
HAL Id: hal-02480318
https://hal.science/hal-02480318

Submitted on 15 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Entropy Based Probabilistic Collaborative Clustering
Jérémie Sublime, Matei Basarab, Guénaël Cabanes, Nistor Grozavu, Younès

Bennani, Antoine Cornuéjols

To cite this version:
Jérémie Sublime, Matei Basarab, Guénaël Cabanes, Nistor Grozavu, Younès Bennani, et al.. En-
tropy Based Probabilistic Collaborative Clustering. Pattern Recognition, 2017, 72, pp.144-157.
�10.1016/j.patcog.2017.07.014�. �hal-02480318�

https://hal.science/hal-02480318
https://hal.archives-ouvertes.fr


See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/318316891

Entropy	Based	Probabilistic	Collaborative
Clustering

Article		in		Pattern	Recognition	·	December	2017

DOI:	10.1016/j.patcog.2017.07.014

CITATIONS

0

READS

40

6	authors,	including:

Some	of	the	authors	of	this	publication	are	also	working	on	these	related	projects:

COCLICO	(ANR	Project)	View	project

Clustering	in	Dynamic	Data	,	Detection	Concept	Change	in	Dynamic	Data	View	project

Basarab	Matei

Université	Paris	13	Nord

42	PUBLICATIONS			356	CITATIONS			

SEE	PROFILE

Guénaël	Cabanes

Université	Paris	13	Nord

55	PUBLICATIONS			205	CITATIONS			

SEE	PROFILE

Nistor	Grozavu

Université	Paris	13	Nord

52	PUBLICATIONS			82	CITATIONS			

SEE	PROFILE

Younès	Bennani

Université	Paris	13	Nord

185	PUBLICATIONS			810	CITATIONS			

SEE	PROFILE

All	content	following	this	page	was	uploaded	by	Jeremie	Sublime	on	08	August	2017.

The	user	has	requested	enhancement	of	the	downloaded	file.

https://www.researchgate.net/publication/318316891_Entropy_Based_Probabilistic_Collaborative_Clustering?enrichId=rgreq-3bceda673aa4c958ca9b8285a81a3613-XXX&enrichSource=Y292ZXJQYWdlOzMxODMxNjg5MTtBUzo1MjUwNjAxODY1NDIwODBAMTUwMjE5NTUxMTA2MA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/318316891_Entropy_Based_Probabilistic_Collaborative_Clustering?enrichId=rgreq-3bceda673aa4c958ca9b8285a81a3613-XXX&enrichSource=Y292ZXJQYWdlOzMxODMxNjg5MTtBUzo1MjUwNjAxODY1NDIwODBAMTUwMjE5NTUxMTA2MA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/COCLICO-ANR-Project?enrichId=rgreq-3bceda673aa4c958ca9b8285a81a3613-XXX&enrichSource=Y292ZXJQYWdlOzMxODMxNjg5MTtBUzo1MjUwNjAxODY1NDIwODBAMTUwMjE5NTUxMTA2MA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Clustering-in-Dynamic-Data-Detection-Concept-Change-in-Dynamic-Data?enrichId=rgreq-3bceda673aa4c958ca9b8285a81a3613-XXX&enrichSource=Y292ZXJQYWdlOzMxODMxNjg5MTtBUzo1MjUwNjAxODY1NDIwODBAMTUwMjE5NTUxMTA2MA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-3bceda673aa4c958ca9b8285a81a3613-XXX&enrichSource=Y292ZXJQYWdlOzMxODMxNjg5MTtBUzo1MjUwNjAxODY1NDIwODBAMTUwMjE5NTUxMTA2MA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Basarab_Matei?enrichId=rgreq-3bceda673aa4c958ca9b8285a81a3613-XXX&enrichSource=Y292ZXJQYWdlOzMxODMxNjg5MTtBUzo1MjUwNjAxODY1NDIwODBAMTUwMjE5NTUxMTA2MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Basarab_Matei?enrichId=rgreq-3bceda673aa4c958ca9b8285a81a3613-XXX&enrichSource=Y292ZXJQYWdlOzMxODMxNjg5MTtBUzo1MjUwNjAxODY1NDIwODBAMTUwMjE5NTUxMTA2MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universite_Paris_13_Nord?enrichId=rgreq-3bceda673aa4c958ca9b8285a81a3613-XXX&enrichSource=Y292ZXJQYWdlOzMxODMxNjg5MTtBUzo1MjUwNjAxODY1NDIwODBAMTUwMjE5NTUxMTA2MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Basarab_Matei?enrichId=rgreq-3bceda673aa4c958ca9b8285a81a3613-XXX&enrichSource=Y292ZXJQYWdlOzMxODMxNjg5MTtBUzo1MjUwNjAxODY1NDIwODBAMTUwMjE5NTUxMTA2MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Guenael_Cabanes?enrichId=rgreq-3bceda673aa4c958ca9b8285a81a3613-XXX&enrichSource=Y292ZXJQYWdlOzMxODMxNjg5MTtBUzo1MjUwNjAxODY1NDIwODBAMTUwMjE5NTUxMTA2MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Guenael_Cabanes?enrichId=rgreq-3bceda673aa4c958ca9b8285a81a3613-XXX&enrichSource=Y292ZXJQYWdlOzMxODMxNjg5MTtBUzo1MjUwNjAxODY1NDIwODBAMTUwMjE5NTUxMTA2MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universite_Paris_13_Nord?enrichId=rgreq-3bceda673aa4c958ca9b8285a81a3613-XXX&enrichSource=Y292ZXJQYWdlOzMxODMxNjg5MTtBUzo1MjUwNjAxODY1NDIwODBAMTUwMjE5NTUxMTA2MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Guenael_Cabanes?enrichId=rgreq-3bceda673aa4c958ca9b8285a81a3613-XXX&enrichSource=Y292ZXJQYWdlOzMxODMxNjg5MTtBUzo1MjUwNjAxODY1NDIwODBAMTUwMjE5NTUxMTA2MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nistor_Grozavu?enrichId=rgreq-3bceda673aa4c958ca9b8285a81a3613-XXX&enrichSource=Y292ZXJQYWdlOzMxODMxNjg5MTtBUzo1MjUwNjAxODY1NDIwODBAMTUwMjE5NTUxMTA2MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nistor_Grozavu?enrichId=rgreq-3bceda673aa4c958ca9b8285a81a3613-XXX&enrichSource=Y292ZXJQYWdlOzMxODMxNjg5MTtBUzo1MjUwNjAxODY1NDIwODBAMTUwMjE5NTUxMTA2MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universite_Paris_13_Nord?enrichId=rgreq-3bceda673aa4c958ca9b8285a81a3613-XXX&enrichSource=Y292ZXJQYWdlOzMxODMxNjg5MTtBUzo1MjUwNjAxODY1NDIwODBAMTUwMjE5NTUxMTA2MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nistor_Grozavu?enrichId=rgreq-3bceda673aa4c958ca9b8285a81a3613-XXX&enrichSource=Y292ZXJQYWdlOzMxODMxNjg5MTtBUzo1MjUwNjAxODY1NDIwODBAMTUwMjE5NTUxMTA2MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Younes_Bennani?enrichId=rgreq-3bceda673aa4c958ca9b8285a81a3613-XXX&enrichSource=Y292ZXJQYWdlOzMxODMxNjg5MTtBUzo1MjUwNjAxODY1NDIwODBAMTUwMjE5NTUxMTA2MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Younes_Bennani?enrichId=rgreq-3bceda673aa4c958ca9b8285a81a3613-XXX&enrichSource=Y292ZXJQYWdlOzMxODMxNjg5MTtBUzo1MjUwNjAxODY1NDIwODBAMTUwMjE5NTUxMTA2MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universite_Paris_13_Nord?enrichId=rgreq-3bceda673aa4c958ca9b8285a81a3613-XXX&enrichSource=Y292ZXJQYWdlOzMxODMxNjg5MTtBUzo1MjUwNjAxODY1NDIwODBAMTUwMjE5NTUxMTA2MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Younes_Bennani?enrichId=rgreq-3bceda673aa4c958ca9b8285a81a3613-XXX&enrichSource=Y292ZXJQYWdlOzMxODMxNjg5MTtBUzo1MjUwNjAxODY1NDIwODBAMTUwMjE5NTUxMTA2MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jeremie_Sublime?enrichId=rgreq-3bceda673aa4c958ca9b8285a81a3613-XXX&enrichSource=Y292ZXJQYWdlOzMxODMxNjg5MTtBUzo1MjUwNjAxODY1NDIwODBAMTUwMjE5NTUxMTA2MA%3D%3D&el=1_x_10&_esc=publicationCoverPdf


ARTICLE IN PRESS 

JID: PR [m5G; July 10, 2017;19:28 ] 

Pattern Recognition xxx (2017) xxx–xxx 

Contents lists available at ScienceDirect 

Pattern Recognition 

journal homepage: www.elsevier.com/locate/patcog 

Entropy based probabilistic collaborative clustering 

Jérémie Sublime 

a , b , ∗, Basarab Matei b , Guénaël Cabanes b , Nistor Grozavu 

b , Q1 

Younès Bennani b , Antoine Cornuéjols c 

a LISITE Laboratory, RDI Team - ISEP 10 rue de Vanves, 92130 Issy Les Moulineaux, France 
b Université Paris 13, Sorbonne Paris Cité, LIPN - CNRS UMR 7030 99 av. J-B Clément, 93430 Villetaneuse, France 
c UMR MIA-Paris, AgroParisTech, INRA Université Paris-Saclay, 75005 Paris, France 

a r t i c l e i n f o 

Article history: 

Received 17 December 2016 

Revised 24 April 2017 

Accepted 8 July 2017 

Available online xxx 

Keywords: 

Collaborative clustering 

EM algorithms 

Entropy based methods 

a b s t r a c t 

Unsupervised machine learning approa ches involving several clustering algorithms working together to 

tackle difficult data sets are a recent area of research with a large number of applications such as cluster- 

ing of distributed data, multi-expert clustering, multi-scale clustering analysis or multi-view clustering. 

Most of these frameworks can be regrouped under the umbrella of collaborative clustering, the aim of 

which is to reveal the common underlying structures found by the different algorithms while analyzing 

the data. 

Within this context, the purpose of this article is to propose a collaborative framework lifting the limi- 

tations of many of the previously proposed methods: Our proposed collaborative learning method makes 

possible for a wide range of clustering algorithms from different families to work together based solely 

on their clustering solutions, thus lifting previous limitation requiring identical prototypes between the 

different collaborators. Our proposed framework uses a variational EM as its theoretical basis for the col- 

laboration process and can be applied to any of the previously mentioned collaborative contexts. 

In this article, we give the main ideas and theoretical foundations of our method, and we demonstrate 

its effectiveness in a series of experiments on real data sets as well as data sets from the literature. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 1 

Data Clustering is a fundamental task in the process of knowl- 2 

edge extraction from databases that aims to discover the intrinsic 3 

structures in a set of objects by forming clusters that share similar 4 

features. This task is more difficult than supervised classification as 5 

the number of clusters to be found is generally unknown and con- 6 

sequently it is difficult to rate the quality of a clustering partition. 7 

Over the past two decades, this task has become even more chal- 8 

lenging when the available data sets became more complex with 9 

the introduction of multi-view data sets, distributed data, and data 10 

set having different scales of structures of interest (e.g. hierarchi- 11 

cal clusters). This increased complexity in an already hard problem 12 

makes it difficult for lone clustering algorithms to give competi- 13 

tive results with a high degree of confidence. However, very much 14 
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like in the real world, such problems can be tackled more easily 15 

by having several algorithms working together in order to increase 16 

both the quality of the results and their reliability. 17 

Approaches based on this idea of several algorithms working to- 18 

gether have been widely studied in the case of supervised learning 19 

[1–4] where they gave birth to the field of Ensemble Learning. 20 

Ensemble methods are easy to implement in supervised learn- 21 

ing for two reasons: First, it is straightforward to define a combi- 22 

nation of predictive functions to get an aggregated prediction func- 23 

tion (for instance, a linear combination is used in boosting). Sec- 24 

ond, it is simple to measure both the performance of individual 25 

prediction functions and the diversity of the set of the functions 26 

that are candidate for being part of the combined global decision 27 

function. Things are not so straightforward in unsupervised learn- 28 

ing. Here, each individual solution is a soft or hard partition of the 29 

data set. How to combine these partitions has no obvious answer. 30 

In cooperative clustering, each clustering algorithm produces 31 

its result independently. The final clustering is computed in a 32 

post-processing step, and the only exchange of information is 33 

about when the individual processes are completed, so that post- 34 

processing can start. In this case, a set of clustering algorithms are 35 

used in parallel on a given data set. Once all local computations 36 

http://dx.doi.org/10.1016/j.patcog.2017.07.014 
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are completed, a master algorithm takes control and combines the 37 

local results to get a hopefully better overall clustering. The reso- 38 

lution of the possible conflicts between the local solutions requires 39 

an algorithm that is able to compare results that may differ in their 40 

format (e.g. different numbers of clusters, different degrees of be- 41 

lief associated with the results, ...) and to find a consensus solu- 42 

tion that minimizes the overall violation to the local results. The 43 

cooperative framework is closely related to the ensemble meth- 44 

ods developed for supervised learning. In these approaches, a set 45 

of (diverse) classifiers is learned and the classification of new data 46 

points is obtained by taking a (weighted) vote of their predictions. 47 

Bayesian averaging can be considered as a precursor method. Nu- 48 

merous new ones have been developed, from error-correcting out- 49 

put coding to Bagging, and Boosting and their application in vari- 50 

ous domains have become routine with often good results. 51 

In collaborative clustering (The sequel of this paper), the group 52 

solves together problems defined and imposed by the central con- 53 

troller, affecting an individual task to each learner. Interactions are 54 

recurrent between team members, responsibility is collective, the 55 

action of each teammate is geared to the performance of the group 56 

and vice versa. By contrast to the cooperative clustering model, the 57 

collaborative model does not seek an overall hopefully better clus- 58 

tering of a given data set through the combination of individual 59 

solutions. In the collaborative framework, the goal is that each lo- 60 

cal computation, quite possibly applied to distinct data sets, ben- 61 

efits from the work done by the other collaborators. This can be 62 

done through the exchange of information about the local data, or 63 

the current hypothesized local clustering, or the value of one algo- 64 

rithm’s parameters. The validity of the approach rests on the as- 65 

sumption that useful information can be shared among the local 66 

tasks. This scheme leads naturally to distributed implementations 67 

of the computations, but unlike in the cooperative framework, it 68 

generally entails several iterations at each local node because con- 69 

vergence of the consensus solution requires several passes of the 70 

algorithm. Indeed, in addition to the problem of what information 71 

to exchange between collaborators, one question is how to mea- 72 

sure the evolution at each node and on a global level. 73 

There are many applications in unsupervised learning for which 74 

collaborative clustering can prove useful: 75 

• Multi-scale analysis : In this case several algorithms would be 76 

analyzing the same objects, all looking at the same features, 77 

but searching for a different number of clusters. That kind of 78 

analysis can be beneficial for data sets that have intrinsic multi- 79 

scale structures such as satellite images for which a lower level 80 

analysis of global landscape areas (urban areas, water bodies, 81 

forests) often helps to improve a higher level analysis of smaller 82 

details (trees, cars, houses, gardens, streets, etc.). 83 

• Multi-expert analysis : In this case, all algorithms would be 84 

working on the same objects and features of a difficult data 85 

set. Given the very high number of existing clustering algo- 86 

rithms, all more or less specialized and that may or may not 87 

give good results depending on the problem, trying several of 88 

them on a data set and having them exchanging their infor- 89 

mation could be justified: merging the informations on clusters 90 

found only by some clustering algorithms, refining the results 91 

based on clusters that are more or less well identified depend- 92 

ing on the method, etc. 93 

• Multi-view clustering [5,6] : Different algorithms process differ- 94 

ent types of attributes for the same objects. For example one 95 

algorithm for geometric attributes, one for text attributes, one 96 

for colors, one for numerical attributes, etc. The goal of the col- 97 

laboration in this case would be to have each attribute type 98 

processed by a specialized algorithm while giving these algo- 99 

rithms a more global picture of the data set by enabling some 100 

exchanges between them. 101 

• Clustering of distributed data [7] : The same objects have their 102 

attributes split on several databases that can’t exchange their 103 

data because of privacy issues. While the name is different, this 104 

is in fact very much equivalent to multi-view clustering. 105 

• Big Data Clustering [8] : Data sets that are too large or have too 106 

many attributes to be processed efficiently by a single algo- 107 

rithm may be easier to tackle once their attributes are split and 108 

processed by several algorithms. This type of clustering is use- 109 

ful in the area of Big Data analysis and would require a high 110 

degree of cooperation between the algorithms to get the global 111 

picture. 112 

As one can see, all these applications have a lot of similarities: 113 

we have several algorithms working on the same data or subsets of 114 

the same data, and that will or could at some point try to aggre- 115 

gate or to mutually exploit their respective results. While some of 116 

these applications could be considered a field of their own such as 117 

multi-view clustering or distributed clustering [5] , all of them can 118 

be classified as horizontal collaborative clustering frameworks [9– 119 

12] : several algorithms working on the same data eventually look- 120 

ing for a different number of clusters, and not necessarily having 121 

access to the same features. 122 

We generally distinguish between two types of collaborative 123 

methods [9,11] : Vertical collaboration encompasses all cases where 124 

several algorithms are working on different data that have similar 125 

clusters or distributions. And Horizontal collaboration deals with 126 

cases where several algorithms are collaborating on the same ob- 127 

jects, eventually described from different views. In this article, we 128 

are mostly interested in horizontal collaboration. 129 

Collaborative methods usually follow a two-step procedure [13] : 130 

1. Local step : Each algorithm will individually process the data it 131 

has access to and produce a local clustering partition. 132 

2. Collaborative step : The algorithms share their results and try to 133 

confirm or improve their models with the goal of achieving bet- 134 

ter clustering results. 135 

These two steps are sometimes followed by an aggregation step 136 

which aims at reaching a consensus with the final results after col- 137 

laboration. In this work we will not address the aggregation step 138 

because it is a field of its own, and that depending on the appli- 139 

cation it may not always be advisable to aggregate, for instance 140 

when the different views, sites or scales have conflicting partitions 141 

[14] . We will instead focus on the collaborative step where the al- 142 

gorithms exchange bits of information with a goal of mutual im- 143 

provement. 144 

From there, the main difference between what is traditionally 145 

referred as “clustering ensemble learning ” [15] and collaborative 146 

clustering is that clustering ensemble learning methods aim at 147 

finding a single consensus partition, while collaborative cluster- 148 

ing does not have this final goal. In short, the field of collabora- 149 

tive clustering is concerned with finding algorithms and functions 150 

that allow algorithms to share information and to improve their re- 151 

sults based on each other similarities, while the field of ensemble 152 

learning is more concerned with finding algorithms and methods 153 

to merge the solutions or find a consensus between them. Collabo- 154 

rative clustering can therefore be a task of its own (e.g. multi-view 155 

clustering where consensus is not always possible nor advisable), 156 

or a preliminary step to an ensemble learning task. The methods 157 

and techniques used by both fields are therefore naturally overlap- 158 

ping, and a good collaborative algorithm must respect properties 159 

that are very similar to these of a good ensemble learning method: 160 

• Robustness: The collaborative process must lead on average to 161 

partitions that are better than the local clustering results. 162 

• Consistency: The updated results must be somehow similar to 163 

the original local results. 164 
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• Novelty: Collaborative clustering must make it possible to find 165 

solutions that would have been otherwise unattainable locally. 166 

• Stability: Results that have a lower sensitivity to noise. 167 

Within this context, in this article we introduce a new and orig- 168 

inal framework for collaborative clustering that can be applied to 169 

the various types of unsupervised collaborative learning tasks that 170 

we have previously discussed. Our proposed method lifts off sev- 171 

eral limitations of previous ensemble learning and collaborative 172 

frameworks: the data need not be shared between the different 173 

algorithms, the number of cluster can be different between the al- 174 

gorithms, and very different types of algorithms can collaborate to- 175 

gether. 176 

The theoretical basis of our work is close from the work of 177 

Bickel and Scheffer on the estimation of Mixture Models using Co- 178 

EM [16,17] . Our proposed method differs from theirs in the fol- 179 

lowing points: in our case we are treating a broader context than 180 

multi-view clustering. Our method makes it possible for algorithms 181 

from different families to work together, and once again we do 182 

not have the limitation that all algorithms should be searching for 183 

the same number of clusters. We propose a variational version of 184 

their work for multi-view clustering based on the optimization of 185 

a different objective function. The core of our proposed approach 186 

is a different discretization process based on a particular class of 187 

a posteriori distributions called “combination functions ” presented 188 

in Section 3.4.1 . 189 

The remainder of this article is organized as follows: 190 

In Section 2 , we propose a state of the art in which we in- 191 

troduce some of the pioneer and earlier proposed methods and 192 

frameworks for collaborative learning with their strengths and 193 

weaknesses. 194 

In Section 3 , we introduce our proposed method for horizontal 195 

collaborative clustering. As stated previously, the method that we 196 

propose aims at being more generic than the previously proposed 197 

frameworks. We begin by explaining the principle of our method 198 

and its theoretical basis. Then we study the stopping criterion and 199 

parameters tuning of our algorithm. And finally, we demonstrate 200 

that our proposed method has good convergence properties similar 201 

to these of a EM algorithm. 202 

In Section 4 , we show some experimental results. We are mostly 203 

interested in showing some potential applications of our proposed 204 

method applied to multi-scale clustering and multi-view cluster- 205 

ing. 206 

Finally, this work ends with a conclusion and perspectives on 207 

future works. 208 

2. State of the art in collaborative clustering 209 

One of the first collaborative clustering algorithm was intro- 210 

duced in 2002 by Pedrycz [13,18] under the name “Collaborative 211 

Fuzzy Clustering ” (CoFC). This method was designed for the specific 212 

case of distributed data where the information cannot be shared 213 

between the different sites. This method was based on a modified 214 

version of the Fuzzy C-Means algorithm [19] . 215 

The main limitation of this approach is that it only enables 216 

Fuzzy C-Means algorithms to collaborate together, and furthermore 217 

some methods even require that all of them be looking for the 218 

same number of clusters. 219 

Similar approaches were used to develop several other 220 

collaborative-like methods CoEM [17] , CoFKM , [20] , and another 221 

collaborative EM-like algorithm [21] based on Markov Random 222 

Fields. 223 

All these algorithms display similar limitations: the objective 224 

functions and sometimes the number of clusters must be identi- 225 

cal for all exchanged information. This is due to the fact that they 226 

all try to optimize an objective function the form of which is: 227 

( S opt , �opt ) = Argmax 
( S , �) 

L g ( S , �) 

= Argmax 
( S , �) 

J ∑ 

i =1 

( 

L (X 

i | S i , �i ) −
∑ 

j � = i 
τ j,i · �(�i , � j ) 

) 

(1) 

where J is the number of collaborators, S contains all algorithm’s 228 

partitions, � their distributions parameters, L g ( S , �) is the global 229 

likelihood of the system, each L ( X 

i | S i , �i ) is the local log-likelihood 230 

of a collaborating algorithm, each �( �i , �j ) the “collaborative 231 

term ” is a custom pairwise penalty that compares the difference 232 

between the parameters or prototypes of two algorithms, and the 233 

τ j , i which do not exist in all methods are weights given to the 234 

collaborative penalties. The definition of the local term L ( X 

i | S i , 235 

�i ) based on which algorithms collaborate together makes the 236 

main difference between all these methods, while definition of the 237 

penalty �( �i , �j ) only slightly differs depending on the collabora- 238 

tive method. This later parameter is the limiting one since compar- 239 

ing prototypes and parameters requires that the algorithms have 240 

the same types of prototypes and some kind of mapping between 241 

the clusters of the different algorithms. 242 

The work of Pedrycz on the CoFC algorithm was also extended 243 

to be adapted to the Self-Organizing Maps (SOM) [11,22,23] and to 244 

the Generative Topographic Maps (GTM) [24] . 245 

In [23] , the classical SOM objective function is modified by 246 

adding a specific extra term for horizontal collaboration and a dif- 247 

ferent one for vertical collaboration. For the collaborative version 248 

of the GTM algorithm [24] , the principle is the same with the M- 249 

Step of the EM algorithm mapping the neurons to the final clusters 250 

being modified. 251 

One problem with these two methods is that they do not re- 252 

ally solve the main issue of collaboration between different types 253 

of algorithms since their model in once again analog to the one in 254 

Eq. (1) . Furthermore, while the number of clusters does not mat- 255 

ter in the case of the collaborative SOM and collaborative GTM, in 256 

both cases the maps must have the same number of neurons and 257 

be topologically similar to each other. This is actually even more 258 

restraining than a requirement on the number of clusters. 259 

The SAMARAH method [25,26] is another type of collaborative 260 

framework the strength of which is that it can deal with any kind 261 

of hard clustering algorithm and is not concerned with issues such 262 

as fitness functions, number of clusters, or prototypes. Unlike the 263 

previously introduced method, SAMARAH only handles horizon- 264 

tal collaboration due to the lack of prototypes, and was designed 265 

mostly for clustering applied to image data. Its goal is very simple: 266 

given J clustering results for the same data, the idea is to modify 267 

these results in an iterative and collaborative way with the aim of 268 

reducing their diversity in order to make the finding of a consen- 269 

sus solution easier. 270 

Once the results have been generated during the local step, the 271 

SAMARAH method maps the clusters of the different algorithms 272 

using probabilistic confusion matrices (PCM). Let S i and S j be two 273 

clustering results from two algorithms A 

i and A 

j looking for K i and 274 

K j clusters respectively. 275 

Then, the probabilistic confusion matrix (PCM) �i , j that maps 276 

the clusters from A 

i to A 

j is defined as shown bel ow: 277 

�i, j = 

⎛ 

⎜ ⎝ 

ω 

i, j 
1 , 1 

· · · ω 

i, j 
1 ,K j 

. . . 
. . . 

. . . 

ω 

i, j 
K i , 1 

· · · ω 

i, j 
K i ,K j 

⎞ 

⎟ ⎠ 

where ω 

i, j 

a,b 
= 

| S i a ∩ S j 
b 
| 

| S i a | (2) 

In Eq. (2) , S i a denotes the a th cluster of algorithm A 

i i.e., S i a = 278 

{ x ; x ∈ X i , x ∈ a by A 

i } and | S i a | is the number of data in this clus- 279 
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ter, and | S i a ∩ S 
j 

b 
| is the number of data linked to the a th cluster 280 

of A 

i and the b th cluster of A 

j at the same time. The PCM �i , j 281 

makes it possible to know whether or not the objects of two re- 282 

sults have been grouped in a similar way, or if the two clustering 283 

results are dissimilar. The matrix has a key role in the compari- 284 

son of two clustering results -such as detecting agreements and 285 

conflicts-, and has the major advantage of being independent from 286 

the clustering algorithm used to generate the results. 287 

The SAMARAH method uses this matrix to detect pairwise con- 288 

flicts between the different partitions and reduces them by or- 289 

der of perceived importance based on a conflict metric criterion 290 

[25] by splitting, merging, or removing clusters. Once the solutions 291 

have all been refined, and are consequently quite similar to each 292 

other, it proceeds with aggregating them using a process similar 293 

to a majority vote [27] . It is therefore a very complete framework 294 

that covers all 3 steps of local learning, collaborative learning and 295 

result aggregation and does not rely on users parameter . 296 

However, its conflict resolution system certainly is a weak 297 

point: it relies on a pairwise conflict criterion, and solves the con- 298 

flicts one by one by order of perceived importance, and it can lead 299 

to sub-optimal results. Finally, while it is also a strong point of the 300 

method, the fact that the algorithms parameters or prototypes do 301 

not play any role once the local step is over may constitute a weak- 302 

ness, in the sense that the local model is never rebuilt using the 303 

new partitions and does not play any active role in either the col- 304 

laborative step or the consensus step. 305 

3. Horizontal collaborative clustering guided by diversity 306 

3.1. Formalism 307 

In horizontal collaborative clustering we consider a finite group 308 

of algorithms A = {A 

1 , . . . , A 

J } that are working on the same data 309 

elements, albeit possibly with access to different features, and also 310 

possibly looking for a different number of clusters. No assumptions 311 

are made on the algorithms themselves. Let X = { x 1 , . . . , x N } , x n ∈ 312 

R 

d be a data set containing N elements, each of them with d real 313 

number features. 314 

Each clustering algorithm A 

i has its own parameters to describe 315 

either the clusters or its model, and produces its own clustering 316 

solution S i made of K i clusters, based on the features of the data 317 

set X 

i ⊆X it has access to. In the case of hard clustering, S i can be 318 

translated into a solution vector of size N , and for fuzzy clustering 319 

into a matrix of size N × K i . We denote this later matrix S i = (s i n,c ) , 320 

where 1 ≤ n ≤ N and 1 ≤ c ≤ K i . The solutions S i output by the algo- 321 

rithms are therefore two-dimensional matrices of size N × K i where 322 

each element s i n,c expresses the responsibility (probability) given 323 

by algorithm A 

i to a cluster c for the data element x n . 324 

Each algorithm A 

i computes the solutions S i , as usual by intro- 325 

ducing a latent discrete random vector Z i defined on some latent 326 

space with the range [1 , . . . , K i ] , hence computing the a posteriori 327 

distribution of the variable Z i conditionally on X 

i and S i . 328 

Finally, in order to quantify the degree of information coming 329 

from the collaboration, for a given algorithm A 

i , we will assume 330 

the existence of some weight τ j , i ∈ (0, 1), which measure the rel- 331 

ative external information from the algorithm j � = i accepted by A 

i . 332 

All weights τ j , i are stored in a square matrix of size J × J which 333 

therefore contains the strength of all collaboration links. Most no- 334 

tations used in this article are summed up in Table 1 bel ow. 335 

3.2. Problem formulation 336 

Within the context of horizontal collaboration that we have 337 

presented before, the method that we propose takes many ad- 338 

vantages of both prototype-based collaborative methods and the 339 

SAMARAH method, without their issues. 340 

Our goal in this section is to find a way to modify Eq. (1) so that 341 

the collaborative term will not depend on the prototypes. There- 342 

fore, we propose a likelihood function based on Eq. (3) which uses 343 

a global consensus term C ( S ) based on the partitions. The main dif- 344 

ferences with Eq. (1) are that we used a model based on partitions 345 

rather than prototypes, our proposed model is consensus based in- 346 

stead of divergence based, and we use a global term instead of a 347 

pairwise one. We chose this global model because unlike the pair- 348 

wise version, it does not require to assume that the algorithms are 349 

independent from each other (which is of course not true). 350 

In this model, λ∈ [0, 1] is a weight parameter to bal- 351 

ance between the local and collaborative term. The left term 352 ∑ J 
i =1 

L (X i | S i , �i ) is called the local term , and the right term λ · C ( S ) 353 

is the collaborative term. Note that the C ( · ) here stands for 354 

“consensus”: we have a collaborative term based on a consensus 355 

function. 356 

( S opt , �opt ) = Argmax 
( S , �) 

L g ( S , �) = Argmax 
( S , �) 

J ∑ 

i =1 

L (X 

i | S i , �i ) + λ · C( S ) 

(3) 

With this model, and using a collaborative term based on differ- 357 

ent a posteriori distributions instead of a collaborative term based 358 

on distributions parameters, our proposed model lifts off the limi- 359 

tation that only identical algorithms looking for the same number 360 

of clusters can work together. Furthermore, using our model even 361 

non-parametric algorithms -for which the distributions parameter 362 

�i can not be explicitly formulated- can be used in a collaborative 363 

setting since our model is based on the partitions (solution ma- 364 

trices or vectors) which are explicit for any clustering algorithm. 365 

The penalty factor λ> 0 regularizes the collaboration part. Please 366 

note that in [28] , the authors have demonstrated that there is a 367 

direct relation between reducing the divergences and maximizing 368 

the consensus under mild assumptions. Therefore, both strategies 369 

are equivalent. 370 

Analogously to Eq. (3) , our idea is to optimize a modified fit- 371 

ness of the log-likelihood function that considers both the local 372 

partitions and the information coming from the other algorithms’ 373 

solutions. By considering only the partitions S i and not the param- 374 

eters, very much like in the SAMARAH method [25,26] , we ensure 375 

that our model is both generic. 376 

As we will demonstrate in the next subsection, this change 377 

from �i to S i is made possible because we use an alternate maxi- 378 

mization procedure in which the partitions are computed from the 379 

prototypes and then the prototypes are updated based on the par- 380 

titions and the data. In short, the partitions can be seen as a dis- 381 

cretization of the distributions described by the prototypes. 382 

While this improvement will result in a more generic paradigm 383 

when it comes to horizontal collaboration, it is worth mentioning 384 

that removing the prototypes also makes vertical collaboration (al- 385 

gorithms collaborating on different data sets with similar clusters) 386 

impossible whereas some of the earlier methods covered this case 387 

of knowledge transfer between similar data sets [11,13,24] , albeit 388 

only between identical algorithms. 389 

To optimize (3) we use the Expectation Maximization ( EM ) 390 

strategy. The workflow in Algorithm (1) highlights how our al- 391 

gorithm can indeed be considered as an EM algorithm. During the 392 

E-Step, the partitions S are updated using fixed values for the dis- 393 

tributions parameters �. Then, during the M-Step, these parame- 394 

ters � are updated based on the new partitions. 395 

The exact form of the functional L g is explained in the next sec- 396 

tion, while the sopping criterion is detailed in Section 3.5 . 397 
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Table 1 

Notations. 

Notation Development Comment 

X i X i = { x i 1 , . . . , x i N } , x i n ∈ R d The subset of the data observed by algorithm A 

i 

X X = { X 1 , . . . , X J } The full data with all views 

�i The parameters describing the distributions observed by algorithm A 

i 

� � = { �1 , . . . , �J } The set of distributions parameters for all algorithms 

A 

i A 

i = { X i , S i , �i , K i } An algorithm looking for K i clusters of distribution parameters �i in the subset X i and finding a partition S i 

τ j , i τ j , i ∈ [0, 1] The weight of the collaboration from A 

j to A 

i 

s i n,c s i n,c ∈ (0 , 1) , 
∑ K i 

c=1 
s i n,c = 1 The responsibility given by algorithm A 

i to the cluster c ∈ [1.. K i ] for the data x i n 
S i S i = (s i n,c ) K i ×K i The partition found by algorithm A 

i . For fuzzy clusters, S i is a matrix. 

Z i Z i : �→ [1.. K i ] The latent random vector linked to the solutions of algorithm A 

i 

P ( Z i | X i , �i ) the a posteriori distribution of Z i conditionnally to X i and �i 

H See Eq. (16) The global entropy of the collaborative system for all algorithms 

ω 

i, j 

a,b 
ω 

i, j 

a,b 
= P(Z j n = b| Z i n = a, S , X , �) The percentage of data associated to cluster a by A 

i that belong in the cluster b of A 

j 

q q = { q 1 , · · · , q J } , ∀ i q i ∈ [1 ..K i ] A combination of clusters (see Section 3.4 ) 

g i ( q , c ) g i ( q , c ) ∈ (0, 1), c ∈ [1.. K i ] A consensus function assessing the likelihood of having q i = c knowing the rest of q 

Algorithm 1: Collaborative “EM ”. 

Initialize, t = 0 and �(0) with the local step 

while the global entropy H decreases do 

E-Step: S (t) = Argmax S L g ( S , �(t)) , 

M-Step: �( t + 1 ) = Argmax � L g ( S (t) , �) , 

t = t + 1 
end 

Return S (t) 

3.3. Objective function 398 

The fundamental question in horizontal collaborative setting is 399 

to find the right functional to optimize so that we can properly an- 400 

swer the problem of having several algorithms working together by 401 

exchanging their information with a goal of mutual improvement. 402 

To do so, we have the following constraints: We want a functional 403 

similar to Eq. (3) based on the partitions instead of distributions 404 

prototypes, where we attempt to bias each local solution S i t so that 405 

S i 
t+1 

takes into account the information from the other partitions 406 

without using any prototypes. The problem therefore consists in 407 

finding the right local and collaborative terms. 408 

Defining the local term is relatively easy and can be done us- 409 

ing any kind of likelihood function for probabilistic algorithms, and 410 

ad-hoc normalized quality criterion for other types of algorithms. 411 

The literature is also full of potential divergence and consensus 412 

functions between partitions for the collaborative term that mea- 413 

sure the divergence or consensus between two partitions (NMI, en- 414 

tropies, Rand Index, etc.). However, if we add the extra-constraint 415 

that the partitions are mostly non-binary and that Eq. (3) should 416 

be optimized in a reasonable amount of time, we face the follow- 417 

ing problem: For vector partitions of size N , most of these opera- 418 

tors have a complexity in O ( N 

2 ). Therefore, the final cost of updat- 419 

ing all partitions for the J algorithms looking on average for K̄ clus- 420 

ters would be equivalent to call these operators J × N × K̄ times, 421 

hence a final complexity of O ( N 

3 ) just to optimize the collabora- 422 

tive term. 423 

Since such complexity obviously does not scale well, in the re- 424 

mainder of this section we explain how we re-designed a likeli- 425 

hood function from scratch using a solid probabilistic model. Then, 426 

in Section 3.4 , we show how to optimize this new function with 427 

a low complexity of O ( N ). Very much like in Eq. (3) , we consider 428 

that the functional in the collaborative setting is decoupled into 429 

two different terms, the local term L ( S , �) computed from all lo- 430 

cal log-likelihood or quality indexes, and the collaborative term C ( S ) 431 

in the form of a global consensus function between the partitions. 432 

More precisely the global likelihood function writes: 433 

L g ( S , �) = L ( S , �) + λ · C( S ) , (4) 

where X is the observed variable, � the set of parameters and S = 434 

(S 1 , . . . , S J ) is the set of all partitions. 435 

In the first term L in Eq. (4) , just as in Eq. (3) , we express the 436 

log-likelihood of S based only on the local information and model 437 

of each algorithm taken individually and the data x n . We evaluate 438 

then the log-likelihood of the completed sample against the a pos- 439 

teriori distribution of (Z i | X i n , �i ) . 440 

L ( S , �) = 

J ∑ 

i =1 

N ∑ 

n =1 

P (Z i n | X 

i 
n , �

i ) · log P (X 

i 
n , Z 

i 
n | �i ) . (5) 

The second term of Eq. (4) is detailed in Eq. (6) . It is computed 441 

from the likelihood that each element x n be linked to the right 442 

cluster based on the other algorithms’ partitions and the choice 443 

of cluster for the same data in the local view. The difference be- 4 4 4 

tween the local likelihood and the likelihood based on the other 445 

algorithms gives us the collaborative term. This term C ( S ) therefore 446 

is the likelihood of S based on all the solutions. 447 

C( S ) = 

J ∑ 

i =1 

N ∑ 

n =1 

(
P (Z i n | X n \ X 

i 
n , S ) − P (Z i n | X 

i 
n , �

i ) 
)
· log P (X 

i 
n , Z 

i 
n | �i ) 

(6) 

Then using Eqs. (5) and (6) we obtain following a posteriori 448 

probability for the completed sample X i n , Z 
i 
n corresponding to al- 449 

gorithm A 

i : 450 

P (Z i n = c| X 

i 
n , �

i , S ) = (1 − λ) · P (Z i n = c| X 

i 
n , �

i ) 

+ λ · P (Z i n = c| X n \ X 

i 
n , S ) (7) 

Note that due to the lack of independence P (Z i | X n \ X i n , S ) is not 451 

tractable. Nevertheless, in the next section we show tractable up- 452 

date rules for the responsibilities. 453 

3.4. Update rules 454 

In this section, we will proceed with the practical description 455 

of the update rules for the responsibilities s i n,c so that we can ac- 456 

tually compute the partitions that are solutions of the functional 457 

from Eq. (7) . For fuzzy clustering we then infer that the update 458 

rule for the responsibility for all data x n and all cluster c from iter- 459 

ation t to iteration t + 1 during the E -step of Algorithm (1 ) is the 460 

following: 461 

s i n,c (t + 1) = (1 − λ) · s i n,c (t) 

+ λ ·
∑ 

q ∈ Q| q i = c 
P ( q | X n \ X 

i 
n , �t \ �i (t)) · P (Z i n = q i | q ) 

(8) 
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The first term s i n,c | t comes from the local partition, and is actually 462 

given by the a posteriori probability P (Z i n = c| x i n , �i (t)) for the data 463 

x n by using the Bayes rule. 464 

The second term is a key element in this paper: we have J al- 465 

gorithm running parallel, and each of these algorithm can assign 466 

the data x n to any cluster in [1.. K i ]. Let q = { q 1 , · · · , q J } , ∀ i q i ∈ 467 

[1 ..K i ] , q ∈ Q be one combination of cluster chosen by the J algo- 468 

rithms among all possible sets of combinations Q . Based on these 469 

notations, the collaborative term assess the likelihood of such com- 470 

bination q for the data x n based on all algorithms except the local 471 

algorithm A 

i , hence the notations X n \ X i n and �t ��i ( t ). Then the 472 

collaborative term asses the probability of having q i = c knowing 473 

the rest of the combination q . Since we are considering the case of 474 

fuzzy clustering, all possibles combinations in Q must be evaluated, 475 

hence the sum. 476 

To sum up, the second term sums all possibles combinations 477 

of clusters q ∈ Q where q i = c, then assess the probability of such 478 

combination for the data x n for the other algorithms. This proba- 479 

bility is then multiplied by the probability of q i = c knowing the 480 

other elements of the combination q . We will approach this sec- 481 

ond probability using a consensus function g i ( q , c) ≈ P (q i = c| q ) . 482 

Since Q the set of all possible combination grows exponentially 483 

large with the number of algorithms, and because most of the 484 

combination probabilities are very close to 0, we make the sim- 485 

plification of only considering the most likely combination q ∗n = 486 

Argmax q P ( q | X n \ X i n , �t \ �i 
t ) . 487 

Therefore the update rule (8) becomes: 488 

s i n,c (t + 1) = (1 − λ) · s i n,c (t) + λ · g i ( q 

∗
n , c) (9) 

where we remind that λ is a weight parameter between local and 489 

external information. 490 

As one can see from Eq. (9) , the discretization of our model 491 

leads to very simple update rules which require only the local 492 

likelihood proposed by each algorithm for the possibles clusters 493 

of each data, the partitions produced by all the algorithms, and a 494 

good combination function g i . This combination function, through 495 

which the algorithms will collaborate, has the key role of assess- 496 

ing the likelihood of a local decision based on the other algorithms’ 497 

partitions. 498 

Since the M-Step of our proposed algorithm only used infor- 499 

mation from the local term of the functional, the update rules are 500 

identical to these of the local algorithm in their non-collaborative 501 

version. For instance, in the case of a Gaussian mixture model, the 502 

mean , variance-covariance and mixing probabilities of each clusters 503 

are computed using the usual rules. 504 

3.4.1. Combination functions 505 

In this Section we give some example of a particular class of 506 

“combination functions ” that are tractable and can be used in our 507 

collaborative framework. 508 

First, we want to begin by explaining the intuitive meaning of 509 

g i as a consensus function: Given a partitioning problem processed 510 

in parallel by several algorithms (or a vote process in which several 511 

algorithms take part), g i ( q , c ) assesses the consensus or degree of 512 

compatibility of a cluster c from the algorithm A 

i with the group 513 

of clusters q = { c 1 , · · · , c j , · · · , c J } , j � = i from the other algorithms. 514 

Definition 1. A function g i : Q × [1 ..K i ] → [0 , 1] is a combination 515 

function for the algorithm i if it satisfies: 516 

1. g i ( q , c ) needs to increase strictly between 0 and 1 when the 517 

consensus between the different algorithms grows on the like- 518 

lihood of having q i = c for a given combination q . 519 

2. g i ( q , c ) needs to be normalized so that for any cluster combina- 520 

tion q that occurs at least once, we have: 
∑ 

c∈ [1 ..K i ] g 
i ( q , c) = 1 . 521 

3. When the algorithms have the exact same partitions and c = 522 

argmax q i s 
i 
n,q i 

, then: g i ( q ∗n , c) = 1 . 523 

Note that the properties of the combination function are nat- 524 

urally satisfied by any marginal of a probability density function 525 

defined on latent space. 526 

To be more precise on the computation and increasing property 527 

of g , let i be a fixed algorithm, be c a fixed cluster and q be a fixed 528 

cluster combination such that q i = c. The value g i ( q , c ) is computed 529 

by considering S the set of all partitions, in the following way: we 530 

compute the likelihood of q i = c with respect to all others choices 531 

q j , j � = i for the cluster c and a given partition S ∈ S . This likelihood 532 

is computed directly from the cardinality of the intersections of 533 

all involved clusters. We propose thereafter 3 possible combination 534 

functions abiding by the axioms exposed before. All have different 535 

strengths and weaknesses. They are shown in Eqs. (10) –(12) . 536 

g i ∩ ( q , c) = 

| ⋂ 

j � = i q i ∩ q j | 
| ⋂ 

j � = i q j | , q i = c (10) 

The formula from Eq. (10) assesses consensus between the local 537 

algorithm and the other algorithms divided by the consensus be- 538 

tween the other algorithms. This combination function is the one 539 

that should be picked in absence of the independence hypothe- 540 

sis between the different algorithms. This combination function is 541 

normalized, However it is costly to compute due to the K 

J possible 542 

intersections. It is also worthy to mention that this combination 543 

function does not allow to weight the influence of the different al- 544 

gorithms. 545 

g i + ( q , c) = 

1 

B 

∑ 

j � = i 
τ j,i 

| q i ∩ q j | 
| q j | = 

1 

B 

∑ 

j � = i 
τ j,i · ω 

j,i 
q j ,q i 

, q i = c (11) 

In Eq. (11) , making the hypothesis that all algorithms are in- 546 

dependent, we compute the mean pairwise consensus between 547 

the partitions, and in (12) the geometric mean consensus. In both 548 

Equations, the τ j , i are weights that can be set to different val- 549 

ues in order to change the influence of the algorithms on each 550 

other, and B is a normalization constant that is needed to respect 551 

axiom 2. Both equations are based on the same PCM Matrices 552 

� j,i = (ω 

j,i 
q j ,q i 

) (K j ×K i ) 
from the SAMARAH method described in Eq. 553 

(2) and which are relatively cheap to compute. Beyond the fact 554 

that both combination functions require a normalization, g ∗ also 555 

has the issue that it always returns 0 whenever one of the inter- 556 

section is null. 557 

g i ∗( q , c) = 

1 

B 

∏ 

j � = i 

( | q i ∩ q j | 
| q j | 

)τ j,i 

= 

1 

B 

∏ 

j � = i 

(
ω 

j,i 
q j ,q i 

)τ j,i 
, q i = c (12) 

Given that all 3 combinations functions have their pros and 558 

cons, picking one is context dependent. For instance, g i ∩ certainly 559 

is the most interesting one to have a global consensus combination 560 

function, but should be avoided with a large number of collabora- 561 

tors due to its complexity and is unpractical when weighting the 562 

collaborators is a requirement. Then g i ∗ has a behavior that is very 563 

close from g i ∩ with less computational complexity. Another advan- 564 

tage of g i ∗ is that it has a Bayesian interpretation if we assume the 565 

hypothesis that all partitions are independent. On the other hand 566 

g i + behaves a bit differently but it will not tend as fast towards zero 567 

when one or more intersections are null. Furthermore, both g i + and 568 

g i ∗ scale better with a large number of collaborators. Further dis- 569 

cussions on the complexity of these functions are available in sec- 570 

tion 3.5, and some experimental results are shown in Section 4.1 . 571 

Finally, as one can see, the 3 combination functions are in prac- 572 

tice based solely on the local clustering partitions and can be used 573 

regardless of the type of algorithm and the number of clusters it 574 

is searching for. This property is fundamental in the sense that it 575 

lifts off the previous limitations of collaborative frameworks allow- 576 

ing only algorithms of the same kind to work together and forcing 577 

them to search for the same number of clusters. Using these parti- 578 
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tion consensus functions is therefore a key element in making our 579 

method more generic than the previous ones. 580 

3.4.2. Algorithmic complexity 581 

We now want to discuss the complexity of our proposed 582 

method. To this end, let us consider J collaborators looking on av- 583 

erage for K clusters and working in together on a data set of size 584 

N . Then, we have: 585 

cpx = J ×
(
cpx (A (N, K)) + N × cpx (g) 

)
(13) 

where cpx (A (N, K)) is the average complexity of the collaborators 586 

and cpx ( g ) is the complexity of the chosen combination function. 587 

All three combinations functions have a complexity in O ( J × N ). 588 

However, using g + and g ∗ , the combinations functions’ values can 589 

be computed only once at the beginning of each iteration and 590 

stored in an array of size J 2 × K 

2 instead of being computed on the 591 

flight for each of the N data. Using this technique, the right com- 592 

plexity term involving the combination function disappears. How- 593 

ever, this is not an option with the function g ∩ where at best 594 

J × K 

J−1 values would have to be computed and stored. 595 

Therefore, using g + or g ∗ while storing the values in memory, 596 

the best possible complexity is: 597 

cpx min = J × cpx (A (N, K)) + O (J × N) (14) 

Otherwise, we have: 598 

cpx max = J × cpx (A (N, K)) + O (J 2 N 

2 ) (15) 

To conclude on the complexity of our proposed method: In the 599 

less favorable scenario using g ∩ without the independence hypoth- 600 

esis, or using a suboptimal version of g + or g ∗ , the collaboration 601 

adds complexity term in O ( J 2 N 

2 ). This term is therefore only neg- 602 

ligible when using algorithms the complexity of which is superior 603 

or equal to O ( N 

2 ). 604 

However, in the best case scenario using the optimized version 605 

of g + or g ∗ with the memory trade off, the collaboration adds a lin- 606 

ear complexity term in O ( N ). Considering that the best clustering 607 

algorithms also have a linear complexity, the loss of performance 608 

is negligible when compared with using the original clustering al- 609 

gorithms in parallel. Therefore, using fast algorithm, we can get a 610 

complexity in O ( N ) to optimize the functional in Eq. (7) . 611 

3.5. Stopping criterion 612 

The stopping criterion used by our algorithm is the probabilistic 613 

confusion entropy [29,30] as shown in Eq. (16) bellow: 614 

H = 

J ∑ 

i =1 

J ∑ 

j � = i 

−1 

K i × log (K j ) 

K i ∑ 

l=1 

K j ∑ 

m =1 

ω 

i, j 

l,m 

log (ω 

i, j 

l,m 

) (16) 

This entropy assess the pairwise divergences between the algo- 615 

rithms, and is equal to 0 when all algorithms have identical parti- 616 

tions, and 1 when there is a full disagreement. In short, H is the 617 

system global entropy under the conditions that all algorithms are 618 

independent. We chose to use this entropy because it uses the ω 

i, j 

l,m 

619 

from the probabilistic confusion matrix in Eq. (2) that we already 620 

compute for two of our combination functions g . As such, the en- 621 

tropy H is much less costly to compute than any other divergence 622 

or consensus measure in the literature. 623 

The justification that this entropy is a good stopping criterion 624 

is the following: from Eq. (6) , we know that the collaboration of 625 

algorithm A 

i with all the others collaborators can be measured by 626 

the difference between the cross entropy of the two distributions 627 

P ( Z i | X �X 

i , S ) and P ( Z i | X 

i , �i ), and the entropy of the distribution 628 

P ( Z i | X 

i , �i ). Therefore, the collaborative term is oppositely propor- 629 

tional to the system global entropy H. From there, since we use 630 

an EM-like optimization process the form of which is a local term 631 

minus a difference of two entropies , we know from the proof 632 

of the variational EM [31] that both involved entropies increase 633 

strictly, and therefore that their difference decreases. As such, the 634 

global entropy H is a is a valid stopping criterion. Furthermore, 635 

this type of entropic criterion is consistent with earlier studies that 636 

have shown the importance of diversity and entropy in collabora- 637 

tive clustering [32–34] . 638 

3.6. Setting the weights parameters 639 

We now want to discuss the role of the weighting parameter 640 

τ j , i . These parameters weight the strength of the collaborative link 641 

from an algorithm A 

j to an algorithm A 

i , and ultimately they de- 642 

termine the value of the parameter λi used as a weig ht between 643 

the local and the collaborative term. 644 

There are several techniques to set up these weights: 645 

• Arbitrarily setting the same value for all weights. While this is 646 

not the best method to avoid negative collaboration, it is cer- 647 

tainly the lest computationally expensive one and it is widely 648 

used in the literature [13,17,20] . It is this method that we used 649 

in this paper. 650 

• Using expert knowledge to set them up, for instance using 651 

quality and diversity criterion between the solutions [35] . This 652 

method can prove useful when expert knowledge is available 653 

or specific shapes are expected for the clusters, but it is biased 654 

towards certain types of algorithms. 655 

• Searching the weights that optimize the collaborative term 656 

when the partitions and parameters are fixed [24] . This method 657 

is very effective at reducing the risks of negative collaborations 658 

because it tends to favor the most stable solutions. However, it 659 

is also known to favor collaborations between already similar 660 

partitions, which also tend to reduce the overall performances. 661 

4. Experimental results 662 

Our experimentation will be separated in 4 distinct parts: in the 663 

first part we will demonstrate a practical calculation of the 3 com- 664 

binations functions g using an artificial data set with the goal of 665 

showing how the calculus is done in practice and also to demon- 666 

strate that all functions have a similar behavior. In the second part, 667 

a second experiment is proposed, in which we show the perfor- 668 

mances of our proposed method in term of collaborative power. In 669 

the third part, we show two comparative experiments: First, com- 670 

parison of our method with other state of this art collaborative and 671 

multi-view frameworks. And second, we propose an application of 672 

our method for the multi-scale analysis of image data in which we 673 

compare it with non-collaborative algorithms. Finally in part 4, we 674 

show the average computation times of our methods under various 675 

parameters. 676 

Offer settings that the other methods do not. 677 

4.1. Example of empirical calculi with the combination functions 678 

Let us consider an artificial data set X containing 81 observa- 679 

tions. We suppose that 3 algorithms are working on a multi-view 680 

analysis of this data set, each of them searching for 2 clusters. 681 

In Fig. 1 , we show the partitions found by each algorithm in a 2- 682 

dimension projection that is very convenient to visualize the prob- 683 

lem. 684 

The first algorithm (in red on the figure) is searching for two 685 

clusters { a ′ , a ′ ′ }, the second algorithm (in blue) is searching for the 686 

clusters { b ′ , b ′ ′ } and the third (in green) for { c ′ , c ′ ′ }. Due to the 687 

multi-view nature of this experiment, we can see that they find 688 

very dissimilar partitions. 689 
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Fig. 1. 2-dimension projection of 3 partitions of 2 clusters each, on a 81 observa- 

tions data set. The small numbers in the figure highlight the number of data in 

each intersection of clusters. 

Table 2 

Example of results for different combination functions. 

g red 
∩ ( q , a ′ ) = 

| a ′ ∩ b ′′ ∩ c ′ | 
| b ′′ ∩ c ′ | = 

2 
10 

= 0 . 2 

g red 
∩ ( q , a ′′ ) = 

| a ′′ ∩ b ′′ ∩ c ′ | 
| b ′′ ∩ c ′ | = 

8 
10 

= 0 . 8 

g red 
+ ( q , a 

′ ) = 

1 
B 

(
| a ′ ∩ b ′′ | 
| b ′′ | + 

| a ′ ∩ c ′ | 
| c ′ | 

)
= 

1 
Z 

(
20 
36 

+ 

7 
35 

)
≈ 0 . 38 

g red 
+ ( q , a 

′′ ) = 

1 
B 

(
| a ′′ ∩ b ′′ | 

| b ′′ | + 

| a ′′ ∩ c ′ | 
| c ′ | 

)
= 

1 
Z 

(
16 
36 

+ 

28 
35 

)
≈ 0 . 62 

g red 
∗ ( q , a ′ ) = 

1 
B 

(
| a ′ ∩ b ′′ | 
| b ′′ | × | a ′ ∩ c ′ | 

| c ′ | 
)

= 

1 
Z 

(
20 
36 

× 7 
35 

)
≈ 0 . 24 

g red 
∗ ( q , a ′′ ) = 

1 
B 

(
| a ′′ ∩ b ′′ | 

| b ′′ | × | a ′′ ∩ c ′ | 
| c ′ | 

)
= 

1 
Z 

(
16 
36 

× 28 
35 

)
≈ 0 . 76 

Table 3 

Example of results for different combination functions. 

g blue 
∩ ( q , b ′ ) = 

| a ′ ∩ b ′ ∩ c ′ | 
| a ′ ∩ c ′ | = 

5 
7 

= 0 . 71 

g blue 
∩ ( q , b ′′ ) = 

| a ′′ ∩ b ′′ ∩ c ′ | 
| a ′ ∩ c ′ | = 

2 
7 

= 0 . 29 

g blue 
+ ( q , b ′ ) = 

1 
B 

(
| a ′ ∩ b ′ | 
| a ′ | + 

| b ′ ∩ c ′ | 
| c ′ | 

)
= 

1 
B 

(
25 
45 

+ 

25 
35 

)
≈ 0 . 63 

g blue 
+ ( q , b ′′ ) = 

1 
B 

(
| a ′ ∩ b ′′ | 

| a ′ | + 

| b ′′ ∩ c ′ | 
| c ′ | 

)
= 

1 
B 

(
20 
45 

+ 

10 
35 

)
≈ 0 . 37 

g blue 
∗ ( q , b ′ ) = 

1 
B 

(
| a ′ ∩ b ′ | 
| a ′ | × | b ′ ∩ c ′ | 

| c ′ | 
)

= 

1 
B 

(
25 
45 

× 25 
35 

)
≈ 0 . 76 

g blue 
∗ ( q , b ′′ ) = 

1 
B 

(
| a ′ ∩ b ′′ | 

| a ′ | × | b ′′ ∩ c ′ | 
| c ′ | 

)
= 

1 
B 

(
20 
45 

× 10 
35 

)
≈ 0 . 24 

In Fig. 1 , we are interested in the data x n which has been as- 690 

signed to a ′ , b ′ ′ and c ′ by the 3 algorithms respectively. Let us sup- 691 

pose now, that we use our combination function g to see whether 692 

or not the decision of the first algorithm to put x n in the cluster 693 

a ′ makes consensus with the partition of the two other algorithms 694 

which put it in b ′ ′ and c ′ . In Table 2 , we show how to practically 695 

use the intersections of the clusters to compute g i ( q , a ′ ) and g i ( q , 696 

a ′ ′ ) with all 3 combination functions that we have introduced ear- 697 

lier (using τ = 1 ). The same experiment is done in Tables 3 and 698 

4 , to check the consensus on b ′ / b ′ ′ and c ′ / c ′ ′ respectively for the 699 

same data x n . 700 

The results are interesting in several ways: 701 

• First we have the confirmation that all 3 functions roughly be- 702 

have the same way and agree on the same most consensual 703 

clusters. 704 

• We can observe the complementary relationships between the 705 

different intersections. 706 

Table 4 

Example of results for different combination functions. 

g green 
∩ ( q , c ′ ) = 

| a ′ ∩ b ′′ ∩ c ′ | 
| a ′ ∩ b ′′ | = 

2 
20 

= 0 . 1 

g green 
∩ ( q , c ′′ ) = 

| a ′ ∩ b ′′ ∩ c ′′ | 
| a ′ ∩ b ′′ | = 

18 
20 

= 0 . 9 

g green 
+ ( q , c ′ ) = 

1 
Z 

(
| a ′ ∩ c ′ | 
| a ′ | + 

| b ′′ ∩ c ′ | 
| b ′′ | 

)
= 

1 
Z 

(
7 

45 
+ 

10 
36 

)
≈ 0 . 22 

g green 
+ ( q , c ′′ ) = 

1 
Z 

(
| a ′ ∩ c ′′ | 

| a ′ | + 

| b ′′ ∩ c ′′ | 
| b ′′ | 

)
= 

1 
Z 

(
38 
45 

+ 

26 
36 

)
≈ 0 . 78 

g green 
∗ ( q , c ′ ) = 

1 
Z 

(
| a ′ ∩ c ′ | 
| a ′ | × | b ′′ ∩ c ′ | 

| b ′′ | 
)

= 

1 
Z 

(
7 

45 
× 10 

36 

)
≈ 0 . 07 

g green 
∗ ( q , c ′′ ) = 

1 
Z 

(
| a ′ ∩ c ′′ | 

| a ′ | × | b ′′ ∩ c ′′ | 
| b ′′ | 

)
= 

1 
Z 

(
38 
45 

× 26 
36 

)
≈ 0 . 93 

• We have an empirical confirmation that g i ∗ is a very good ap- 707 

proximation of g i ∩ , while g i + leads to more flexible results. 708 

What we can observe from this experiment is that the com- 709 

binations functions that we have proposed serve their intended 710 

purpose and encourage changing the partitions in a way that will 711 

lower the diversity between the algorithms’ solutions. According to 712 

Tables 2–4 , the data x n should be moved to cluster a ′ ′ , b ′ and c ′ ′ in 713 

order to increase the consensus. 714 

However, one should keep in mind that these changes may only 715 

happen if the collaborative term is strong enough compared with 716 

the local term which we do not mention in this experiment. 717 

In the light of this first experiment that complete the study on 718 

the complexity of our algorithm performed in Section 3.5 , we think 719 

that the function g i ∩ should be favored when the data set is small 720 

enough to do the computations in a reasonable amount of time, 721 

and that otherwise g i ∗ should be favored over g i + because it is the 722 

best approximation. 723 

4.2. Multi-view collaborative clustering experiments 724 

4.2.1. Experimental setting 725 

In this experiment, we propose to evaluate our framework for 726 

collaborative multi-view clustering task. To this end, our experi- 727 

mental setting is the following: We considered the VHR Strasbourg 728 

(9 clusters), the Images (7 clusters), the WDBC (2 clusters) and 729 

the Spam Base (2 clusters) data sets in a multi-view setting where 730 

their attributes were split between different algorithms. 731 

In the list bellow we explain how we created our views by 732 

splitting the data sets depending on their attributes. 733 

• For WDBC: one view with only cell 1 (attributes 1 –10), one 734 

view with only cell 2 (attributes 11 –20), one view with only 735 

cell 3 (attributes 21 –30), three views combining theses (cells 1 736 

and 2, 1 and 3, 2 and 3). All 6 mentioned combinations using 737 

only appearance attributes only (texture, smoothness, compact- 738 

ness, fractal dimension), or only geometric attributes only (ra- 739 

dius, perimeter, area, concavity, concave points, symmetry). 740 

• For Image Segmentation: Region based attributes (attributes 1 – 741 

9), local attributes (attributes 10 –19), region-based + red at- 742 

tributes (attributes 1 –9, 11 and 14), region-based + green at- 743 

tributes (attributes 1 –9, 13 and 16), region-based + blue at- 744 

tributes (attributes 1 –9, 12 and 15), raw attributes only (at- 745 

tributes 1 –5, 11, 12 and 13), post-processed attributes only (6 – 746 

10 and 14 –19). 747 

• For Spam Base: Any random combination of 19 attributes 748 

among the 57 total attributes was considered a view. 749 

• For VHR Strasbourg: Geometric attributes only, radiometric 750 

attributes only, comparison with neighboring segments only, 751 

color attributes only (redundant with radiometric and compar- 752 

ison attributes), saturation and texture attributes only (also re- 753 

dundant with radiometric and comparison attributes). 754 

We invite you to see appendix A for details on the data sets. 755 

Given this setting, each view was first processed individually 756 

by a clustering algorithm (local step), and then they were all pro- 757 
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Table 5 

Multi-view collaboration improvement results on internal indexes. 

Data Set Simulations Silhouette Index DB-Index 

Average Improvement Min/Max Average Improvement Min/Max 

WDBC 100 × 10 
μ = 0 . 122 

σ = 0 . 057 

+0 . 241 

−0 . 09 

μ = −0 . 013 

σ = 0 . 011 

+0 . 042 

−0 . 036 

Imgseg 100 × 7 
μ = 0 . 091 

σ = 0 . 020 

+0 . 133 

−0 . 017 

μ = 0 . 102 

σ = 0 . 071 

+0 . 251 

−0 . 101 

Spam Base 100 × 5 
μ = 0 . 037 

σ = 0 . 026 

+0 . 081 

−0 . 122 

μ = 0 . 165 

σ = 0 . 129 

+0 . 440 

−0 . 106 

Battalia3 100 × 3 
μ = 0 . 025 

σ = 0 . 004 

+0 . 092 

−0 . 147 

μ = 1 . 375 

σ = 0 . 327 

+1 . 793 

−1 . 184 

MV2 100 × 4 
μ = 0 . 04 

σ = 0 . 008 

+0 . 083 

+0 . 01 

μ = 0 . 45 

σ = 0 . 08 

+1 . 320 

+0 . 02 

VHR Strasbourg 35 × 5 
μ = 0 . 027 

σ = 0 . 005 

+0 . 037 

−0 . 049 

μ = 0 . 377 

σ = 0 . 047 

+0 . 475 

−0 . 094 

cessed using our proposed collaborative method. To assess the effi- 758 

ciency of our method, we measured the results of 2 internal index 759 

and 1 external index before and after the collaborative step so that 760 

we could see whether or not the collaboration was beneficial. The 761 

indexes used are the Davies –Bouldin index [36] and the Silhouette 762 

index [37] for the internal indexes and the Adjusted Rand Index 763 

[38,39] for the external index. 764 

We justify the use of two internal indexes because they do not 765 

assess the same things: The Silhouette Index assesses whether or 766 

not each data is on average closer to the data from its own cluster 767 

than from the data of the other clusters, while the Davies-Bouldin 768 

index is a more direct measure of the compactness of the clusters 769 

around their centroids and whether or not they are well separated. 770 

This experiment was conducted with all collaborators having 771 

the same collaboration weights ( λ = 1 − 1 
J ). 772 

The algorithms used in the collaboration process were a mix of 773 

Fuzzy C-Means algorithms, EM algorithms for the Gaussian Mix- 774 

ture Model, plus the GTM algorithm [40] for Spam Base, and the 775 

SR-ICM algorithm [41] for the VHR Strasbourg data set. These algo- 776 

rithms were chosen for several reasons: 777 

• They have a random initialization which makes them non- 778 

deterministic and therefore interesting both from a collabora- 779 

tion point of view, and also to run a larger number of simula- 780 

tions without using always the same solutions. 781 

• They all have a solid convergence proof and will not hinder the 782 

convergence of the collaborative process. 783 

• Even if they don’t use the same prototypes and cannot ex- 784 

change directly on a prototype level, the fact that they are all 785 

prototype based makes it possible to use them directly in our 786 

collaborative framework without having to adapt them first. 787 

• In the case of the SR-ICM algorithm, it is one of the few avail- 788 

able algorithm specialized in pre-segmented high resolution 789 

satellite images. 790 

4.2.2. Results 791 

In Table 5 , we show the change in the internal indexes before 792 

and after collaborations. For readability purposes, the sign of all 793 

variations for the Davies-Bouldin index have been inversed so that 794 

all positive values mean improvement for both indexes. The results 795 

for the change in the Adjusted Rand Index are shown in Table 6 . In 796 

both tables, we indicate how many simulations were done, and the 797 

number collaborators is displayed in the “Simulations ” columns. 798 

For all indexes, we indicate the average improvement and its 799 

standard deviation, as well as the range of change in the consid- 800 

ered indexes in the “Min/Max ” column where we show the best 801 

improvement and worst deterioration achieved over all simula- 802 

tions. 803 

The first striking result from Table 5 is that the gain for the in- 804 

ternal quality indexes (Silhouette and Davies –Bouldin) has a lot of 805 

Table 6 

Multi-view collaboration improvement results on the adjusted Rand Index. 

Data Set Simulations Adjusted Rand Index 

Average Improvement Min/Max 

WDBC 100 × 10 
μ = 2% 

σ ≈ 0 

+3% 

−2% 

Imgseg 100 × 7 
μ = −2% 

σ ≈ 0 

+5% 

−2% 

Spam Base 100 × 5 
μ = 10% 

σ = 6% 

+22% 

−4% 

Battalia3 100 × 3 
μ = 6% 

σ = 1% 

+9% 

−2% 

MV2 100 × 4 
μ = −3% 

σ ≈ 0 

+2% 

−6% 

VHR Strasbourg 35 × 5 
μ = −8% 

σ = 5% 

+6% 

−20% 

variations. The explanation lies in the fact that while our proposed 806 

framework aims at improving all the results, in practice the best 807 

collaborators’ results are often negatively impacted by weaker al- 808 

gorithms. Nevertheless, we can see that the collaboration results 809 

for the Silhouette and Davies –Bouldin indexes remain positive on 810 

average, which tends to prove the robustness of our proposed col- 811 

laborative Framework. 812 

The second point highlighted by this experiment and that is 813 

very obvious in Table 6 is that our proposed collaborative frame- 814 

work does not solve the issue of achieving good results on external 815 

indexes (the Adjusted Rand Index here) with purely unsupervised 816 

clustering algorithms. The weaker performances achieved on the 817 

Adjusted rand index can be explained by two factors: 818 

First, without external knowledge, there is no reason for the 819 

collaborative process to converge toward the ground truth. The 820 

idea of adding external knowledge into our collaborative process 821 

may be considered in our future works. Second, in the case of the 822 

VHR Strasbourg data set, the ground expert truth contains 15 clus- 823 

ters covering only 90% of the data set, several of them very un- 824 

likely to be found by a clustering algorithm. As a consequence, the 825 

collaborative process only worsened the situations where the clus- 826 

tering algorithms found only a reduced number of clusters, there- 827 

fore boosting indexes such as the Davies –Bouldin index -which is 828 

very high for this data set- while severely worsening the results on 829 

the Adjusted Rand Index. 830 

4.3. Comparison with other methods 831 

4.3.1. Comparison with other collaborative algorithms 832 

In this section, we propose a comparison with other algorithms 833 

from the literature: we compare our method using several EM al- 834 

gorithms for the Gaussian mixture model collaborating together 835 

(with g + and λ = 0 . 5 ) with the multi-view EM algorithm, the col- 836 
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Table 7 

Experimental results. 

Dataset Our Model MV-EM GTM collab SOM collab 

Rand DB Rand DB Rand DB Rand DB 

Wdbc (2 clusters) 95.50 0.85 92.30 0.97 96.57 0.9 97.08 0.84 

SpamBase (2 clusters) 86.77 0.94 74.69 1.27 83.79 0.92 84.27 0.87 

Battalia3 (6 clusters) 80.00 2.43 77.37 2.83 78.04 2.68 78.75 2.51 

MV2 (4 clusters) 94.32 1.34 93.72 1.34 89.61 1.61 90.21 1.44 

VHR Strasbourg (9 clusters) 74.56 2.89 73.37 3.21 68.97 4.15 70.14 3.78 

laborative SOM algorithm [42] and the collaborative GTM algo- 837 

rithm [24] . 838 

All methods are used in a setting similar to the previous para- 839 

graph: the data sets are split in several views and each collabora- 840 

tive model is applied to all the views. Then, in Table 7 , we show 841 

the averable results achieved after collaboration for the Rand In- 842 

dex (Rand) and the Davies –Bouldin Index (DB). We remind that 843 

the Rand index is better when it is close to 1, and that the Davies –844 

Bouldin index is not normalized and better when smaller. 845 

As one can see, when comparing our proposed method with 846 

the Multi-view EM we can see that our method achieves better 847 

results. This is interesting because the only difference between our 848 

method and theirs is that the MV-EM is based on prototypes and 849 

our method is based on partitions. This proves the efficiency of 850 

our method. Regarding the other two methods, we can see that we 851 

achieve comparative results: prototype based algorithms do better 852 

on the WDBC and SpamBase dataset, and we do better with the 853 

other datasets. 854 

However, please note that comparing collaborative algorithms 855 

is very difficult and that these experiments may not be very sig- 856 

nificant to determine which method is more effective: for instance 857 

both the collaborative SOM and GTM algorithms only allow pair- 858 

wise communication during the collaboration process, while in our 859 

method and in the multi-view EM all algorithms communicate at 860 

the same time. Another difference is that unlike our method, the 3 861 

others have objective functions using prototypes instead of parti- 862 

tions which makes communication easier between algorithms but 863 

also restricts the collaboration between similar algorithms looking 864 

for the same number of clusters, hence why we decided to use 865 

only EM algorithms for our methods in order to have settings as 866 

similar as possible. Furthermore, the collaborative SOM and GTM 867 

algorithms computes topographic maps and not directly clusters. 868 

The partition can only be found by using the K-Means or EM al- 869 

gorithm on the final map, thus affecting the performances of both 870 

methods. Finally, when comparing a collaborative EM algorithm to 871 

a collaborative GTM algorithm, one can wonder if it is really the 872 

collaboration process that is evaluated, or the efficiency of the EM 873 

algorithm versus the GTM algorithm. For these reasons, the results 874 

of this section have to be taken with caution. 875 

4.3.2. Multi-scale collaborative clustering experiments 876 

4.3.2.1. Experimental setting. In this section, we propose an experi- 877 

ment in which we use our proposed collaborative framework for 878 

hierarchical clustering purposes. In very high resolution satellite 879 

images, depending on the scale the re may be different types of el- 880 

ements of interest: At the first level, we can usually distinguish 881 

three main types of objects, namely water areas, vegetation ar- 882 

eas and urban areas. At a second level we can separate differ- 883 

ent types of urban blocs, different types of vegetation areas, and 884 

start to distinguish elements such as roads. When zooming even 885 

more, very high resolutions images enable detecting small urban 886 

elements such as individual houses, cars, trees, or swimming pools. 887 

As one can see, there is an obvious hierarchical relationship 888 

between the different objects of interests that can be detected 889 

when searching for different numbers of clusters. However, the 890 

Table 8 

Experimental results: Hierarchical collaborative cluster- 

ing. 

Algorithm Davies –Bouldin Index Rand Index 

EM 3 2.36928 0.67454 

SR-ICM 3 2.32855 0.67606 

Co SR-ICM 3 2.32674 0.67435 

EM 6 2.88014 0.75867 

SR-ICM 6 2.67816 0.76935 

Co SR-ICM 6 2.49726 0.77068 

EM 9 2.62786 0.78225 

SR-ICM 9 2.94065 0.79063 

Co SR-ICM 9 2.58836 0.792187 

huge size of these data sets usually makes them ineligible for hier- 891 

archical clustering algorithms because of their high computational 892 

complexity. We therefore propose an experiment in which we use 893 

our collaborative Framework on several instances of the previously 894 

mentioned SR-ICM algorithm searching for 3, 6 and 9 clusters with 895 

access to all attributes. In this experiment, we use the g ∗ combina- 896 

tion function and λ = 

1 
2 . 897 

In our experiment, we compare our results with these of two 898 

other algorithms: the EM algorithm for the Gaussian Mixture 899 

Model [43] , and the regular SR-ICM algorithm [41] both looking 900 

for 3, 6 and 9 clusters. In Fig. 2 , we show the hierarchical clusters 901 

that we expected to find. The goal of the experiment is to demon- 902 

strate that our proposed collaborative method performs as best or 903 

better than local clustering methods working individually at dif- 904 

ferent scales, but also that is these hierarchical structures will be 905 

reflected in the PCM matrices, and that the collaborative process 906 

will strengthen them. 907 

The results were assessed using the Davies –Bouldin index as a 908 

an internal criterion. This index assesses the compactness of the 909 

clusters and how well they are separated. It is worth mentioning 910 

that the Davies –Bouldin index usually gives better results with less 911 

clusters. As for the external index, we used the Rand Index to com- 912 

pare our results with the expert ground truth. 913 

4.3.2.2. Results. The results of this experiments over a dozen sim- 914 

ulations for each algorithm are shown in Table 8 , where the best 915 

result for each number of cluster is highlighted in bold. 916 

As one can see, once again the results are non conclusive with 917 

the Rand Index where our method is not significantly better than 918 

the other. This was to be expected for the reason that like in the 919 

previous experiment, our collaborative framework does not have 920 

access to the expert ground truth and therefore cannot be expected 921 

to improve external indexes. However, we can see that we perform 922 

better than the other methods on the 6 and 9 clusters scale, with 923 

a much higher level of significance. The slightly lower performance 924 

on the 3 clusters scale can be explained by the fact that our col- 925 

laborative approach mimics hierarchical clustering both ascending 926 

and descending since the collaboration goes both ways. However 927 

the descending approach is far more beneficial to get a goo d hi- 928 

erarchy leading to spherical clusters centered around the mean of 929 
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Fig. 2. Expected hierarchical clusters. 

Fig. 3. Found hierarchical clusters. 

the parent cluster at the upper scale, and therefore our methods 930 

works much better at scales with more clusters. 931 

Finally, if when comparing the results with these of Table 7 , an 932 

interesting remark is that the multi-scale approach with all the 933 

data as we did it in this experiments leads to better results that 934 

the multi-view approach of the previous experiment. This was to 935 

be expected since having access to all the data plus different scales 936 

of clusters leads to more information than just collaborating on 937 

partial views of the data. 938 

In Fig. 3 , we show the hierarchical structures extracted from the 939 

PCM matrices of our method. As one can see, there are some dif- 940 

ferences with the expected clusters from Fig. 2 , that we have high- 941 

lighted in red. In particular, we note that the hierarchical structure 942 

is not perfect with some classes covering each other. More inter- 943 

estingly there seem to be a confusion several blue elements of the 944 

image (namely individual houses with blue roofs and water) which 945 

may hint that the color attributes remain the dominant ones in the 946 

formation of the clusters when not using a multi-view approach. 947 

4.4. Computation times 948 

In Table 9 , we show the average computation times achieved 949 

by our algorithm with different data sets given different numbers 950 

of collaborators and the two types of combination function. We 951 

used a C++ implementation of our method, running on a i5-3210M 952 

2.5 GHz processor under a 64 bits version of Microsoft Windows 8. 953 

The collaborative framework was not parallelized during these test 954 

runs, and the computation time are including both the computa- 955 

tions times of local step and the collaborative step. 956 

In all experiments including this one, the collaborative step 957 

of our proposed method takes on average 8 –10 iterations before 958 

reaching a stable global entropy. This number gets slightly lower 959 

when there are only 2 or 3 collaborators with very close solutions 960 

Table 9 

Computation times. 

Data Set Computation time / number of collaborators 

2 3 5 7 10 

WDBC g ∩ 7s 15s 45 s 77s 3 min 

ImgSeg g ∩ 2 min 5 min 13 min 27 min 52 min 

Spam base g ∩ 6 min 17 min 42 min 1 h 38 4h 

WDBC g ∗/g + 2 s 3 s 6 s 8 s 13 s 

ImgSeg g ∗/g + 9 s 16 s 27 s 34 s 46 s 

Spam base g ∗/g + 56 s 1 min 25 2 min 23 3 min 18 4 min 27 

VHR Strasbourg g ∗/g + 24 min 37 min 1 h 04 1 h 28 2 h 

at the end of the local step, but remains mostly stable when the 961 

number of collaborators or the diversity between the initial solu- 962 

tions increases. 963 

As one can see in Table 9 , the g ∗ combination function is much 964 

faster than the exact combination function g ∩ , and the computa- 965 

tion times then increase with the number of clusters and the com- 966 

plexity of the data sets. Please note, that the computations times 967 

for g ∩ with the VHR Strasbourg data set are not complete due to 968 

overly long computation times. 969 

5. Conclusion 970 

In this article, we have proposed a new collaborative framework 971 

that enables various algorithms to mutually improve their results. 972 

Our main contribution is that our proposed method allows algo- 973 

rithms of different types to work together regardless of the num- 974 

ber of clusters they are searching for. The strength of our approach 975 

is that it needs neither the subsets, nor the prototypes, or the 976 

models used by the different algorithms to be shared during the 977 

collaboration step: only the solution vectors produced by all algo- 978 

rithms need to be shared. 979 
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Our framework is therefore more generic than previously pro- 980 

posed methods for horizontal collaboration in a sense that it has 981 

much less restrictions in terms of which algorithms can collaborate 982 

together. The cost of this more generic context is that our method 983 

cannot deal with vertical collaboration whereas some early meth- 984 

ods could. 985 

The optimization process behind our method is based on the 986 

variational EM, and optimizes a collaborative term which is equiv- 987 

alent to an entropy, thus ensuring good convergence properties. 988 

Our framework has been tested on several data sets in a multi- 989 

view, a multi-experts and a multi-scale collaborative clustering 990 

contexts. Our results have validated the efficiency of our approach 991 

in bringing improvements to clustering solutions via collaboration. 992 

Furthermore, these experiments have highlighted that our method 993 

can find a large number of applications such as multi-view clus- 994 

tering, clustering of distributed data and hierarchical multi-scale 995 

clustering. 996 

In our future works, we will focus on improving the overall col- 997 

laboration process by weighting differently the influence of the dif- 998 

ferent collaborators towards one another depending on quality and 999 

diversity measures. By doing so our goal will be to reduce cases of 10 0 0 

negative collaboration. 1001 
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Appendix A. Data sets 1005 

A1. VHR Strasbourg data set 1006 

The VHR Strasbourg 1 data set [44] contains the description of 1007 

187.058 segments extracted from a very high resolution satellite 1008 

image of the French city of Strasbourg. The original image covers 1009 

an area of approximately 4 × 5 km with one pixel being equivalent 1010 

to a (10 cm ) 2 area. The original image then went through the fol- 1011 

lowing process: 1012 

• It was corrected for distortion effects and issues due to the 1013 

satellite angle. 1014 

• Then, a first segmentation was done using the software eCog- 1015 

nition. 1016 

• The first segmentation was corrected to merge small neighbor- 1017 

ing segments that were too similar. This operation led to the 1018 

187.058 final segments. 1019 

Each segment is described by numerical 27 attributes, as well 1020 

as a 28th column containing the IDs of neighbor segments. The 1021 

first 27 attributes contain different types of features describing the 1022 

segments: Radiometric features from the original image (bright- 1023 

ness, colors, hue, saturation, min/max pixel values, etc.), geomet- 1024 

ric features (shape, size, coordinates, skewness, orientation, border 1025 

length, circular mean, etc), comparison features with neighboring 1026 

segments (contrast, number of brighter objects, number of darker 1027 

objects, min difference to neighbors, etc.). 1028 

As one can see, this data set is good for multi-view clustering 1029 

by construction due to the different types of available features. But 1030 

because of the very high resolution of the image, it can also be 1031 

used for multi-scale clustering. Indeed different scales of interest 1032 

are available: From only 3 clusters (vegetation, water areas and ur- 1033 

ban area), to a large number of clusters on urban elements (trees, 1034 

cars, individual pools, roads, individual houses, etc.). All scales in 1035 

between can be studied depending on the considered number of 1036 

clusters. 1037 

1 Available from Dr. J. Sublime ResearchGate account. 

Finally, we would like to mention that the VHR Strasbourg data 1038 

set was provided with a partial hybrid ground truth containing 15 1039 

classes [41] . The process to build the ground truth was the follow- 1040 

ing: 1041 

• Expert geographers determined 15 classes of interest. 1042 

• Using on-field observations, Google Maps and city plans, they 1043 

labeled a high resolution map of the city. 1044 

• The expert map was projected on the VHR Strasbourg segmen- 1045 

tation so that each segment was given a label using a majority 1046 

vote based on percentage of covering. 1047 

• The 10% of the segments being on the German side of the bor- 1048 

der are not covered by this ground-truth. 1049 

While we are ware that this hybrid ground-truth is not with- 1050 

out flaws, the visual results seemed good enough to use it as a 1051 

reference for our external indexes when conducting experiments 1052 

using the VHR Strasbourg data set. Furthermore, from the 15 orig- 1053 

inal classes we merged a few that could not possibly be detected 1054 

by a unsupervised algorithm (e.g. winter crops and summer crops, 1055 

more than 50 ha vegetation and more than 10 ha vegetation, etc.) 1056 

and ended up with 9 classes. 1057 

A2. Other data sets 1058 

Several data sets used in this article are from the UCI repository 1059 

[45] : 1060 

• Wisconsin Diagnostic Breast Cancer (WDBC): This data set con- 1061 

tains 569 instances having 30 parameters and 2 classes. These 1062 

30 parameters contain 10 descriptors for 3 different cells of 1063 

the same patient. And these descriptors can themselves be split 1064 

into geometric and other appearance based attributes, therefore 1065 

making this data set also good for multi-view. 1066 

• Image Segmentation data set (ImgSeg): The 2310 instances of 1067 

this data set were drawn randomly from a database of 7 out- 1068 

door images. The images were hand segmented to create a clas- 1069 

sification for every pixel. Each instance is a 3 × 3 region repre- 1070 

sented by 19 attributes and there are 7 classes to be found. The 1071 

19 attributes are either color-based (sub-divised into red, green 1072 

and blue attributes), position based (row, column, pixel count), 1073 

or other color attributes (contrast, hue, etc.) 1074 

• Spam Base : The Spam Base data set contains 4601 observa- 1075 

tions described by 57 attributes and a label column: Spam or 1076 

not Spam (1 or 0). The different attributes can be split into 1077 

word frequencies, letter frequencies and capital run sequences 1078 

attributes. 1079 

We also used two artificial data sets: 1080 

• The Battalia3 data set 2 (artificial): Battalia3 is an artificial 1081 

dataset created using the exoplanet random generator from the 1082 

online game Battalia.fr; This data set describes 20 0 0 randomly 1083 

generated exoplanets with 27 numerical attributes and their as- 1084 

sociated class (6 classes). The attributes can be split between 1085 

system and orbital parameters (7 attributes), planet charac- 1086 

teristics (10 attributes) and atmospheric characteristics (10 at- 1087 

tributes). 1088 

• The “MV2 ” data set (artificial): A data set created specifically 1089 

to test this kind of algorithm. It features 20 0 0 randomly gener- 1090 

ated data, split into 4 views of 6 attributes each, and a total of 4 1091 

classes. All attributes were generated either from Gaussian dis- 1092 

tributions with parameters linked to the matching class, or are 1093 

random noise, or are linear combinations of other attributes. 1094 

2 Available from Dr. J. Sublime ResearchGate account. 
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