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IRAN : INTERFEROMETRIC REMAPPED ARRAY NULLING

Aristidi E.1, Vakili F.1 , Schutz A.1 , Lanteri H.1 , Abe L.1 , Belu A.1 , Gori
P.M.1 , Lardière O.2, Lopez B.3, Menut J.L.3 and Patru F.3

Abstract. IRAN is a method of beam-combination in the hypertele-
scope imaging technique recently introduced by Labeyrie in optical
interferometry. We propose to observe the interferometric image in the
pupil plane, performing multi-axial pupil plane interferometry. Imaging
is performed in a combined pupil-plane where the point-source intensity
distribution (PSID) tends towards a pseudo Airy disc for a sufficiently
large number of telescopes. The image is concentrated into the limited
support of the output pupil of the individual telescopes, in which the
object-image convolution relation is conserved. Specific deconvolution
algorithms have been developped for IRAN hypertelescope imagery,
based upon Lucy-like iterative techniques. We show that the classical
(image plane) and IRAN (pupil plane) hypertelescope imaging tech-
niques are equivalent if one uses optical fibers for beam transportation.
An application to the VLT/VIDA concept is presented.

1 Introduction (retravailler la fin)

The concept of densified pupil-hypertelescope introduced by Labeyrie (1996) is a
generalization of the classical Michelson periscopic set-up for stellar interferometry
(Michelson, 1920). The principle is to increase the relative pupil size of individual
telescopes (output pupil diameters normalized to the baselines) composing the in-
terferometer, to fill up the disc of the equivalent single dish telescope. This non
linear process modifies the classical object-image convolution relation for extended
sources larger than the Airy discs of individual telescopes. Thus the non-aberrated
imaging field of view can dramatically decrease with increasing so-called densifi-
cation factor γ (Gillet et al., 2003).

We recently proposed a multiaxial pupil-plane imaging technique (Vakili et al.,
2004) which is equivalent to Labeyrie’s hypertelescope technique with the extra
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bonus of conserving the convolution relation over a field limited to the super-
imposed pupilla of the primary telescopes. Images this way formed in the pupil
plane are similar to what can be expected at the focus of the giant equivalent tele-
scope, excepted that the field is spatially limited by the geometrical image of the
telescope pupils. This property is interesting in particular for exoplanet (ExPN)
observations: compared to coaxial Bracewell nulling interferometry (Bracewell,
1978), our concept presents the advantage of separating the ExPN energy from
the zodiacal emission of its parent star. The paper is organised as follows. In
section 2 we give the general formalism for object-image relation. In section ??

we focus on stellar companions detection and propose an apodisation technique
for reducing the main star PSID secondary peaks. In section 3 we propose a
deconvolution method for extended objects. Finally, in section 4 we discuss the
combination of the interferometer with a AIC-type nuller (Gay & Rabbia, 1996)
to perform high-dynamic exoplanet detection.

2 Principle of IRAN

Labeyrie’s hypertelescope concept (Labeyrie, 1996) is based on densifying the out-
put pupil of an interferometric array by conserving the primary telescope orienta-
tions respective to each other to form the equivalent of a single dish telescope with
a continuous surface. This is obtained for instance by re-imaging the output pupils
on a pyramidal beam combiner (Gillet et al., 2003). The resulting diffraction pat-
tern is formed by coherent addition of tilted Airy discs of individual telescopes.
It exhibits a complicated fringe modulated image which tends to the Airy disc
of the pseudo-densified aperture, thus resembling to a monolithic giant dish Airy
pattern. In the IRAN concept beam-combination is simply obtained by forming
tilted output pupils on the top of each other and record their interference on a
2D detector. The tilt given to each pupil is proportionnal to the position of the
telescopes on the ground (conformal geometry). As discussed hereafter, this can
be achieved by forming an intermediate image plane and using a lens to form the
interferometric pupil plane. Or by tilting the collimated beams from each tele-
scope so that they intersect and use lenses to form a geometric image of the pupil
at the intersection.

2.1 Technical implementation

To better understand the operating principle of IRAN it is useful to recall Michel-
son optical set-up for stellar interferometry (Fig. 1, left). In our two-telescopes
example, collimated beams are transported to the interferometric lab where out-
put pupils are formed, an a relay lens produces the interferometric image. The
fringe modulation does not depend on the spacing between the input telescope
pupil size but on the output pupils as seen from the focal superimposed Airy pat-
terns. In the Michelson set-up the basic convolution relation between the point
spread function and the object intensity distribution on the sky is lost (excepted
if the object is small compared to the diffraction limit of individual telescopes)
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Fig. 1. Principle of the Michelson (left) and IRAN (right) beam-combiner. In the Michel-

son setup, collimated beams coming from the telescopes are focused by a common lens

L2 in the image plane, producing a fringed Airy disc. Output pupil plane is schematised

by the two ellipses. In the IRAN setup, a lens focuses every collimated beam into an

Airy disc in the intermediate image plane P1. The same common lens L2 produces a

fringed pupil image in the pupil plane P2. The function descriving the intensity of the

fringe pattern is the same in both cases.

making image reconstruction from the measure of the complex visibility function
mandatory. The fringe intensity pattern is modulated by the Airy envelope.

The Michelson set-up can be further modified (Chelli & Mariotti, 1986) to
form the Airy discs of individual telescopes at an intermediate image plane, then
a relay lens which would form two superimposed and cosine-modulated output
pupils where the fringe period depends on the Airy disc pattern distance as seen
from the two superimposed pupils (Fig. 1, right). We name IRAN this set-up.
Now if much more than two beams were remapped from a large number of input
mirror segments the different period and orientation of the resulting cosine fringe
modulations will produce a central bright spot at the center of the conjugate
stacked pupil for an on-axis star.

Two beam-combination schemes could be envisaged in this case: a classical
bulky optical pyramidal shape mirror (Rousselet-Perraut et al., 1997) which gen-
eralizes the above set-up versus a fiber optics (F.O.) beam combiner (Mariotti
et al., 1996) with the bonus of modal filtering and an expected simplified beam-
combiner. In the case of F.O. combination, the field of view would be limited to
the Airy angular size of individual telescopes.
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Fig. 2. Geometry of the interferometer. The input-to-output reduction factor of the

distances between the telescopes is γ = Rk/rk. The same factor for the individual pupils

diameters is γd = d0/d1

2.2 On-axis point-source intensity distribution

The IRAN formalism has been discussed in previous papers (Vakili et al., 2004,
Aristidi et al., 2004), we will recall here the main results and compare them with

the Michelson set-up formalism. Let ~Rk the positions of the N telescopes on
the ground, P the input pupil function of the telescopes. These telescopes are
supposed identical, with diameter d0. We suppose that the incoming light is
monochromatic with wavelength λ. Let ~rk be the position of the center of the
optical beams after reconfiguration. We suppose that the geometry of the output
pupil is conserved and introduce the factor γ defined as ~Rk = γ~rk. We denote as
d1 and f1 the diameter and focal of the lenses making the adjacent Airy discs in
the intermediate focal plane P1. We denote as f the focal length of the lens L2

producing the interferometric image. The whole geometry is illustrated in Fig 2.
The intensity distribution of the output pupil expresses as

Po(~r) = p(~r) ∗
N

∑

k=1

δ(~r − ~rk) (2.1)

where p(~r) = P (γd~r) is the pupil function of each telescope after beam transporta-
tion and γd the input-to-output reduction factor of the individual pupils (we speak
about pupil densification if γd 6= γ). In the standart Michelson setup, the on-axis
PSID is then
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The IRAN PSID is (Vakili et al., 2004)
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Fig. 3. Optical layout of the IRAN 2-beams laboratory experiment (left), and recorded

interferometric image (fringed pupil) on the right.

These two expressions are the product of two terms: (i) an identical interference

function I0(~r) =
∣

∣

∣

∑N
k=1 exp− 2iπ

λf
(~r.~rk)

∣

∣

∣

2

depending only on the position of the

centers of the individual output pupils, and (ii) an enveloppe function that changes
with the setup: the pupil function of individual telescopes in IRAN setup, or its
Fourier transform in Michelson setup. This enveloppe constitutes the physical
limit of the field of view (FOV) of the interferometer.

Laboratory experiment

To validate the concept, we made a simple laboratory experiment for a 2-pupil
interferometer using laser light. The optical scheme is presented in Fig. 3: a laser
beam is enlarged by a 2-lens beam expanser, producing a collimated beam. Then,
with a 2-holes mask simulating the hypertelescope pupil, we realise 2 parallel
beams. A convergent lens and a periscope placed into each beam produces two
adjacent Airy discs in an intermediate image plane. Another common lens (above
mentionned L2) creates the interferometric image. Here it is simply a cosine-
modulated pupil. The result of this experiment is shown in Fig. 3. We obtained
two superposed pupils (not completely because of alignement problems) showing
interference fringes.

Case of a fiber optics beam combiner

We consider the case where the light incoming from the telescopes is injected into
monomode optical fibers, then transported to the interferometric lab. If one makes
the classical assumption that the wavefront at the exit of the fiber is flat with a
Gaussian shape, then the above formalism is unchanged. The only difference being
in the function p(~r) describing the outut pupil function of the individual telescopes,
which is now a Gaussian (in fact there is no more pupil plane in this case, and p(~r)
is simply the complex amplitude of the wave for each beam). Therefore, in IRAN
setup as well as in Michelson setup, the intensity distribution of the interferometric
image is a fringe modulated Gaussian (Fig. 4).
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intermediate
image plane
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Lens L2

Interferometric
image
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Fig. 4. Comparison of IRAN (left) and Michelson (right) setups for a fiber optics beam

transport.

ζ

tilted wavefront

d0

0 Ri

piston term : pi

angular position of the off−axis star

wavefront truncated by telescop pupil

telescope pupils

r

Fig. 5. Simulated observation of an off-axis point-source at a distance ζ from the center of

the field of view. On this one-dimensionnal configuration, each telescope is at a position

Ri. The corresponding complex amplitude on each pupil is the product of a piston term

exp 2iπζRi/λ by a tilt term exp 2iπζr/λ, r being the coordinate inside the pupil function.

2.3 The response for an off-axis point-source

We observe an off-axis point source of intensity O0 in the direction given by the
vector ~ζ = (α, δ) where α (resp. δ) is the offset in right ascension (resp. declination,

see fig. 5 for illustration). The incident flat wavefront is tilted with an angle ~ζ.
This wavefront is sampled by the N -apertures pupil. For each sub-pupil, the
products of two terms appear in the complex amplitude on the pupil: a piston
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term depending on the telescopes position

pi = exp
2iπ~ζ. ~Ri

λ
(2.4)

and a tilt term

t = exp
2iπ~ζ.~r

λ
(2.5)

where ~r is a position on the single telescope pupil. The piston term will be con-
served in the output pupil plane, regardless of the beam transort system (bulky
optics or fibers). The behaviour of the tilt term depends of the optical config-
uration. In case of bulky optics, the slope of the tilt will be multiplied by the
compression factor γd; the tilt in the output individual telescope pupils expresses
as

t′ = exp
2iπ~ζ.γd~r

λ
(2.6)

. In case of fiber optics beam transport, the tilt term simply vanishes, if the tilt is
small compared to the numerical aperture of the fiber, because of spatial filtering.

The piston term is responsible for a motion of the interference fringes in the
focal plane, in both Michelson and IRAN setups. It has the same effect that
putting a parralel glass plate onto one hole of a Fizeau 2-holes interferometer.
Note that the piston term has no effect on the enveloppe of the fringes.

In IRAN setup, the tilt term is responsible for an identical motion of all sub-
images in the intermediate image plane P1. It has no effect on the interferometric
image intensity distribution (it will multiply the enveloppe of the fringes by a
complex term which vanishes when taking the square modulus). Therefore the
enveloppe of the fringes does not move for an off-axis point source.

In Michelson setup, in the case of bulky optics, the tilt term is responsible for
a motion of the enveloppe of the fringes (Labeyrie, 1996). If γd 6= γ, the motion
speed of the fringes and the enveloppe are not the same.

In Michelson setup with a fiber optics beam transportation, the tilt vanishes
and the enveloppe no longer moves away of the optical axis. in that case the image
formation is similar to IRAN: a stable enveloppe in which the fringe system moves.

Vakili et al. (2004) derived the intensity distribution of the off-axis PSID of
the interferometric image in IRAN setup:

I2(~r) = O0Π(~r) . I0

(

~r − γf~ζ
)

(2.7)

Where Π(~r) =
∣

∣

∣
p
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−~r f1

f

)∣

∣

∣

2

is the enveloppe of the fringes. As for the on-axis

case, this term is a geometrical limitation of the field in the pupil plane. Within this
field, the function I2(~r) satisfies the property of translation invariance. Therefore,
as written hereafter, a pseudo-convolution relation will exist between the source
and its image. Note that this is valid also in Michelson fiber optics setup; the
difference being the function Π(~r).
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This is a fundamental difference with the bulky optics Labeyrie/Michelson
pupil-densified concept, where the fringes in the interferometric plane are shaped
by an enveloppe which shifts when the star moves away from the optical axis.
In this case both structures (fringes and enveloppe) moves at a different speed.
No convolution relation exists, unless the size of the object is small compared to
the individual Airy discs of the telescope (in that case the enveloppe motion is
neglectible and the two recombinations are equivalent).

2.4 Object-image relation

We now consider the general case of on object of brightness distribution O(~ζ). The
object-image relation writes as the pseudo-convolution (Vakili et al., 2004):

I2(~r) =

(

1

γf

)2

Π(~r)

[

I0(~r) ∗ 0

(

~r

γf

)]

(2.8)

Inside the boundaries delimited by the pupil function |P (~r)|2, we find the classical
convolution relation between the PSID and the object scaled by the factor γf .
This factor allows to convert a position x in meters in the focal plane into an
angle ζ = x

γf
in radian on the sky.

The object-image convolution relation of Eq. 2.8 is an interesting property for
imagery at the interferometer resolution. In the simple case of a double star, the
focal image is the sum of two PSIDs at a distance corresponding to the star and
its companion separation times the magnification factor and weighted by their
intensity ratio. Fig. 6 presents a simulation of an interferometric image obtained
with a 39 apertures hypertelescope pupil with bulky optics, in IRAN and Michelson
setups, for an on-axis and off-axis point source, and for a double star. The pupil
function (drawn on the left on the figure) is composed of 39 1 m diameter telescopes
observing at λ = 10µm. The telescopes are spread over 3 rings of diameters 120 m,
240 m and 380 m. (a) and (d) are the on-axis PSID for IRAN and Michelson setups.
The interference funnction in that case is very close to an Airy disc near the center
of the figure, then some speckle-like noise appears due to the incomplete coverage
of the equivalent giant single dish aperture. On the off-axis PSID (figures (b) and
(e)) the interference function has moved inside the enveloppe. One can see that in
the Michelson case, the space-invariance is not respected (the interference pattern
is no more symmetric). Figures (c) and (f) are a double star image with separation
50 mas and 1 magnitude difference.

3 Deconvolution

A deconvolution algorithm based on likelihood maximisation has been imple-
mented to invert the object image relation (eq. 2.8) and reconstruct the observed
object (denoted by x in this paragraph) from its image (y) and an estimation of
the PSID (made for example on a nearby reference star). The PSID is a truncated
(or partially hidden) image of the PSF h (h is the function I0 in eq. 2.8).
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Interferometer pupil
39 apertures

(a) (c)

(d) (f)(e)

(b)

Fig. 6. Simulation of interferometric images for a 39 telescopes pupil. Left: pupil func-

tion. (a) IRAN on-axis PSID. (b) IRAN off-axis PSID. (c) IRAN double star image. (d)

Michelson on-axis PSID. (e) Michelson off-axis PSID. (f) Michelson double star image.

The signal restoration problem consists in the reconstruction of the best es-
timate x from the knowledge of a blurred signal y contaminated by noise. In
our case we consider a photon noise process. The transformation suffered by x is
described by a convolution which can be written as:

ỹ(r, s) = B × [h(r, s) ∗ x(r, s)] (3.1)

with
∫∫

h(r, s)drds = 1 (PSF is supposed to be normalised). where ỹ(r, s) is
the noiseless blurred signal, h the PSF, x the object and B the circular mask
(pupil function). It is important to note that part of the signal is hidden after
the convolution. For example if the object is an unresolved star we only have the
PSID estimate B × h and the complete PSF h cannot be obtained. This is one
of the main difficulties of this inversion problem; in particular classical algorithms
such as Richardson-Lucy do not apply to this case.

For a photon noise process, the intensity in the pixel i is a random variable
which follows a Poisson law with mean Bi × [h ∗ x]i. The likelihood expresses as:

L(x) = p(y|x) =
∏

i

(Bi × [h ∗ x]i)
yi

yi!
exp−(Bi × [h ∗ x]i) (3.2)

The deconvolution algorithm is deduced from the split gradient method SGM
(Lanteri et al., 2002). The application to our problem gives the multiplicative
iterative algorithm:

x̂
(k+1)
i = mi + (x

(k)
i − mi)

[

h(−r,−s) ∗ y

h(r,s)∗x(k) + ε

h(−r,−s) ∗ B + ε

]

i

(3.3)
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Fig. 7. Polychromatic PSF simulation for a 39 telescopes interferometer. Left: the

complete PSF. Middle: the central part of the PSF, that can be estimated on a reference

star. Right: The Fourier transform of the PSF showing limited support.

of h (k+1)
Normalisation

of x (k+1)
Normalisation

PSF deconvolution
(k+1) (k+1)h        =G(x       ,h   )(k)

Object deconvolution
(k+1)x        =G(x   ,h   )(k)(k)

Data :
Object, PSID,
PSF model

Initial estimates:
x0 constant
h0 (PSID+constraints)

Constraints to PSF h

Fig. 8. Schematic representation of the iterative deconvolution algorithm. Both the

unknown object and the hidden part of the PSF are reconstructed by the algorithm.

where mi is the sky background and ε a small value used to avoid a division by
zero. After each iteration a constraint on the total intensity (due to the PSF

normalisation) is applied to x̂
(k+1)
i to obtain the (k + 1) estimate x

(k+1)
i

The first test we performed made use of the complete PSF h (inaccessible in
real observations). It appeared that the results were far better than those obtained
with the partially hidden PSID B × h. Therefore we modified the algorithm to
allow the reconstruction of the hidden part of the PSF as well as the object. This
reconstruction was possible because strong constraints apply on the PSF, allowing
its reconstruction using a Gerchberg-Saxton-Papoulis algorithm.

Constraints on the PSF

The complete PSF of the convolution relation (eq. 2.8) is the interference function

I0(~r) =

∣

∣
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N
∑
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exp−
2iπ

λf
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(3.4)
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Fig. 9. Result of deconvolution for a 39 telescopes interferometer. (a): object; (b):

observed blurred image with N = 1010 photons (N magnitude ' 6 for 1m telescopes and

20 s exposure time). (c): PSID (truncated PSF), supposed estimated on a close reference

star. (d): result of the deconvolution of the object; (e) is a comparison of the object and

the deconvolution result. (f) is the reconstructed PSF.

This function could in principle be computed analytically since the subaperture
positions ~rk in the output pupil are known. In practise instrumental and turbu-
lence effects could affect the PSF; we decided indeed to use this analytic model as
a first estimate. Three constraints were used in our algorithm:

1. Positivity

2. The PSF is known inside the boundaries of the enveloppe

3. The PSF has a calculable limited support in the Fourier plane. In mono-
chromatic light, its Fourier transform is a finite sum of Dirac delta functions.

Fig. 7 shows a simulation of the PSF for the 39 telescope pupil of the example of
Fig. 6 in polychomatic light (λ = 10µm, ∆λ = 2µm). The central part of the PSF
(in the middle), referenced in this paper as PSID, is known. Picture of the right is
the Fourier transform of the PSF, showing a clearly limited circular support. This
support is either calculated or estimated on the Fourier transform of the PSID
(both supports are the same).

The complete algorithm

We propose an algorithmic structure based on the descent algorithm presented
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(b)(a) (c)

(d) (e) (f)

Fig. 10. Image reconstruction simulation for the VLTI/VIDA instrumental setup. (a):

VLTI pupil. (b): interferometric image of the test object. (c): test object (triple star).

(d): theoretical PSF. (e): Reconstructed PSF after 50 000 iterations. (f): Reconstructed

object after 50 000 iterations.

above to reconstruct the object, as well as a Gerchberg-Saxton-Papoulis scheme
to reconstruct the hidden part of the PSF. It is represented on figure 8, and is
analogous to that proposed before (Lanteri et al., 1994, Ayers & Dainty, 1988) for
blind deconvolution with, in our case a very strong constraint on the PSF.

Preliminary results are presented in fig. 9 for the 39 apertures hypertelescope
already used for previous simulations. The test object is a centered Dirac delta
impulse (point-source) surrounded by two symmetric gaussians. The intensity
ratio between the central point-source and the gaussians is 10. The simulation is
made at high-light level, number of photons in the estimated object and PSID is
set to a value around 1010. The central wavelength is 10µm and the bandwith is
2µm.

The best reconstruction is attained after about 50 000 iterations. Smooth struc-
tures like the two gaussians are well reconstructed with a few iterations. The
central point-source needs further processing. In the reconstructed object, the
intensity ratio between the central Dirac and the gaussians is 8.8 (10 in the test
object). We also notice the presence of a faint (intensity is 1.5% of the maximum)
ghost ring at the cutoff location of the PSID. Further tests are currently being
performed on the algorithm.

Another application to the deconvolution algorithm has been performed in the
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Fig. 11. Simulation of double stars monochromatic images (λ = 10µm) in the pupil

plane with and without coronography. (a) gray-level plot of the intensity without AIC

for a magnitude difference of 5 and a separation of 10 mas (1/3 of the intererometer

resolution). The companion (not visible) is depicted by the white circle. (b) the same

with AIC (the dynamic of the plot has been reajusted) (c) intensity profiles along the

x-axis (solid line is with AIC, dotted line is without, maximum scaled to 1 for both

curves).

particular case of VLTI/VIDA: the 4-pupil hypertelescope composed by the 4 UTs
of the VLTI (Lardire et al., XXXX), using a single mode fiber beam combiner. In
this case, the enveloppe of the fringe pattern is a Gaussian and the PSID has no
longer a limited support. The algorithm has been adapted to that configuration
and first results are shown on Fig. 10 for a test triple star object (zero magnitude
difference between the stars) without photon noise. Pictures (e) and (f) show the
reconstructed objet and PSF after 50 000 iterations.

4 Nulling

Detecting very faint companions around a star becomes an optical challenge with
the increasing magnitude difference. For a ExPN such as 51 Pegb this difference is
of the order of 7 in N-Band. Various coronographic techniques have been proposed
(14 and references therein) to reject the energy of the on-axis star. The Achromatic
Interfero Coronograph (AIC) 5 appears as particularly suitable for ExPN detection
with the IRAN interferometric configuration. Total nulling of the light incoming
from an on-axis source can be achieved if the complex amplitude is a pair function
of space, i.e. for a symmetric telescopes configuration.

A numerical simulation has been performed in monochromatic light with a
symmetric telescope configuration composed of 36 apertures spread over 3 rings
(as in the previous section). We put 6 equally-spaced telescopes on the first ring,
12 on the second and 18 on the outer ring. The external diameter is 76 m, the
wavelength is 10 µm. Corresponding image plane P1 displays a set of 36 Airy discs
with the same geometry: in particular the complex amplitude is a pair function.
In that case, for a perfect wavefront the nulling effect is total.

Double star simulations are shown in Fig. 11 for two different separations be-



14 Title : will be set by the publisher

tween the components: a small separation of 10 mas (to be compared to the
interferometer resolution of 30 mas) and a large separation of 200 mas where the
companion falls inside the “dirty” zone of the main star’s image. It can be seen
that in both cases the secondary companion can be easily detected. Note that for
this simulation the magnitude difference is chosen to be 5, but since the on axis star
is fully nulled one would detect ExPNs for any magnitude difference for a perfect
wavefront through the whole atmosphere and interferometer+AIC -coronagraph
optics. Therefore technical set-up and atmospherical conditions will be the only
limitation to our proposed nulling concept. A study of the AIC performances can
be found in the litterature (Baudoz et al., 2000a, 2000b).

5 Discussion

The advantage of using a diluted array over a large monolithic mirror, assuming
the primary telescopes were mobile across the interferometric array (like the VLA
radio interferometer), is that the angular resolution of the interferometric array
could be adaptively changed to match the angular separation of a star and its
companion. A Fizeau-type is not however optimum in terms of sensitivity because
the coherent energy dilutes among more and more fringes with expanding baselines.
The alternative pairwise beam-combination is on the other hand inefficient when a
very large number of sub-apertures were to be recombined. All-in-one combination
of a large number of sub-pupils using IRAN approach is attractive because the
coherent energy concentrates in almost one pixel. Since the convolution relation
subsists across the output stacked pupils any extended object will produce a one-
to-one image inside that pupil, also optimum in terms of read-out and background
noise. The shortcoming of IRAN however is that for imaging applications only
a small central “clean-field” can be straightforwardly used. Even in this case
deconvolution techniques could be applied to get rid of side-lobe noise.

The fact that IRAN produces a pseudo-Airy pattern inside the output stacked
pupil arises the problem of central obscuration of the secondary mirror in a classical
Cassegrain-coudé set-up of the telescopes. Thus the central zone of IRAN’s field
of view is “blind” to the on axis component of the source which is imaged by the
interferometer. Off-axis primary telescope mirror combinations would therefore
be preferable to apply IRAN, a solution which is also desirable for thermal IR
interferometry to minimize background optics emission.

6 Conclusion

We have presented a beam-combination technique with remarkable imaging prop-
erties for high dynamic imaging with diluted optical arrays. By construction the
densified image and stacked-remapping technique from IRAN can be naturally
combined with the Achromatic Interfero-Coronagraph (Gay & Rabbia, 1996), par-
ticularly suitable for coronographic imaging and detection of ExPNs compared to
Labeyrie’s densified pupil.
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A number of questions remain open: the optimal beam combination, the effect
of degrading co-phasing on the IRAN focal image, the formal definition of corono-
graphic and/or nulling imaging of extended sources with IRAN. The fore-coming
studies and results will hopefully contribute to select the best beam-combination
of next generation imaging optical arrays like the VLTI or extension of already
opertaing imaging arrays like NPOI. However such arrays have not been originally
designed for densified imaging since their PSF exhibits strong secondary inter-
ference maxima due to their sparse and irregular input array configuration. It
is therefore mandatory that future synthesis arrays with a large number of pri-
mary telescopes such as the proposed antarctic intererometer KEOPS (Vakili et
al., 2004a, 2004b) involve an input baseline geometry which optimizes the PSID
for its application to imaging/nulling schemes such as our proposed method.
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