cloud service providers;
thus representing an open issue in active research
area. In this regard a tremendous and valuable
effort has been devoted by the research commu-
nity to tackle these challenges and a substantial
progress has been made. Among the fundamental
approaches enabling to evaluate cloud performance
are those based on stochastic modeling. This latter

allows to develop complex models and to capture
composite behaviors usually involved in describing
value added and reliable services.

Model complexity is usually expressed in terms of
versatile queues taking into consideration multiple
servers with general distribution and buffer limitation.
These considerations may be apprehended through
queuing systems such that M/G/c/c+r queue.

However providing an exact analytical solution to
this queuing system is not obvious and often leads
to cumbersome and computational overhead. In
order to circumvent such problem usually several
approximations may be used. This subject has been
tackled by extensive researches described in the
literature (see Boxma et al., (1979); Kimura, (1983);
Nozaki and Ross, (1978); Tijms et al., (1981); Yao,
(1985)). Most models proposed in these researches,
as we will see in Section 2, are not applicable to
performance analysis of cloud computing center.
Therefore, Khazaei et al., (2012) proposed an
approximate approach by using a combination of a
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transform-based analytical model and an embedded
Markov chain model to compute the transition-
probability matrix of the M/G/c/c+ r queue. This
matrix is divided into four regions, and the authors
proposed an approximate formula for computing
the transition probabilities of every region. However,
transitions between system’s states expressed
toward conditional probabilities are not accurately
described in this work. The problem of computing
transition probability-matrix of the above queue has
also been addressed by Chang et al., (2016).
Authors in this work proposed other approximate
formulas for transition probabilities computation in
the regions 3 and 4. This resulted in a stochastic
matrix for the M/G/c/c+ r queuing system only
when the service time follows a gamma distribution.
Such assumption is inappropriate, since the matrix
should be stochastic regardless the service law
(since the service is generally distributed).

In the previous work (Outamazirt et al., (2016)),
the authors presented the shortcomings of the
approximate formulas proposed by Khazaei et
al., (2012) and those proposed by Chang et
al., (2016). Furthermore, they proposed some
refinement improving the above approximations. In
this paper, we provide a detailed analysis of the
M/G/c/c+ r queuing system in order to define in
a first step the process describing the behavior
of this system explicitly, and to propose in a
second step new approximate formulas to compute
the transition probabilities. In order to examine
the accuracy of our approximate formulas, we
test them numerically to verify that the transition
probability-matrix is effectively stochastic regardless
of the service distribution. From this matrix, we
can calculate the steady-state probabilities and
hence the performance indicators such as blocking
probability, mean response time, probability of
immediate service and the probability that an arrival
task has to wait before beginning service. Finally, we
validate our analytical results by simulation.

The remainder of the paper is organized as follows:
Section 2 presents a brief overview of related work
on cloud performance evaluation and performance
characterization of queuing systems. In Section
3, we present in details the proposed analytical
model. Section 4 is devoted to give some application
examples for which the transition probability-matrix
is computed for different service time distributions.
In the same section, we perform a comparison
between our obtained matrix and that obtained
using the approximate formulas of Khazaei et al.,
(2012). In Section 5 some performance indicators for
cloud center are defined and then evaluated. Finally,
Section 6 concludes the paper.

2. RELATED WORK

Although cloud computing has attracted research
attention, only a small portion of the work done
so far addressed performance issues by analytical
models. In this context, Xiong and Perros, (2009)
modeled the cloud center as a classic open
network, from which the distribution of response time
was obtained by using the Laplace transformation.
Using the distribution of response time, the authors
found the relationship between the maximum
number of customers, the minimal service resources
and the highest level of services. Yang et al.,
(2009) proposed the M/M/c/c+ r queuing system
for modeling the cloud center, from which the
distribution of response time was determined. Inter-
arrival and service times were both assumed to be
exponentially distributed, and the system has a finite
capacity.
However, the assumption of the service time being
exponentially distributed is inappropriate for cloud
center. Therefore, Khazaei et al., (2012) adopted
the system with general service times as the
abstract model for performance evaluation of cloud
center. Then, they modeled a cloud center as an
M/G/c/c+ r queuing system.

The analysis of queuing systems in the case where
the inter-arrival time and/or the service time is not
exponential is more complex. Various theoretical
analyses were done on the performance evaluation
of these queuing systems (see Ma, and Mark,
(1995); Takahashi, (1977); Yao, (1985)). However,
for these latter, the steady state probability, the
distributions of response time and the queue length
cannot be obtained in closed form. Consequently,
several researchers developed many methods to
approximate its solutions.

Kimura, (1983) applied the method of diffusion
approximation to provide approximate formulas for
the distributions of the number of customers, the
waiting time and the busy period in the M/G/c
queue. Also, an approximation for the steady state
queue length distribution in M/G/c queue with finite
waiting space was described by Kimura, (1996a).

A similar approach in the context of M/G/c queue
was described by Kimura, (1996b), but extended so
as to approximate the blocking probability and, thus,
to determine the smallest buffer capacity such that
the rate of lost tasks remains under predefined level.

Nozaki and Ross, (1978) proposed an approxima-
tion for the average queuing delay in M/G/c/c + r
queue based on the relationship of joint distribution
of remaining service time to the equilibrium service
distribution. Smith, (2003) proposed a different ap-
proximation for the blocking probability based on
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the exact solution for finite capacity M/M/c/c + r
queues. The estimate of the blocking probability
is used to guide the allocation of buffers so that
the blocking probability remains below a specific
threshold.

However, most of these approximations are not
suitable for performance evaluation of cloud center
due to accuracy limitation related to several reasons.
In what follows, we detail why the considered
approximations in some previous works fail in
providing acceptable accuracy in specific contexts
and characterized by particular attribute (number of
servers, coefficient of variation of the service time
(CoV) and traffic intensity) (Khazaei et al., (2012)):

• for example, approximations proposed by
Kimura, (1996a); Smith, (2003) are reason-
ably accurate when the number of servers is
small enough, below 10 or so. They are not
suitable for the cloud computing centers with
more than 100 servers;

• approximations proposed by Nozaki and Ross,
(1978); Yao, (1985) are inaccurate when the
CoV is above 1.0;

• approximation errors are particularly pro-
nounced when the traffic intensity ρ is small,
and/or when both the number of servers c and
the CoV of the service time are large (Boxma
et al., (1979); Kimura, (1983); Tijms et al.,
(1981)).

Therefore, Khazaei et al., (2012) proposed
suitable approach to approximate queues with large
number of servers and service time distribution
with CoV higher than one. This approach provides
approximated formulas for the different transition
probabilities expressions included in transition
probability-matrix representing the M/G/c/c+ r
queue. The main shortcoming of the above approach
is that it is unable to fully describe the underlying
stochastic process. More recent work (Chang et al.,
(2016)) proposed other approximate formulas that
are only valid for gamma service distribution. This
restriction had been made in order to keep relatively
tractable the system resolution.

In this paper, we present a novel enhanced
approximation enabling to better describe the
stochastic process of the M/G/c/c+ r queuing
system. For this purpose, we propose new explicit
formulas to compute the different elements of the
transition-probability matrix of this system. This
allows to obtain a stochastic matrix for any service
time distribution. Consequently, our work completes
the cited previous works and permit an accurate
performance analysis of cloud center.

3. THE PROPOSED MODEL

We consider the same modelling for cloud center as
that proposed proposed by Khazaei et al., (2012)
using the same M/G/c/c+ r queuing system.
However, we perform a mathematical analysis of
this system by introducing the stochastic process
(the number of tasks present in the system) which
better describes the system state transition behavior.
Indeed, the description proposed by Khazaei et al.,
(2012) for this system is close to ours, since these
both descriptions lead to a transition-probability
matrix with four regions and then compute the
steady-state probabilities by computing the transition
probabilities in each region. The difference between
these two descriptions lies in the computation of the
transition probabilities for Region 3 and Region 4.
In this section, we will give our description and a
detailed analysis of this system.

3.1. The M/G/c/c+ r system description

As it has been pointed out, we model a cloud
sever farms using the M/G/c/c+ r queuing system.
In this system, task request arrivals follow a
Poisson process. That is, the task inter-arrival time
A(x) , P [X ≤ x] is exponentially distributed with
rate λ, its Probability Density Function (PDF) is
a(x) = λe−λx and its Laplace transform is

A∗(s) =

∫ ∞

0

e−sxa(x)dx =
λ

λ+ s
.

Task service times are identically and independently
distributed according to a general distribution
H(y) , P [Y ≤ y] with a mean service time equal to
h = 1

µ , its PDF is h(y) and its Laplace transform is

H∗(s) =

∫ ∞

0

e−syh(y)dy.

The traffic intensity is ρ , λ
cµ . The Residual task

service time, H+, is the time interval from an
arbitrary point during a service time to the end of the
service time. This time is necessary for our model
since it represents time distribution between a task
arrival and departure of the task which was in service
when task arrival occurred. The Laplace transform of
H+ is given by Takagi, (1991) as:

H∗
+(s) =

1−H∗(s)

s h
. (1)

In this model, we assume that:

• All c servers render service in order of task
request arrivals (First Come First Served);

• The service time associated to the different
servers is stochastically independent;
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• If the waiting queue is empty and there is no
new task request arrival, the server enters in
the idle state;

• If the task arrives while the system capacity
has already been attained, this task will depart
immediately without service;

• Any task request goes through a facility
node and then leaves the cloud center. A
facility node may contain different computing
resources such as web servers, database
servers, etc.

3.2. The M/G/c/c+ r system analysis

3.2.1. The embedded Markov chain
The M/G/c/c+ r is a semi-markovian queuing
system (Heyman and Sobel, (2004)) which can
be analyzed by using the Embedded Markov Chain
(EMC) technique similar to one adopted by Khazaei
et al., (2012). This technique consists in selecting
the Markov points at the instants of a new task arrival
to the system. If we enumerate these instances
as 0, 1, ..., c+ r, we obtain a homogeneous Markov
chain with state space S = {0, 1, 2, ..., c+ r}. This
Markov chain is ergodic (Khazaei et al., (2012)), so
its steady-state exists. Therefore, we can calculate
the distribution of number of tasks in the system
as well as the performance indicators. Due to
the PASTA (Poisson Arrivals See Time Averages)
property, the distribution of the number of tasks in
the system at the time of a task arrival is identical to
the distribution of the number of tasks in the system
at an arbitrary time.

Let tn (resp. tn+1) the moment of the nth (resp.
(n + 1)th) arrival to the system, and Xn (resp. Xn+1)
the number of tasks found in the system immediately
before tn (resp. tn+1). While Tn (resp. Bn+1) denotes
the inter-arrival time (resp. the number of tasks which
depart from the system) between tn and tn+1 (see
Figure 1). In the rest of this paper we use T to denote
any inter-arrival time.

Figure 1: The embedded Markov points.

Thus, our Embedded Markov Chain is defined as
follows:

Xn+1 =


Xn + 1−Bn+1, if Xn < c+ r;

Xn −Bn+1, if Xn = c+ r.
(2)

Now, we can compute the transition-probability
matrix associated to this EMC.

3.2.2. The transition probability matrix
The transition probabilities of our transition matrix
are defined by:

pij , P (Xn+1 = j|Xn = i). (3)

Taking into account the following points:

(i) Given the definition of Xn, obviously,

pij = 0 for all j > i+ 1; (4)

(ii) pij presents the probability of having exactly
(i+ 1− j) tasks are serviced during T , when
we have i < c+ r;

(iii) Because the nth arrival finds the system in state
c + r (the system full), pc+rj is the probability
that exactly (i − j) tasks are serviced during
T . Similarly, because the nth arrival finds the
system in state c + r − 1, pc+r−1j presents
the probability that exactly (i− j) tasks are
serviced during T . Thus, pc+rj = pc+r−1j for all
j;

and if we define bω = P (Bn+1 = ω) as the probability
of having ω tasks are serviced during T , then
bω , pij . Thus, the state transition matrix of this EMC
is given as follows:

As can be see, this matrix has four regions. Before
computing bω in each region, we first define the
departure probabilities Px, Py and Pz,k as follows:

Px , P (A > H+) = H∗
+(λ), (5)

Py , P (A > H) = H∗(λ), (6)
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Pz,k =
[ k∏
i=2

P
(
A > H|A > (k − i)H +H+

)]
×P (A > H+), (7)

where:

• Px is the probability of completing the service
of a task, which has already been in service
during the previous observation interval and is
completed in the current interval.

• Py is the probability of completing the service
of a task, which begins to be serviced in the
current interval and is finished within the same
interval.

• If a server completes the service of a task
which has already begun during the previous
observation interval, in the current interval, this
server will be idle. If the waiting queue is
nonempty, that server as well may complete a
second service in the current interval, and if the
waiting queue is still nonempty, a new service
may be completed, and so on until the waiting
queue gets empty. Thus, the probability of k
services are completed by a single server is
given by the formula (7).

With these departure probabilities, we can describe
the four different regions of our transition-probability
matrix P .

Region 1: From the formula (4), we have pij = 0 for
i+ 1 < j.

Region 2: For i < c, j ≤ c, and i + 1 ≥ j, all tasks
are in the service (no waiting). The probability that ω
tasks are serviced during T is given by:

pij =

(
i

i− j

)
P i−j
x (1− Px)

jPy +(
i

i− j + 1

)
P i−j+1
x (1− Px)

j−1(1− Py). (8)

Region 3: For c ≤ i ≤ c+ r, c ≤ j ≤ c+ r, and
i+ 1 ≥ j, all servers are busy during T .
In order to minimize the error while keeping the
model tractable, we assume, as it is assumed by
Khazaei et al., (2012), that each single server
completes no more than three services of tasks
between two successive task arrivals. Then, the
probability that ω tasks are serviced during T in this

region is given by:

pij =

min(ω,c)∑
s1=min(ω,1)

(
c

s1

)
P s1
x (1− Px)

c−s1

min(ω−s1,s1)∑
s2=min(ω−s1,1)

(
s1
s2

)
P s2
z,2(1− Pz,2)

s1−s2

(
s2

ω − s1 − s2

)
Pω−s1−s2
z,3

(1− Pz,3)
s2−(w−s1−s2)Φ, (9)

where Φ is the indicator function:

Φ =

 1, if ω − s1 − s2 ≤ s2;

0, if ω − s1 − s2 > s2.
(10)

As it is pointed out in (iii), we have pc+rj = pc+r−1j

for all j when i = c+ r.

Region 4: For c ≤ i ≤ c+ r, j < c, and i+ 1 ≥ j, all
servers are busy at the beginning of T , and c − j
servers are idle at the end of T . Then, the probability
that ω tasks are serviced during T is given by:

pij =

min(ω,c)∑
s1=c−j

(
c

s1

)
P s1
x (1− Px)

c−s1

min(ω−s1,min(s1,i−c+1))∑
s2=min(ω−s1,c−j)

(
s1
s2

)
P s2
z,2

(1− Pz,2)
min(s1,i−c+1)−s2(

s2
ω − s1 − s2

)
Pω−s1−s2
z,3

(1− Pz,3)
max(i−c+1−s1,0)−(ω−s1−s2)Φ. (11)

Taking into account also the point (iii) in this region,
we will have pc+rj = pc+r−1j for all j when i = c+ r.

3.2.3. Discussion
Our proposed formulas for both regions 1 and 2 are
identical to those of Khazaei et al., (2012). However,
due to the particularity of the model behavior in
the regions 3 and 4, we adopted a more accurate
analysis which gives new approximate formulas for
these regions. Let us now examine in detail these
new approximate formulas and compare them with
those proposed by Khazaei et al., (2012).

Region 3 (c ≤ i ≤ c+ r, c ≤ j ≤ c+ r, i+ 1 ≥ j):
In this region, the nth arrival finds all c servers
are busy and (i− c) tasks in the waiting queue. If
the number of tasks in the system is strictly less
than c+ r (i.e. i < c+ r), then the nth arrival will be
allowed entry. Therefore, there should be (i− c+ 1)
tasks in the waiting queue at the beginning of T .
Among these c busy servers, s1 of them complete at
least one service during T . Among these s1 servers,
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s2 of them will complete a second service during
T . As each single server completes no more than
three services of tasks between two successive task
arrivals, then the remaining (ω − s1 − s2) services
must be completed before the end of the inter-
arrival time; these services will complete by a
subset of s2 servers. The number of servers in this
subset is equal to (ω − s1 − s2), it means, there
are (ω − s1 − s2) servers each of which completes
exactly three services in T , and the number of
servers that are still busy processing the third service
should be set to s2 − (ω − s1 − s2). Note that this
number of servers is set to s2 in the approximate
formula proposed by Khazaei et al., (2012), with
the probability (1− Pz,3)

s2 . Thus, according to these
authors this approximate formula is given as:

pij =

min(ω,c)∑
s1=min(ω,1)

(
c

s1

)
P s1
x (1− Px)

m−s1

min(ω−s1,s1)∑
s2=min(ω−s1,1)

(
s1
s2

)
P s2
z,2(1− Pz,2)

s1−s2

(
s2

ω − s1 − s2

)
Pω−s1−s2
z,3 (1− Pz,3)

s2 . (12)

However, it is impossible to find exactly c busy
servers at the end of T in this formula since the
number of servers that are still busy processing the
third service is set to s2. Consequently, Chang et al.,
(2016) proposed a new approximate formula which
is defined as:

pij =

min(ω,c)∑
s1=min(ω,1)

(
c

s1

)
P s1
x (1− Px)

c−s1

min(ω−s1,s1)∑
s2=min(ω−s1,1)

(
s1
s2

)
P s2
z,2(1− Pz,2)

s1−s2

(
s2

ω − s1 − s2

)
Pω−s1−s2
z,3

(1− Pz,3)
s2−(w−s1−s2). (13)

Furthermore, in formulas (12) and (13), all the
remaining (ω − s1 − s2) tasks that must leave
the system should be serviced by the subset of
s2 servers. When the number of s2 servers is
small, it can happen that the number of remaining
tasks (ω − s1 − s2) exceeds s2, this is due to the
assumption that "each single server completes

no more than three services of tasks during

T". So, to take into account the effect of this
assumption in our formula, we have defined the
indicator function Φ which is given in the formula
(10).
Moreover, when the nth arrival finds the system
full (i.e. i = c+ r), then it will be lost. Therefore,
there will be (i− j) tasks that will leave the system
between two successive task arrivals instead of
(i+ 1− j) tasks. This has not been taken into
account in the formulas (12) and (13). To remedy
this, we defined our EMC by the formula (2).

The considerations taken into account during our
analysis of region 3, will be maintained in our
analysis of region 4.

Region 4 (c ≤ i ≤ c+ r,0 ≤ j < c, i+ 1 ≥ j):
In this region, at the beginning of T there are
(i− c+ 1) tasks in the waiting queue and all c
servers are busy, while at the end of T , the waiting
queue is empty and there are (c− j) servers are idle.

The approximate formula proposed by Khazaei et al.,
(2012) for this region is given by:

pij =

min(ω,c)∑
s1=c−j

(
c

s1

)
P s1
x (1− Px)

c−s1

min(w−s1,s1)∑
s2=min(ω−s1,c−j)

(
s1
s2

)
P s2
z,2(1− Pz,2)

s1−s2

(
s2

ω − s1 − s2

)
Pw−s1−s2
z,3 (1− Pz,3)

s2 . (14)

In this approximate formula, Khazaei et al., (2012)
have not taken into account the number of tasks
in the waiting queue at the beginning of T .
Consequently, at the end of T , the number of idle
servers differs from (c− j), that is, there are some
servers that are busy, while there is no task to
serve, which is contradictory. Taking into account
the number of tasks in the waiting queue at the
beginning of T , we will distinguish two cases to be
studied, namely:

• Case 1: If s1 ≥ i− c+ 1, then all the (i− c+ 1)
tasks in the waiting queue will begin service at
a subset of the s1 servers that have completed
theirs first services in T , and there will be(
s1 − (i− c+ 1)

)
servers remain idle because

the waiting queue is empty.

• Case 2: If s1 < i− c+ 1, there will be s1 tasks
which begin service at a subset of the s1
servers that have completed one service in
T , and there will be

(
(i− c+ 1)− s1

)
tasks

waiting to be serviced.

Chang et al., (2016) proposed a new approximate
formula for this region:

pij =
1

(1− Pz,3)c−j

min(ω,c)∑
s1=c−j

(
c

s1

)
P s1
x (1− Px)

c−s1

min(ω−s1,s1)∑
s2=min(ω−s1,c−j)

(
min(i− c+ 1, s1)

s2

)
P s2
z,2

(1− Pz,2)
s1−s2

(
min(max(i− c+ 1− s1, 0), s2)

ω − s1 − s2

)
Pω−s1−s2
z,3 (1− Pz,3)

s2−max(i−c+1−s1−s2,0). (15)

In this formula, the authors considered the number
of servers that are still busy processing the third
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service is equal to (s2 −max(i− c+ 1− s1 − s2, 0)),
because they assumed that all servers that enter
in the idle state during T they do not complete the
service, even though the servers are idle. In order to
correctly account for the (c − j) idle servers at the
end of T , they multiplied their formula by 1

(1−Pz,3)c−j .

In the case where s1 ≥ i− c+1, the formula (15) will
be equal to:

pij =
1

(1− Pz,3)c−j

min(ω,c)∑
s1=c−j

(
c

s1

)
P s1
x (1− Px)

c−s1

min(ω−s1,s1)∑
s2=min(ω−s1,c−j)

(
i− c+ 1

s2

)
P s2
z,2(1− Pz,2)

s1−s2

(
min(max(i− c+ 1− s1, 0), s2)

ω − s1 − s2

)
Pω−s1−s2
z,3

(1− Pz,3)
s2−max(i−c+1−s1−s2,0). (16)

Thus, max(i − c + 1 − s1, 0) = 0,
min(max(i− c+ 1− s1, 0), s2) = 0 and
max(i− c+ 1− s1 − s2, 0) = 0. As the waiting
queue is empty, because all (i − c + 1) tasks in
waiting queue enter service as s1 ≥ i− c+ 1, then
the number of servers that will complete three
services during T is equal to 0 (ω − s1 − s2=0).
Therefore, the number of servers that will be idle at
the end of T is equal to s2, i.e., c− j = s2. Thus, the
formula (16) will be equal to:

pij =

min(ω,c)∑
s1=c−j

(
c

s1

)
P s1
x (1− Px)

c−s1

min(ω−s1,s1)∑
s2=min(ω−s1,c−j)

(
i− c+ 1

s2

)
P s2
z,2

(1− Pz,2)
s1−s2 . (17)

In this formula, if the number of servers that
complete the second service is equal to (i− c+ 1),
then at the end of T , the number of servers
remain busy processing the second service is
equal to (i− c+ 1− s2), while in formula (17), this
number is equal to (s1 − s2), consequently, the
number of tasks in the system at the end of T
exceeds j. Therefore, the coefficient 1

(1−Pz,3)c−j is
not valid when s1 ≥ i− c+ 1, but it is valid just when
s1 < i− c+ 1.

Accounting for the above analysis for this region, we
study the two cases cited above separately:

• In the case 1, s2 tasks among (i− c+ 1) tasks
leave the system with a probability P s2

z,2, and
(i− c+ 1− s2) tasks remain in service with a
probability (1− Pz,2)

i−c+1−s2 . In other words,
the s2 servers that complete a second service
must be selected from the s1 servers that have
completed theirs services in T

(
i.e.

(
s1
s2

)
), and

the maximum number of these servers is equal

to min(ω − s1, i− c+ 1).
Thus, we proposed an approximate formula to
compute the transition probabilities in this case
as follows:

pij =

min(ω,c)∑
s1=c−j

(
c

s1

)
P s1
x (1− Px)

c−s1

min(ω−s1,i−c+1)∑
s2=min(ω−s1,c−j)

(
s1
s2

)
P s2
z,2

(1− Pz,2)
i−c+1−s2 . (18)

• In this case 2, as s1 < i− c+ 1, then s2
tasks among s1 tasks leave the system with
a probability P s2

z,2, (s1 − s2) tasks remain in
service with a probability (1− Pz,2)

s1−s2 ,
and

(
(i− c+ 1)− s1

)
tasks waiting to be

serviced. These latter will begin service
at a subset of the s2 servers that have
completed tow services during T . Among these(
(i− c+ 1)− s1

)
tasks, (ω − s1 − s2) tasks

leave the system with a probability Pω−s1−s2
z,3

and
(
(i− c+ 1− s1)− (ω − s1 − s2)

)
tasks remain in service with a probability
(1− Pz,3)

(i−c+1−s1)−(ω−s1−s2).
Thus, we proposed an approximate formula
to compute the transition probabilities in this
case as follows:

pij =

min(ω,c)∑
s1=c−j

(
c

s1

)
P s1
x (1− Px)

c−s1

min(ω−s1,s1)∑
s2=min(ω−s1,c−j)

(
s1
s2

)
P s2
z,2(1− Pz,2)

s1−s2

(
s2

ω − s1 − s2

)
Pω−s1−s2
z,3

(1− Pz,3)
(i−c+1−s1)−(ω−s1−s2)Φ. (19)

Combining the two formulas (18) and (19), we
obtained the formula (11) for computing the
transition probabilities in region 4.

This analysis allowed us to propose a more
appropriate new matrix for the M/G/c/c+ 1 queue.

4. APPLICATION EXAMPLE

In order to confirm our theoretical results, we
consider in this section the example model
”M/G/2/4 queue” for which we will compute the
matrix P using both approximate formulas, those of
Khazaei et al., (2012) and ours.

Let P̃ the transition-probability matrix of the
M/G/2/4 queue found using our approximate
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formulas:

P̃ =



0 1 2 3 4

0 0 0

1 Ã 0 0

2

3 B̃ C̃
4


,

where:

Ã =

 Py 1 − Py 0

PxPy

[
(1 − Px)Py + Px(1 − Px)

]
(1 − Px)(1 − Py)

,

B̃ =



2P2
xPz,2

[
2Px(1 − Px)Pz,2 + P2

x

×(1 − Pz,2)
]

P2
xP2

z,2

[
2Px(1 − Px)Pz,2Pz,3 + 2P2

x

×Pz,2(1 − Pz,2)
]

P2
xP2

z,2

[
2Px(1 − Px)Pz,2Pz,3 + 2P2

x

×Pz,2(1 − Pz,2)
]



,

C̃ =



2Px(1 − Px)(1 − Pz,2) (1 − Px)2 0

[
2Px(1 − Px)Pz,2

×(1 − Pz,3)
]

+
[
P2
x(1 − Pz,2)2

]
[
2Px(1 − Px)

]
×

[
(1 − Pz,2)

] (1 − Px)2

[
2Px(1 − Px)Pz,2

×(1 − Pz,3)
]

+
[
P2
x(1 − Pz,2)2

]
[
2Px(1 − Px)

]
×

[
(1 − Pz,2)

] (1 − Px)2



.

Let ˜̃
P the transition-probability matrix of the

M/G/2/4 queue found using the approximate
formulas proposed by Khazaei et al., (2012)):

˜̃
P =



0 1 2 3 4

0 0 0

1

˜̃
A 0 0

2

3

˜̃
B

˜̃
C

4


,

where:

˜̃
A =

 Py 1 − Py 0

PxPy (1 − Px)Py + Px(1 − Px) (1 − Px)(1 − Py)

,

˜̃
B =



[
2P2

xPz,2(1 − Pz,2)
]

×
[
(1 − Pz,3)

] [
2Px(1 − Px)Pz,2(1 − Pz,3)

]
+

[
P2
x (1 − Pz,2)2

]

P2
xP2

z,2(1 − Pz,3)2

[
2Px(1 − Px)Pz,2Pz,3

×(1 − Pz,3)
]
+

[
2P2

xPz,2

(1 − Pz,2)(1 − Pz,3)
]

2P2
xP2

z,2Pz,3(1 − Pz,3)2

[
2P2

xPz,2(1 − Pz,2)Pz,3

×(1 − Pz,3)
]

+
[
P2
xP2

z,2(1 − Pz,3)2
]



,

˜̃
C =



[
2Px(1 − Px)

×(1 − Pz,2)
] (1 − Px)2 0

[
2Px(1 − Px)

×Pz,2(1 − Pz,3)
]

+
[
P2
x(1 − Pz,2)2

]
[
2Px(1 − Px)

×(1 − Pz,2)
] (1 − Px)2

[
2Px(1 − Px)Pz,2

×Pz,3(1 − Pz,3)
]

+
[
2P2

xPz,2
×(1 − Pz,2)

×(1 − Pz,3)
]

[
2Px(1 − Px)

×Pz,2(1 − Pz,3)
]

+
[
P2
x (1 − Pz,2)2

]
[
2Px(1 − Px)

×(1 − Pz,2)
]



.

As we know, a transition-probability matrix is
a stochastic matrix by definition. Thus, our main
contribution lies in obtaining a stochastic matrix,
which cannot be obtained using the approximate
formulas proposed by Khazaei et al., (2012), which
we will confirm in what follows.
In a stochastic matrix, the sum of transition
probabilities from state i to all other states must be
1. So, if there is at least one state i such that this
sum is different from 1 in a matrix, then this latter is
no longer stochastic.
Let’s calculate for example the sum of row 4 for P̃

(resp. ˜̃P ):
4∑

j=0

p̃4j = 1 − 2PxPz,2Pz,3 + 2P
2
xPz,2Pz,3 + 2PxPz,2Pz,3 −

2P
2
xPz,2Pz,3 = 1.

4∑
j=0

˜̃p4j = 2Px − P
2
x − 2Pz,2Pz,3 + 2P

2
xPz,2Pz,3 − 2P

2
xPz,2P

2
z,3 −

P
2
xP

2
z,2P

2
z,3 + 2P

2
xP

2
z,2P

3
z,3 + 2Pz,2Pz,3 − 2Pz,2P

2
z,3 −

2P
2
xPz,2Pz,3 + 2P

2
xPz,2P

2
z,3.

= 2Px − P
2
x − P

2
xP

2
z,2P

2
z,3 + 2P

2
xP

2
z,2P

3
z,3 − 2Pz,2P

2
z,3.

Despite that our formulas are approximates, we

obtained in this case
4∑

j=0

p̃4j is exactly equal to

1, which explains that our approximate formulas

are more accurate.
4∑

j=0

˜̃p4j can be only verified

through numerical analysis, for this we give some
numerical examples where we assume different
service time distributions with the same traffic
intensity ρ assumed by Khazaei et al., (2012).

Example 1 Exponential service times with rate of
service µ = 0.6 and ρ = 0.85:

P̃ =



0 1 2 3 4

0 0.37 0.62 0 0 0
∑
j

= 0.99

1 0.13 0.46 0.39 0 0
∑
j

= 0.98

2 0.03 0.18 0.40 0.39 0
∑
j

= 1.00

3 0.00 0.03 0.16 0.40 0.39
∑
j

= 0.98

4 0.00 0.03 0.16 0.40 0.39
∑
j

= 0.98
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˜̃
P =



0 1 2 3 4

0 0.37 0.62 0 0 0
∑
j

= 0.99

1 0.13 0.46 0.39 0 0
∑
j

= 0.98

2 0.03 0.16 0.40 0.39 0
∑
j

= 0.98

3 0.00 0.03 0.16 0.40 0.39
∑
j

= 0.98

4 0.00 0.00 0.03 0.16 0.40
∑
j

= 0.59



Example 2 Erlang service times with shape param-
eter a = 4, scale parameter µ = 0.6, and ρ = 0.85:

P̃ =



0 1 2 3 4

0 0.24 0.75 0 0 0
∑
j

= 0.99

1 0.10 0.47 0.41 0 0
∑
j

= 0.98

2 0.04 0.23 0.44 0.30 0
∑
j

= 1.01

3 0.00 0.04 0.20 0.44 0.30
∑
j

= 0.98

4 0.00 0.04 0.20 0.44 0.30
∑
j

= 0.98



˜̃
P =



0 1 2 3 4

0 0.24 0.75 0 0 0
∑
j

= 0.99

1 0.10 0.47 0.41 0 0
∑
j

= 0.98

2 0.03 0.20 0.44 0.30 0
∑
j

= 0.97

3 0.00 0.03 0.20 0.44 0.30
∑
j

= 0.97

4 0.00 0.00 0.03 0.20 0.44
∑
j

= 0.67



Example 3 Weibull service times with shape param-
eter a = 0.8, scale parameter µ = 0.6, and ρ = 0.85:

P̃ =



0 1 2 3 4

0 0.35 0.64 0 0 0
∑
j

= 0.99

1 0.09 0.43 0.47 0 0
∑
j

= 0.99

2 0.01 0.10 0.35 0.53 0
∑
j

= 0.99

3 0.00 0.01 0.09 0.35 0.53
∑
j

= 0.98

4 0.00 0.01 0.09 0.35 0.53
∑
j

= 0.98



˜̃
P =



0 1 2 3 4

0 0.35 0.64 0 0 0
∑
j

= 0.99

1 0.09 0.43 0.47 0 0
∑
j

= 0.99

2 0.01 0.09 0.35 0.53 0
∑
j

= 0.98

3 0.00 0.01 0.09 0.35 0.53
∑
j

= 0.98

4 0.00 0.00 0.01 0.09 0.35
∑
j

= 0.45



Example 4 Gamma service times with shape
parameter a = 0.2, scale parameter µ = 0.6, and
ρ = 0.85:

P̃ =



0 1 2 3 4

0 0.63 0.36 0 0 0
∑
j

= 0.99

1 0.13 0.57 0.28 0 0
∑
j

= 0.98

2 0.01 0.08 0.28 0.61 0
∑
j

= 0.98

3 0.00 0.01 0.07 0.28 0.61
∑
j

= 0.97

4 0.00 0.01 0.07 0.28 0.61
∑
j

= 0.97



˜̃
P =



0 1 2 3 4

0 0.63 0.36 0 0 0
∑
j

= 0.99

1 0.13 0.57 0.28 0 0
∑
j

= 0.98

2 0.01 0.07 0.28 0.61 0
∑
j

= 0.97

3 0.00 0.01 0.07 0.28 0.61
∑
j

= 0.97

4 0.00 0.00 0.01 0.07 0.28
∑
j

= 0.36



From these examples, we notice that the sum of the
elements of each row for the matrices obtained by

our approximate formulas, is equal or very close to
1, in opposite to that obtained using the approximate
formulas of Khazaei et al., (2012), which is very far
from 1, see particularly the last row.
This application example proves that our matrices
are stochastic, which confirms that our approximate
formulas are more accurate.

5. PERFORMANCE EVALUATION

In this section, we will solve the balance equations
of the proposed model using MATLAB to obtain
the steady-state probabilities. Then, we will compute
some performance indicators such as blocking
probability, mean response time, probability of
immediate service and delay probability. Finally, we
will validate the obtained results by simulation.

5.1. Equilibrium balance equations

Due to ergodicity of the system, the equilibrium
probability distribution of the number of tasks present
at the arrival instants π = (π0, π1, ..., πc+r), where
πi = lim

n→∞
P (Xn = i), 0 ≤ i ≤ c+ r, exists. π can be

obtained by solving the following system of linear
equations:{

πP = π
π1 = 1,

(20)

where, 1 is the column vector of ones.

This system cannot be solved in closed form,
therefore we have to resort to a numerical solution.

5.2. Numerical results

There is no precise statistic or empirical results
on percentage of different types of instances for
a real cloud provider. For instance, Amazon does
not publish any information regarding average
traffic intensity, buffer space and the percentage
of reserved, on-demand or spot instances in their
various centers (Khazaei et al., (2012)). Therefore,
Khazaei et al., (2012) assumed the traffic intensity
of cloud center is rather high, ρ = 0.85, because
they supposed that a cloud provider tries to keep the
traffic intensity up as much as possible in order to
optimize the use of the deployed infrastructure. Thus,
we perform our results with the same assumptions of
Khazaei et al., (2012), that is, the task service time
follows the gamma distribution; the traffic intensity
ρ = 0.85 and CoV = 0.5, 1.4. In all plots, the
analytical results and simulation are labelled with
Ana and Sim, respectively.

• First we present the blocking probability which we
illustrate in Figure 2.
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Figure 2: Blocking probability.

From the Figure 2, the results confirm that if the
capacity of the waiting queue increased linearly the
blocking probability would decrease exponentially. In
the system with 50 servers, the blocking probability
varies from 0.002 to 4 × 10−4 when the capacity of
the waiting queue varies from 5 to 10 respectively. It
equals to 0.8 × 10−4 in the system with 100 servers
when the capacity of the waiting queue equals to 10.
While for the system with 160 servers, the blocking
probability is much lower. Thus, we can estimate
the smallest capacity of waiting queue such that
the blocking probability remains below a predefined
value ϵ. For ϵ = 0.8 × 10−4, the capacity of waiting
queue should be at least 10.

• The probability of immediate service is shown in
Figure 3.

As can be seen, the probability of immediate service
decreases with the increase of the capacity of the
waiting queue. We also notice in Figure 3, that this
probability is close to the value 1 with a low value of
the capacity of the waiting queue, which explains an
arrival task can be directly served without joining the
waiting queue.

Figure 3: Probability of immediate service.

• It is also important to know the delay probability
(the probability that an arrival task must wait because
all servers are busy) by either cloud provider or its
customers, because it can happen that an arrival
task will leave the system without obtaining service
due to long queuing length. So, we compute this
probability, and the results are shown in Figure 4:

Figure 4: Delay probability.

As can be seen, the delay probability increases
rapidly when the capacity of the waiting queue
increases. This probability is low when the capacity
of the waiting queue is very low, which explains that
an arrival task has only to wait the service time of
tasks which are in the service. We also notice in

10
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Figure 4, that the delay probability in the system with
higher number of servers is different from that in the
system with a smaller number of servers.

• Finally, Figure 5 shows the mean response time:

Figure 5: Mean response time.

As can be seen in this figure, the mean response
time decreases when the number of servers
increases. We notice that the mean response time
under CoV = 0.5 is shorter than the mean response
time under CoV = 1.4. Thus, we can conclude that it
is better to submit the task requests to cloud centers
that accept the same type of request than cloud
centers that accept different types of requests.

Overall, the results suggest that performance is
worse when the coefficient of variation of the service
time is equal to 1.4, compared to performance with a
CoV of the service time equals to 0.5. Finally, we note
that the obtained analytical results are close to those
obtained by simulation, which confirms the validity of
our analytical model.

6. CONCLUSION AND FUTURE WORK

Due to the nature of environment of cloud
computing, it is not feasible to obtain an adequate
model for performance evaluation of cloud center.
According to our related works, we observed
that the M/G/c/c+ r queue is an abstract
model to performance analysis of cloud center.
In fact, considering this model, we performed
a mathematical analysis of M/G/c/c+ r queuing
system by introducing the stochastic process which
is more appropriate, for the number of tasks present
in the system at the arrival instants. Then, we
proposed more accurate approximate formulas for
computing the transition-probability matrix of this
system. From this obtained matrix, we obtained
the steady-state probabilities which allowed us to
accurately compute the performance indicators such
as the blocking probability, the mean response time,

the probability of immediate service and the delay
probability. Finally, we validated our analytical results
by simulation.

For the future, we plan to extend the model
M/G/c/c+ r queuing system to consider the
services with different priorities and/or batch-task
arrivals. It may also be interesting to extend this
model taking into account the effect of impatient
customers behavior on the total revenue of cloud
providers.
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