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Scaling exponents of

step-reinforced random walks

Jean Bertoin∗

Abstract

Let X1, . . . be i.i.d. copies of some real random variable X. For any
ε2, ε3, . . . in {0, 1}, a basic algorithm introduced by H.A. Simon yields a
reinforced sequence X̂1, X̂2, . . . as follows. If εn = 0, then X̂n is a uniform
random sample from X̂1, · · · , X̂n−1; otherwise X̂n is a new independent
copy of X. The purpose of this work is to compare the scaling exponent
of the usual random walk S(n) = X1 + · · · + Xn with that of its step
reinforced version Ŝ(n) = X̂1 + · · ·+ X̂n. Depending on the tail of X and
on asymptotic behavior of the sequence εj , we show that step reinforce-
ment may speed up the walk, or at the contrary slow it down, or also does
not affect the scaling exponent at all. Our motivation partly stems from
the study of random walks with memory, notably the so-called elephant
random walk and its variations.

Keywords: Reinforcement, random walk, scaling exponent, heavy
tail distribution.

Mathematics Subject Classification: 60G50; 60G51; 60K35.

1 Introduction

In 1955, Herbert A. Simon [24] introduced a simple reinforcement algorithm
that runs as follows. Consider a sequence ε1, ε2, ε3, . . . in {0, 1} with ε1 = 1.
The n-th step of the algorithm corresponds to an innovation if εn = 1, and to a
repetition if εn = 0. Specifically, denote the number of innovations after n steps
by

σ(n) =

n∑
i=1

εi for n ≥ 1,

and let also X1, X2, . . . denote a sequence of different items (in [24], these items
are words). One constructs recursively a random sequence of items X̂1, X̂2, . . .
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by deciding that X̂n = Xσ(n) if εn = 1, and that X̂n = X̂U(n) if εn = 0, where
U(n) is random with the uniform distribution on [n − 1] = {1, . . . , n − 1} and
U(2), U(3), . . . are independent.

Simon was especially interested in regimes where either εn converges in
Césaro’s mean to some limit q ∈ (0, 1), which we will refer to as steady innova-
tion with rate q, or σ(n) grows like1 nρ for some ρ ∈ (0, 1) as n→∞, which we
will call slow innovation with exponent ρ. By analyzing the frequences of words
with some fixed number of occurrences, he pointed out that these regimes yield
a remarkable one-parameter family of power tail distributions, that are known
nowadays as the Yule-Simon laws and arise in a variety of empirical data. This
is also closely related to preferential attachment dynamics, see e.g. [10] for
an application to the World Wide Web. Clearly, repetitions in Simon’s algo-
rithm should be viewed as a linear reinforcement, the probability that an item
is repeated being proportional to the number of its previous occurrences.

In the present work, the items X1, X2, . . . are i.i.d. copies of some real
random variable X, which we further assume to be independent of the uniform
variables U(2), U(3), . . .. Picking up on a key question in the general area of
reinforced processes (see notably the survey [21] by Pemantle, and also some
more recent works [2, 14, 15, 18, 22] and references therein), our purpose is to
analyze how reinforcement affects the growth of partial sums. Specifically, we
write

S(n) = X1 + · · ·+Xn

for the usual random walk with step distribution X, and

Ŝ(n) = X̂1 + · · ·+ X̂n

for its reinforced version, and we would like to compare Ŝ(n) and S(n) when
n � 1. The main situation of interest is when S has a scaling exponent α ∈
(0, 2], in the sense that

lim
n→∞

n−1/αS(n) = Y in law, (1)

where Y denotes an α-stable variable. Recall that this holds if and only if the
typical step X belongs to the domain of normal attraction (without centering)
of a stable distribution, in the terminology of Gnedenko and Kolmogorov [16].
We shall refer to (1) as an instance of α-diffusive asymptotic behavior, the usual
diffusive situation corresponding to α = 2.

The asymptotic behavior of the step-reinforced random walk Ŝ has been
considered previously in the literature when ε2, ε3, . . . are given by i.i.d. samples
of the Bernoulli law with parameter q ∈ (0, 1). This is of course a most important
case of a steady regime with innovation rate q a.s. It has been shown recently in
[8] that when X ∈ L2(P), the asymptotic growth of Ŝ exhibits a phase transition
at qc = 1/2. Specifically, assuming for simplicity that X is centered, then on

1The precise definition of these regimes will be given later on.
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the one hand for q < 1/2, there is some non-degenerate random variable V such
that

lim
n→∞

n−1+qŜ(n) = V a.s. (2)

In other words, (2) shows that for q < 1/2, Ŝ has scaling exponent α̂ = 1/(1−q),
or equivalently, grows with exponent 1/α̂, and in particular is super-diffusive
since 1/α̂ > 1/2. On the other hand, for q > 1/2, provided that X ∈ Lr(P)
for some r > 1/(1 − q), the step-reinforced random walk remains diffusive, in
the sense that n−1/2Ŝ(n) converges in law to some Gaussian variable. This
phase transition was first established when X is a Rademacher variable, i.e.
P(X = 1) = P(X = −1) = 1/2. Indeed, Kürsten [20] observed that Ŝ is
then a version of the so-called elephant random walk, a nearest neighbor process
with memory which was introduced by Schütz and Trimper [23] and has then
raised much interest. The description of the asymptotic behavior of the elephant
random walk has motivated many works, see notably [3, 5, 6, 12, 13, 19].

Further, when the typical step X has a symmetric stable distribution with
index α ∈ (0, 2], Ŝ is the so-called shark random swim, which has been studied
in depth by Businger [11]. Its large time asymptotic behavior exhibits a similar
phase transition for α > 1, now for the critical parameter qc = 1− 1/α. When
α ≤ 1, there is no such phase transition and Ŝ has the same scaling exponent α
as S. See also [7] for related results in the setting of Lévy processes.

The results that we just recalled suggest that, more generally, for any steady
innovation regime and any typical step X belonging to the domain of normal
attraction an α-stable distribution (i.e. such that (1) is fulfilled), then the follow-
ing should hold. First, for α ∈ (0, 1), the random walk S and its step-reinforced
version Ŝ should have the same scaling exponent α̂ = α, independently of the
innovation rate. Second, for α ∈ (1, 2], if the innovation rate q is larger than
qc = 1 − 1/α, then again the scaling exponent of S and Ŝ should coincide,
whereas if q < 1− 1/α, then the super-α-diffusive behavior (2) should hold and
Ŝ should thus have scaling exponent α̂ = 1/(1 − q) < α. We shall see in The-
orems 3.3 and 4.2 that this guess is indeed correct. In particular, the weaker
the innovation (or equivalently the stronger the reinforcement), the faster the
step-reinforced random walk Ŝ grows.

An informal explanation for this phase transition is as follows. When α ∈
(1, 2], the α-diffusive behavior (1) of S relies from some kind of balance between
its positive and negative steps (recall that X must be centered, i.e. E(X) = 0).
The effect reinforcement of Simon’s algorithm for sufficiently small innovation
rates q yields certain steps to be repeated much more often than the other, up
to the point that this balance is disrupted. More precisely, we shall see that in
a steady regime with innovation rate q, the maximal number of repetitions of a
same item up to the n-th step of Simon’s algorithm grows with exponent 1− q.
For q > qc = 1 − 1/α, this is smaller than the growth exponent 1/α of S and
repetitions have only a rather limited impact on the asymptotic behavior of Ŝ.
At the opposite, for q < qc, some increments have been repeated much more
often and the growth of Ŝ is then rather governed by the latter, yielding (3).
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We now turn our attention to regimes with slow innovation. Extrapolating
from the steady regime, we might expect that reducing the innovation should
again speed up the step-reinforced random walk. This intuition turns out to be
wrong, and we will see that at the opposite, in slow regimes, diminishing the
innovation actually slows down the walk. More precisely, there is another phase
transition when α ∈ (0, 1), occurring now for the critical innovation exponent
ρc = α. Specifically, if ρ < α, then we shall see in Theorem 3.1 that Ŝ has always
scaling exponent α̂ = 1 (i.e. a ballistic asymptotic behavior which contrasts with
the growth with exponent 1/α > 1 for S), whereas for ρ > α, we will see in
Theorem 4.1 that Ŝ has rather scaling exponent α̂ = α/ρ > α, that it grows
now with exponent 1/α̂ = ρ/α > 1, but nonetheless still significantly slower
than S. On the other hand, when α ≥ 1, there is no phase transition for slow
innovation regimes and Ŝ has always scaling exponent α̂ = 1.

This apparently surprising feature can be explained informally as follows. As
it was argued above, for α ∈ (1, 2], E(X) = 0 and the super-diffusive regime (3)
results from the disruption of the balance between positive and negative steps
when certain steps are repeated much more than others. At the opposite, for
α ∈ (0, 1), the typical step X has a heavy tail distribution with E(|X|) = ∞.
In this situation, it is well-known that for n � 1, |S(n)| has roughly the same
size as its largest step up to time n, max{|Xi| : 1 ≤ i ≤ n}. Regimes with slow
innovation delay the occurence of rare events at which steps are exceptionally
large. Therefore they induce a slow down effect for the step-reinforced random
walk, up to the point that when the innovation exponent drops below a critical
value, Ŝ has merely a ballistic growth. This aspect will be further discussed
quantitatively in Section 5.

A somewhat simpler version of the main results of our work are summarized
in Figure 1 below. It expresses the scaling exponent α̂ of Ŝ in terms of the scaling
exponent α ∈ (0, 2] of S and the innovation parameter ρ > 0. The slow regime
corresponds to ρ ∈ (0, 1) and ρ is then the innovation exponent as usual. The
steady regime corresponds to ρ > 1, and then the rate of innovation is given
by q = 1 − 1/ρ. This new parametrization for steady regimes of innovation
may seem artificial; nonetheless we stress that the same is actually used for the
definition of the one-parameter family of Yule-Simon distributions; see Lemma
2.4.

The cornerstone of our approach is provided by Lemma 2.2, where we observe
that the process that counts the number of occurrences of a given item in Simon’s
algorithm can be turned into a square integrable martingale. The latter is a
close relative to another martingale that occurs naturally in the setting of the
elephant random walk; see [6, 12, 13, 19], among others. The upshot of Lemma
2.2 is that this yield useful estimates for these numbers of occurrences and their
asymptotic behaviors, which hold uniformly for all items.

The plan for the rest of this article is as follows. Section 2 is devoted to
preliminaries on the stable central limit theorem, on martingales induced by
occurrence counting processes in Simon’s algorithm, and on the Yule-Simon
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α̂ = α/ρ

Figure 1: Scaling exponent α̂ of a step-reinforced random walk in terms of the
innovation parameter ρ and the scaling exponent α of the original random walk.
Results above the diagonal ρ = α are strong (convergence in probability), those
below the diagonal are weak (convergence in distribution).

distributions. We state and prove our main results in Sections 3 and 4. Finally,
several comments are given in Section 5.

2 Preliminaries

Given two sequence a(n) and b(n) of positive real numbers, it will be convenient
to use the following notation throughout this work:

a(n) ∼ b(n) ⇐⇒ lim
n→∞

a(n)/b(n) = 1,

a(n) ≈ b(n) ⇐⇒ lim
n→∞

a(n)/b(n) exists in (0,∞),

a(n) � b(n) ⇐⇒ 0 < inf
n≥1

a(n)/b(n) ≤ sup
n≥1

a(n)/b(n) <∞.

2.1 Background on the stable central limit theorem

We assume in this section that the step distribution belongs to the domain of
normal attraction (without centering) of some stable distribution, i.e. that (1)
holds for some α ∈ (0, 2]. The Cauchy case α = 1 has some peculiarities and for
the sake of simplicity, it will be ruled out from time to time. We present some
classical results in this framework that will be useful later on.
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We start by recalling that for α = 2, (1) holds if and only if X is centered
with finite variance; see Theorem 4 on p. 181 in [16]. For α ∈ (0, 1), (1) is
equivalent to

lim
x→∞

xαP(X > x) = c+ and lim
x→∞

xαP(X < −x) = c−

for some nonnegative constants c+ and c− with c+ + c− > 0. Finally, for
α ∈ (1, 2), (1) holds if and only if the same as above is fulfilled and furthermore
X is centered. See Theorem 5 on p. 181-2 in [16].

We denote the characteristic function of X by

Φ(θ) = E(exp(iθX)) for θ ∈ R,

and the characteristic exponent of the stable variable Y by ϕα, that is ϕα : R→
C is the unique continuous function with ϕα(0) = 0 such that

E(exp(iθY )) = exp(−ϕα(θ)) for θ ∈ R.

In particular, ϕα is homogeneous with degree α in the sense that

ϕα(cθ) = cαϕα(θ) for all c > 0 and θ ∈ R.

In this setting, (1) can be expressed classically as

lim
n→∞

Φ(θn−1/α)n = exp(−ϕα(θ)), for all θ ∈ R, (3)

but we shall rather use a logarithmic version of (3).

Pick r > 0 sufficiently small so that |1 − Φ(θ)| < 1 whenever |θ| ≤ r, and
then define ϕ : [−r, r]→ C as the continuous determination of the logarithm of
Φ on [−r, r], i.e. the unique continuous function with ϕ(0) = 0 and such that
Φ(θ) = exp(−ϕ(θ)) for all θ ∈ [−r, r]. Theorem 2.6.5 in Ibragimov and Linnik
[17] entails that (3) can be rewritten in the form

lim
t→∞

tϕ(θt−1/α) = ϕα(θ), for all θ ∈ R. (4)

We stress that the parameter t in (4) is real, whereas n in (3) is an integer, and
as a consequence, we have also that

ϕ(θ) = O(|θ|α) as θ → 0.

2.2 Martingales in Simon’s algorithm

Recall Simon’s algorithm from the Introduction, and in particular that σ(n)
stands for the number of innovations up to the n-th step. In this work, we will
be mostly concerned with the cases where either the sequence σ(·) is regularly
varying with exponent ρ ∈ (0, 1), that is

lim
n→∞

σ(bcnc)
σ(n)

= cρ for all c > 0, (5)
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or
∞∑
n=1

n−2 |σ(n)− qn| <∞ for some q ∈ (0, 1). (6)

It is easily checked that (6) implies σ(n) ∼ qn, and conversally, (6) holds when-
ever σ(n)/n = q+O(log−β n) for some β > 1. We refer to (5) as the slow regime
with innovation exponent ρ ∈ (0, 1), and to (6) as the steady regime with inno-
vation rate q ∈ (0, 1). Often, it is convenient to set ρ = 1/(1− q) for q ∈ (0, 1)
and then view ρ ∈ (0, 1) ∪ (1,∞) as a parameter for the innovation, with ρ > 1
corresponding to steady regimes.

Several of our results however rely on much weaker assumptions; in any case
we shall always assume at least that the total number of innovations is infinite
and that the number of repetitions is not sub-linear, i.e.

σ(∞) =∞ and lim sup
n→∞

n−1σ(n) < 1. (7)

Simon’s algorithms induces a natural partition of the set of indices N =
{1, 2, . . .} into a sequence of blocks B1, B2, . . ., where

Bj = {k ∈ N : X̂k = Xj}.

In words, Bj is the set of steps of Simon’s algorithm at which the j-th item
Xj is repeated. We consider for every n ∈ N the restriction of the preceding
partition to [n] = {1, . . . , n} and write

Bj(n) = Bj ∩ [n] = {k ∈ [n] : X̂k = Xj};

plainly Bj(n) is nonempty if and only if j ≤ σ(n). Last, we set

|Bj(n)| = CardBj(n)

for the number of elements of Bj(n), and arrive at the following basic expression
for the step-reinforced random walk:

Ŝ(n) =

∞∑
j=1

|Bj(n)|Xj =

σ(n)∑
j=1

|Bj(n)|Xj , (8)

where the Xj are i.i.d. copies of X, and further independent of the random
coefficients |Bj(n)|.

The identity (8) incites us to investigate the asymptotic behavior of the
coefficients |Bj(n)|. In this direction, we introduce the quantities

π(n) =

n∏
j=2

(
1 +

1− εj
j − 1

)
, n ∈ N, (9)

and the times of innovation

τ(j) = inf{n ∈ N : σ(n) = j} = minBj = inf{n ∈ N : |Bj(n)| = 1}.

We start with a simple lemma:
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Lemma 2.1. The following assertions hold:

(i) Assume that σ(n) = O(nρ) for some ρ < 1. Then π(n) ≈ n.

(ii) Assume (6); then π(n) ≈ n1−q.

(iii) Assume (7); then the series
∑∞
n=1 1/(nπ(n)) converges.

Proof. We have from the definition of π(n) that

π(n) = exp

 n∑
j=2

log

(
1 +

1− εj
j − 1

) ≈ exp

 n∑
j=2

1− εj
j − 1

 .

Next we observe by summation by parts that

n∑
j=2

1− εj
j − 1

=
n− σ(n)

n− 1
+

n−1∑
j=2

j − σ(j)

j(j − 1)
.

Assume first σ(n) = O(nρ) for some ρ < 1. Then
∑∞
j=2 σ(j)j−2 <∞, which

yields

lim
n→∞

 n∑
j=2

1− εj
j − 1

− log n

 exists in R,

and (i) follows.

Next, when (6) holds, we write

n−1∑
j=2

j − σ(j)

j(j − 1)
= (1− q)

n−1∑
j=2

1

j − 1
−
n−1∑
j=2

σ(j)− qj
j(j − 1)

.

The second series in the right-hand side converges absolutely; as a consequence,

lim
n→∞

 n∑
j=2

1− εj
j − 1

− (1− q) log n

 exists in R,

and (ii) follows.

Finally, assume (7). There is a < 1 such that σ(k) ≤ ak for all k sufficiently
large. It follows that there is some b > 0 such that for all n,

n∑
j=2

1− εj
j − 1

≥ (1− a) log n+ b.

We conclude that 1/(nπ(n)) = O(na−2), which entails the last claim.
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The next result determines the asymptotic behavior of the sequences |Bj(·)|
for all j ∈ N, and will play therefore a key role in our analysis.

Lemma 2.2. Assume (7). For every j ∈ N, the process started at time τ(j),

π(n)−1|Bj(n)|, n ≥ τ(j),

is a square integrable martingale. We denote its terminal value by

Γj = lim
n→∞

π(n)−1|Bj(n)|,

and have

E(Γj) =
1

π(τ(j))
and Var(Γj) ≤

2

π(τ(j))

∞∑
n=τ(j)

1

nπ(n)
.

Proof. The martingale property is immediate from Simon’s algorithm. More
precisely, for any n ≥ τ(j), we have π(n+ 1) = π(n) and |Bj(n+ 1)| = |Bj(n)|
when εn+1 = 1 (by innovation), whereas when εn+1 = 0 , we have π(n + 1) =
π(n)(1 + 1/n) and further (by reinforcement)

P(|Bj(n+ 1)| = |Bj(n)|+ 1 | Fn) = Bj(n)/n

and
P(|Bj(n+ 1)| = |Bj(n)| | Fn) = 1−Bj(n)/n,

where (Fn)n≥1 denotes the natural filtration of Simon’s algorithm. The claimed
martingale property follows, and as a consequence, there is the identity

E(|Bj(n)|) = π(n)/π(τ(j)) for all n ≥ τ(j). (10)

We next have to check that the mean of the quadratic variation of the mar-
tingale |Bj(·)|/π(·) satisfies

∞∑
n=τ(j)

E

(∣∣∣∣ |Bj(n+ 1)|
π(n+ 1)

− |Bj(n)|
π(n)

∣∣∣∣2
)
≤ 2

π(τ(j))

∞∑
n=τ(j)

1

nπ(n)
;

thanks to Lemma 2.1, the remaining assertions are then immediate.

In this direction, we first note that the terms in the sum on the left-hand
side above that correspond to an innovation (i.e. εn+1 = 1) are zero and can
thus be discarded. Let εn+1 = 0, so that π(n + 1) = π(n)(1 + 1/n). We then
have

E

(∣∣∣∣ |Bj(n+ 1)|
π(n+ 1)

− |Bj(n)|
π(n)

∣∣∣∣2
)

≤ E

(∣∣∣∣ |Bj(n)|+ 1

π(n)(1 + 1/n)
− |Bj(n)|

π(n)

∣∣∣∣2 |Bj(n)|
n

)
+ E

(∣∣∣∣ |Bj(n)|
π(n)(1 + 1/n)

− |Bj(n)|
π(n)

∣∣∣∣2
)
.
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On the one hand, since

|Bj(n)|+ 1

π(n)(1 + 1/n)
− |Bj(n)|

π(n)
=

1− |Bj(n)|/n
π(n)(1 + 1/n)

∈
[
0,

1

π(n)

]
,

we deduce from (10) the bound

E

(∣∣∣∣ |Bj(n)|+ 1

π(n)(1 + 1/n)
− |Bj(n)|

π(n)

∣∣∣∣2 |Bj(n)|
n

)
≤ 1

nπ(n)π(τ(j))
.

On the other hand, since∣∣∣∣ |Bj(n)|
π(n)(1 + 1/n)

− |Bj(n)|
π(n)

∣∣∣∣2 ≤ |Bj(n)|2

π(n)2n2
≤ |Bj(n)|
π(n)2n

,

using again (10), we get

E

(∣∣∣∣ |Bj(n)|
π(n)(1 + 1/n)

− |Bj(n)|
π(n)

∣∣∣∣2
)
≤ 1

nπ(n)π(τ(j))
.

The proof of the statement is now complete.

As an immediate consequence, we point at the following handier estimate
for the second moment of Γj .

Corollary 2.3. Assume (7) and further that π(n) � na for some a > 0. Then

E(Γ2
j ) �

1

τ(j)2a
.

Proof. On the one hand, there is the lower bound E(Γ2
j ) ≥ E(Γj)

2. On the other
hand, our assumption also entails for some b, b′ > 0, we have∑

n≥`

1/(nπ(n)) ≤ b
∑
n≥`

n−1−a ≤ b′`−a,

and we conclude with Lemma 2.2.

2.3 Yule-Simon distributions

Recall that the slow and the steady regimes have been defined by (5) and (6),
respectively. Simon [24] observed that in each regime, the empirical measure of
the sizes of the blocks |Bj(n)| converges to a deterministic distribution.

Lemma 2.4. [Simon [24]] Let ρ > 0. For 0 < ρ < 1, consider the regime (5) of
slow innovation with exponent ρ, whereas for ρ > 1, set q = 1−1/ρ ∈ (0, 1) and
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consider the regime (5) of slow innovation with exponent ρ. In both regimes, for
every k ∈ N, we have

lim
n→∞

1

σ(n)
Card{j ≤ σ(n) : |Bj(n)| = k} = ρB(k, ρ+ 1),

where B is the Beta function and the convergence holds in Lp for any p ≥ 1.

The limiting distribution in the statement is called the Yule-Simon distri-
bution with parameter ρ. Strictly speaking, Simon only established the stated
converge in expectation. A classical argument of propagation of chaos yields
the stronger convergence in probability; see e.g. Section 5 in [4], and since the
random variables in the statement are obviously bounded by 1, convergence in
Lp also holds for any p ≥ 1.

The next lemma will be needed to check some uniform integrability proper-
ties.

Lemma 2.5. Let 0 < β ≤ ρ and assume either (i) or (ii) is fulfilled, where:

(i) ρ ∈ (0, 1) and the slow regime (5) holds with exponent,

(ii) ρ > 1 and the steady regime (6) holds with rate q = 1− 1/ρ.

Then

sup
n≥1

1

σ(n)

σ(n)∑
j=1

E(|Bj(n)|β) <∞.

Remark 2.6. Since B(k, ρ+ 1) ∼ Γ(ρ+ 1)k−(ρ+1) as k →∞, we have that

∞∑
k=1

kβρB(k, ρ+ 1) <∞

for any β < ρ, in agreement with Fatou’s lemma and Lemmas 2.4 and 2.5.

Proof. (i) Recall from Lemma 2.1 that in the slow regime, there are the bounds
n/c ≤ π(n) ≤ cn for all n ∈ N, where c > 1 is some constant. Since, from
Lemma 2.2,

E(|Bj(n)|) = π(n)/π(τ(j)) ≤ c2n/τ(j),

we get by Jensen inequality that

σ(n)∑
j=1

E(|Bj(n)|β) ≤ c2βnβ
σ(n)∑
j=1

τ(j)−β = O
(
nβσ(n)(τ(σ(n)))−β

)
,

where for the O upperbound, we used the fact that the inverse function τ of σ
is regularly varying with exponent 1/ρ (Theorem 1.5.12 in [9]), and Proposition
1.5.8 in [9] since −β/ρ > −1. On the other hand, since τ is the right-inverse of σ,
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we have τ(σ(n)) ≤ n ≤ τ(σ(n) + 1), so again by regular variation, τ(σ(n)) ∼ n.
Finally

σ(n)∑
j=1

E(|Bj(n)|β) = O(σ(n)),

as we wanted to verify.

(ii) The proof is similar to (i), using now that there exists c > 0 such that

E(|Bj(n)|2) ≤ c(n/j)2−2q for all j ∈ N and n ≥ τ(j),

as it is readily seen from Corollary 2.3.

3 Strong limit theorems

In this section, we will establish two strong limit theorems for step-reinforced
random walks, the first concerns slow innovation regimes, and the second steady
ones.

3.1 Ballistic behavior

Theorem 3.1. Suppose that

σ(n) = O(nρ) as n→∞,

for some ρ ∈ (0, 1), and that

P(|X| > x) = O(x−β) as x→∞,

for some β > ρ. Then

lim
n→∞

n−1Ŝ(n) = V ′ a.s.

where V ′ is some non-degenerate random variable.

We will deduce Theorem 3.1 by specializing the following more general result.

Lemma 3.2. Assume (7) and set

Γ∗j = sup
n≥τ(j)

|Bj(n)|/π(n), j ∈ N.

Provided that
∞∑
j=1

Γ∗j |Xj | <∞ a.s., (11)

we have
lim
n→∞

Ŝ(n)/π(n) = V a.s.,

12



with

V =

∞∑
j=1

ΓjXj .

Proof. Thanks to (11), the claim follows from (8) and Lemma 2.2 by dominated
convergence.

Proof of Theorem 3.1. Recall from Lemma 2.1(i) that π(n) ≈ n. From Lemma
3.2, it thus suffices to check that

∞∑
j=1

E
(
(Γ∗j |Xj |) ∧ 1)

)
<∞, (12)

since then, the condition (11) follows.

Without loss of generality, we may assume that β < 1. Pick a > 0 sufficiently
large so that

σ(n) ≤ anρ for all n ≥ 1

and
P(|X| > x) = ax−β for all x > 0.

Since Xj is a copy of X which is independent of Γ∗j , we have

E
(
(Γ∗j |Xj |) ∧ 1

)
=

∫ 1

0

P(Γ∗j |Xj | > x)dx ≤ a(1− β)−1E((Γ∗j )
β).

Recall from Lemma 2.2 that |Bj(·)|/π(·) is a closed martingale with terminal
value Γj . Then by Doob’s maximal inequality, there is some numerical constant
cβ > 0 such that E((Γ∗j )

β)) ≤ cβE(Γj)
β , and hence again from Lemma 2.2,

E
(
(Γ∗j |Xj |) ∧ 1

)
= O(τ(j)−β).

Finally, since τ(j) ≥ (j/a)1/ρ, we conclude that

E
(
(Γ∗j |Xj |) ∧ 1

)
= O(j−β/ρ) as j →∞,

which ensures (12).

3.2 Super-α-diffusive behavior

We next turn our attention to the steady regime.

Theorem 3.3. Suppose (6) holds with q < 1/2 and that

E(|X|β) <∞ and E(X) = 0,

for some β > 1/(1− q). Then

lim
n→∞

nq−1Ŝ(n) = V ′ in Lβ(P)

where V ′ is some non-degenerate random variable.
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The proof of Theorem 3.3 relies on the following martingale convergence
result.

Lemma 3.4. Assume (7) and let β ∈ (1, 2]. Suppose that X ∈ Lβ(P) with
E(X) = 0, and further that

∞∑
j=1

E(Γβj ) <∞. (13)

The process

Vn =

n∑
j=1

ΓjXj , n ∈ N

is then a martingale bounded in Lβ(P); we write V∞ for its terminal value. We
have

lim
n→∞

Ŝ(n)/π(n) = V∞ in Lβ(P).

Proof. The assertion that the process Vn is a martingale is straightforward since
the variables Xj are i.i.d., centered, and independent of the Γj . The assertion of
boundedness in Lβ(P) then follows from the assumption (13), the Burkholder-
Davis-Gundy inequality, and the fact that, for any sequence (yj)j∈N of nonneg-
ative real numbers, since β ≤ 2, ∞∑

j=1

y2j

β/2

≤
∞∑
j=1

yβj .

The convergence of Ŝ(n)/π(n) is proven similarly. Specifically, we observe
from (8) that

Vσ(n) − Ŝ(n)/π(n) =

σ(n)∑
j=1

(Γj − |Bj(n)|/π(n))Xj ,

and recall that the variables Xj are independent of those appearing in Simon’s
algorithm. By the Burkholder-Davis-Gundy inequality, there exists a constant
cβ ∈ (0,∞) such that

E
(∣∣∣Vσ(n) − Ŝ(n)/π(n)

∣∣∣β) ≤ cβE(|X|β)

σ(n)∑
j=1

E
(
|Γj − |Bj(n)|/π(n)|β

)
.

We know from Lemma 2.2 that for each j ≥ 1,

lim
n→∞

E
(
|Γj − |Bj(n)|/π(n)|β

)
= 0,

and further by Jensen’s inequality, that

E
(
|Γj − |Bj(n)|/π(n)|β

)
≤ 2βE

(
Γβj

)
.
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The assumption (13) enables us to complete the proof by dominated conver-
gence.

Proof of Theorem 3.3. It follows from (6) and Lemma 2.1(ii) that

τ(n) ∼ n/q and π(n) � n1−q, (14)

and then from Corollary 2.3 that E(Γ2
j ) � j−2+2q. Without loss of generality,

we may suppose β ≤ 2. Hence, by Jensen’s inequality, we have

∞∑
j=1

E(Γβj ) ≤
∞∑
j=1

E(Γ2
j )
β/2 <∞.

An appeal to Lemma 3.4 completes the proof.

4 Weak limit theorems

In this section, we will establish two weak limit theorems for step-reinforced
random walks, depending on the innovation regimes.

4.1 Super-ballistic behavior

Theorem 4.1. Suppose that X belongs to the domain of normal attraction of
a stable law (i.e. (1) holds) with index α ∈ (0, 1), and that (5) holds for some
ρ ∈ (α, 1). Then

lim
n→∞

σ(n)−1/αŜ(n) = Y ′ in law

where Y ′ is an α-stable random variable.

Under the assumptions of Theorem 4.1, the step-reinforced random walk
grows roughly like nρ/α, and since 1 < ρ/α < 1/α, its asymptotic behavior is
both super-ballistic and sub-α-diffusive.

Proof. Note first that, since ρ > α, nσ(n)−1/α goes to 0 as n → ∞, and a
fortiori so does |Bj(n)|σ(n)−1/α uniformly for all j ∈ N. We fix θ ∈ R and get
from (8) that for n sufficiently large

E(exp(iθσ(n)−1/αŜ(n))) = E

exp

− σ(n)∑
j=1

ϕ(θσ(n)−1/α|Bj(n)|)


We focus on the sum in the right-hand side, and first consider the terms with

|Bj(n)| ≤ k for some fixed k ∈ N. Write

∑
j:|Bj(n)|≤k

ϕ(θσ(n)−1/α|Bj(n)|) =
1

σ(n)

k∑
`=1

ϕ(θσ(n)−1/α`)σ(n)N`(n),
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where N`(n) = Card{j ≤ σ(n) : |Bj(n)| = `}. Next, recall from (4) that as
n→∞,

ϕ(θσ(n)−1/α`)σ(n) ∼ ϕα(θ`) = ϕα(θ)`α.

We now deduce from Lemma 2.5 that for any fixed k ∈ N, there is the conver-
gence

lim
n→∞

∑
j:|Bj(n)|≤k

ϕ(θσ(n)−1/α|Bj(n)|) = ϕα(θ)

k∑
`=1

`αρB(`, ρ+ 1) in Lp(P)

for every p ≥ 1.

We can next complete the proof by an argument of uniform integrability.
Recall that ϕ(λ) = O(|λ|α) as λ → 0 and pick β ∈ (α, ρ). There exists a > 0
such that for all n sufficiently large and all k ≥ 1, there is the upper bound∑

j:|Bj(n)|>k

ϕ(θσ(n)−1/α|Bj(n)|) ≤ ak
α−β

σ(n)

∞∑
j=1

|Bj(n)|β ,

and the same inequality holds with ϕα replacing ϕ. We can then deduce from
the preceding paragraph in combination with Lemma 2.5 that actually

lim
n→∞

σ(n)∑
j=1

ϕ(θσ(n)−1/α|Bj(n)|) = ϕα(θ)

∞∑
`=1

`αρB(`, ρ+ 1) in probability.

It now suffices to recall that <ϕ ≥ 0, so by dominated convergence,

lim
n→∞

E(exp(iθσ(n)−1/αŜ(n))) = exp

(
−ϕα(θ)

∞∑
`=1

kαρB(k, ρ+ 1)

)
,

which completes the proof.

4.2 α-diffusive behavior

Theorem 4.2. Suppose that X belongs to the domain of normal attraction
without centering of a stable law (i.e. (1) holds) with index α ∈ (0, 2], and that
(6) holds for some q ∈ (0, 1). Suppose further that q > 1 − 1/α when α > 1.
Then

lim
n→∞

n−1/αŜ(n) = Y ′ in law

where Y ′ is an α-stable random variable.

The proof of Theorem 4.2 requires the following uniform bounds

Lemma 4.3. Suppose (6) holds for some q ∈ (0, 1) and take any β ∈ (0, 1/(1−
q)). Then

lim
n→∞

sup
j≥1
|Bj(n)|n−1/β = 0 in probability.
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Proof. The claim is obvious when β < 1, so we focus on the case β ≥ 1. In
this direction, recall from Lemma 2.2 that |Bj(n)|/π(n) is a square integrable
martingale with terminal value Γj . Recall also from Lemma 2.1(ii) and Corollary
2.3, that in the regime (6), π(n) ≈ n1−q and E(Γ2

j ) � j2q−2. There is thus some
constant a > 0, such that for any η > 0 arbitrarily small, we have

P(|Bj(n)| > ηn1/β) ≤ aη−2n2−2q−2/βj2q−2. (15)

Suppose first that q < 1/2, so
∑
j≥1 j

2q−2 <∞ and therefore

∞∑
j=1

P(|Bj(n)| > ηn1/β) = O(n2−2q−2/β).

Since 1− q < 1/β, our claim follows.

Then suppose that q = 1/2; using
∑
j≤n j

−1 ∼ log n and |Bj(n)| = 0 for
j > n, we get

∞∑
j=1

P(|Bj(n)| > ηn1/β) = O(n1−2/β log n).

Since 1/β > 1/2, our assertion is verified.

Finally, suppose that q > 1/2; using
∑
j≤n j

2q−2 ≈ n2q−1 and |Bj(n)| = 0
for j > n, we get

∞∑
j=1

P(|Bj(n)| > ηn1/β) = O(n1−2/β).

Since again 1/β > 1/2, the proof is complete.

Lemma 4.3 enables us to duplicate the argument for the proof of Theorem
4.1, as the reader will readily check.

5 Miscellaneous remarks

• Technically, the fact that the indices of the steps at which innovations occur are
deterministic eases our approach by pointing right from the start at the relevant
quantities. Although our statements are only given for deterministic sequences
(εj), they also apply to random sequences (εj) independent of (Xj), provided of
course that we can check that the requirements hold a.s. A basic example, which
has been chiefly dealt with in the literature, is when the εj are i.i.d. samples of
the Bernoulli distribution with parameter q ∈ (0, 1), as then (6) obviously holds
a.s. Plainly independence of the εj is not a necessary assumption, and much less
restrictive correlation structures suffice. For instance, if we merely suppose that
each εj has the Bernoulli law with parameter qj such that

∑
n≥2 n

−2|
∑n
j=2(qj−
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q)| < ∞, and that |Cov(εj , ε`)| ≤ |j − `|−a for some a > 0, then one readily
verifies that (6) is fulfilled a.s. Similar examples can be developed to get slow
innovation regimes, for instance assuming that each variable εj has a Bernoulli
law with q(j) ≈ jρ−1 and again a mild condition on the correlation.

• Dwelling on an informal comment made in the Introduction, it may be in-
teresting to compare the step-reinforced random walk Ŝ(n) with its maximal
step X̂∗n = max1≤j≤n |X̂j |. Assume α ∈ (0, 2), and that P(|X| > x) ≈ x−α

(recall Section 2.1 about characterization of stable domaines of normal attrac-
tion). Plainly, there is the identity X̂∗n = X∗σ(n), where X∗n = max1≤j≤n |Xj |,
from which we deduce that σ(n)−1/αX̂∗n converges in distribution as n→∞ to
some Frechet variable. Comparing with the results in Sections 3 and 4, we now
see that in the slow regime with innovation exponent ρ ∈ (0, 1), Ŝ grows with
the same exponent as X̂∗ when α > ρ, and with a strictly larger exponent if
α < ρ. Similarly, in the steady regime with innovation rate q ∈ (0, 1), Ŝ grows
with the same exponent as X̂∗ when α > ρ = 1/(1−q) and with a strictly larger
exponent if α < ρ. In other words, the maximal step X̂∗ has a sensible impact
in the strong limit theorems of Section 3, but its role is negligible for the weak
limit theorems of Section 4.

•We have worked in the real setting for the sake of simplicity only; the argu-
ments work as well for random walks in Rd with d ≥ 2. In this direction, one
notably needs a multidimensional version of (4), which can be found in Section
2 of Aaronson and Denker [1]. The same sake of simplicity (possibly combined
with the author’s lazyness) motivated our choice of working with domains of
normal attraction rather than with domains of attraction. Most likely, dealing
with this more general setting would only require very minor modifications of
the present arguments and results.

• It would be interesting to complete the strong limit results (Theorems 3.1 and
3.3) and investigate the fluctuations n−1/α̂Ŝ(n)− V ′ as n→∞. In the setting
of the elephant random walk, Kubota and Takei [19] have recently established
that these fluctuations are Gaussian.

• The case where the generic step X has the standard Cauchy distribution
is remarkable, due to the feature that for any a, b > 0, aX1 + bX2 has the
same distribution as (a + b)X, where X1 and X2 are two independent copies
of X. It follows that n−1Ŝ(n) has the standard Cauchy distribution for all n,
independently of the choice of the sequence (εj). This agrees of course with
Theorems 3.1 and 4.2.
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