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2 WG3 - Resource Aware Distributed

Knowledge Discovery

João Gama and Antoine Cornuéjols

2.1 The challenge of ubiquitous computing

Two major technological evolutions have the potential to deeply modify our
relationship with our environment:

• With the advent of widely available and cheap computer power, inanimate
things are coming to life. Simple objects that surround us are gaining
sensors, computational power, and actuators, and are changing from
static, inanimate objects into adaptive, reactive systems that have
thus the potential to become more useful and efficient. Smart Devices

• In parallel, the explosion of networks of all kinds, from long dis-
tance high bandwidth ones to local low bandwidth wifi systems, offers
new unknown possibilities for the development and self-organization of
communities of intelligent communicating appliances. Networks

It is now possible to envision having intelligent appliances and, in general,
ambient intelligence aimed at easing our life. [29] gives illustrative and futurist
scenarios. But this requires to know how to embed these new heterogeneous
appliances with the right kind of sensors and of intelligence in order to give
them the capability to sense their environment and be able to communicate and
cooperate, while at the same time be able to interact gracefully and naturally
with human users. Furthermore, these intelligent items, and the networks they
will be part of, require the ability to adapt continuously to ever changing
environmental conditions and needs of the users. The pervasiveness of
mobile phones in the population attracts the attention of the actors in this
sector to the wealth of data that could be extracted from simple measurements
automatically sent by the phones during their lifetime.

It is therefore clear that a wide spectrum of learning abilities is in demand
for these new developments to take place. First, smart devices adaptable to a
diversity of users and ready to accompany them for years, will need to:

• be able to sense their environment and receive data from other devices,
and make sense of the gathered data. This is related to feature selection,
data cleaning and data fusion issues. Sensing and

Acting
• be able to adapt continuously to changing environmental conditions (in-

cluding their own condition) and evolving user habits and needs. This
touches both short-term and real-time adaptiveness and longer term ca-
pability for incremental learning and changes detection. Adaptation

• be capable of predictive self-diagnosis. A significant and useful intelli-
gence characteristic is diagnostics - not only after failure has occurred,
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but also predictive (before failure) and advisory (providing maintenance
instructions). The development of such self-configuring, self-optimizing,
and self-repairing systems is a major scientific and engineering challenge.
To meet this challenge, Autonomic Computing requires extensive use of
AI techniques such as automated real-time reasoning and decision making,
machine learning, and planning. Thus, Autonomic Computing promises
to be a major application area for AI, a driver for basic research, and a
cross-pollinator across many sub-fields of AI. Sel-Diagnosis

• be resource-aware because of the real-time constraint and of limited com-
puter, battery power and communication resources. Indeed, the devel-
opment of ambient intelligence forces us to enter the world of limited
rationality where the availability of time, computer and communication
resources must enter the reasoning process. Resource

awarenessThe last twenty years or so have witnessed large progress in machine learning
and in its capability to handle real-world applications. Nevertheless, machine
learning so far has mostly centered on one-shot data analysis from ho-
mogeneous and stationary data, and on centralized algorithms. Nowa-
days we are faced with tremendous amount of distributed data that could
be generated from the ever increasing number of smart devices. In most cases,
this data is transient, and may not be stored in permanent relations. A
large part, if not the whole of the theory of machine learning (e.g. PAC
learning model), relies on the assumption that the data points are in-
dependent and identically distributed, meaning that the underlying
generative process is stationary.

Example:
Forecast of
Electrical
Load

An illustrative Problem. Electricity distribution companies usually set their
management operators on SCADA/DMS products (Supervisory Control and
Data Acquisition / Distribution Management Systems). One of their important
tasks is to forecast the electrical load (electricity demand) for a given sub-
network of consumers. Load forecast is a relevant auxiliary tool for operational
management of an electricity distribution network, since it enables the identifi-
cation of critical points in load evolution, allowing necessary corrections within
available time, and planning strategies for different horizon.

In this context, data is collected from a set of sensors distributed all around
the network. Sensors can send information at different time scales, speed, and
granularity. Data continuously flow eventually at high-speed, in a dynamic and
time-changing environment. Data mining in this context requires continuously
processing of the incoming data monitoring trends, and detecting changes. Tra-
ditional one-shot systems, memory based, trained from fixed training sets and
generating static models are not prepared to process the high detailed data
available, they are not able to continuously maintain a predictive model consis-
tent with the actual state of the nature, nor are they ready to quickly react to
changes. Moreover, with the evolution of hardware components, these sensors
are acquiring computational power. The challenge will be to run the predictive
model in the sensors itself.
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2.1.1 A World in Movement.

The constraints we have enumerated implies to switch from one-shot single-
agent learning tasks to a lifelong and spatially pervasive perspective.
In the novel lifelong perspective induced by ubiquitous environments, finite
training sets, static models, and stationary distributions will have
to be completely thought anew. In that context, Data Mining approaches
involving fixed training sets, static models and evaluation strategies are obsolete.

All these aspects entails the new characteristics for the data: Data Charac-
teristics

• Data are made available through unlimited streams that continuously flow,
eventually at high-speed, over time;

• The underlying regularities may evolve over time rather than be stationary

• The data can no longer be considered as independent and identically dis-
tributed.

• The data is now often spatially as well as time situated.

But does the existence of ubiquitous environments really change the prob-
lem of machine learning? Wouldn’t simple adaptations to existing learning algo-
rithms suffice to cope with the new needs described in the foregoing? These new
concerns might indeed appear rather abstract, and with no visible direct impact
on machine learning techniques. Quite to the contrary, however, even very ba-
sic operations that are at the core of learning methods are challenged
in the new setting. For instance, consider the standard approach to cluster
variables (columns in a work-matrix). In a batch scenario, where all data is
available and stored in a working matrix, we can apply any clustering algorithm
over the transpose of the working matrix. In a scenario where data evolves over
time, this is not possible, because the transpose operator is a blocking opera-
tor [4]: the first output tuple is available only after preocessing all the input
tuples. Now, think of the computation of the entropy of a collection of data
when this collection comes as a data stream which is no longer finite, the do-
main of variables can be huge, and where the number of classes of objects is not
known a priori; or think on continuous maintenance the k-most frequent items.
And then, what becomes of statistical computations when the learner can only
afford a one pass on each data piece because of time and memory constraints
and has to decide on the fly what is relevant and must be further processed
and what is redundant or not representative and could be discarded. These are
but two examples of a clear need for new algorithmic approaches in the KDubiq
framework.

Data Mining is thus faced with new challenges. All of them share common
issues: distributed continuously flow of data generated by evolving distributions,
the domains involved (the set of attribute-values) can be also huge, and com-
putation resources (processing power, storage, bandwidth, and battery power)
are limited.
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In short, machine learning algorithms will have to enter the world of lim-
ited rationality, e.g. rational decisions are not feasible in practice due to the
finite computational resources. To reshape, ubiquitous data mining implies new
requirements to be considered. The new constraints include: Limited Re-

sources
• The algorithms will have to use limited computational resources (in terms

of computations, space and time)

• The algorithms will have only a limited direct access to data and may have
to communicate with other agents on limited bandwidth resources.

• In a community of smart devices geared to ease the life of users in real
time, answers will have to be ready in an anytime protocol.

• Overall, data gathering and data (pre-)processing will be distributed.

In this chapter we discuss algorithm issues related to advanced data analysis
in dynamic environments using devices with limited resources. In the contexts
we are interested in data is distributed data, flowing eventually at high-speed.
We identify the limitations of the current Machine Learning theory and practice
and identify the most desirable characteristics for a learning algorithm in these
scenarios. The analysis follow three main dimensions: learning in resource aware
devices, distributed data, and continuous flow of data. These dimensions define
the organization of the chapter.

2.2 The Challenge of Limited Resources

Ubiquitous environments mark the end of the area of the single and unlimited
learning agent paradigm. The fact that a multitude of simple and situated
agents are now to form a new kind of anytime responsive system implies a
profound reexamination of the data processing and data mining tasks. The
main point here is the degree of autonomy of the agents. We would like to
maximize the level of autonomy, requiring the ability to process their own data,
and make local decisions. Most important, agents might communicate with
neighbors, minimizing communication costs, to make collective and rational
decisions. Autonomy

Traditional data mining applications call for an off-line centralized data anal-
ysis processing over an existing (very) large database. In Ubiquitous Data
Mining (UDM), every one of the assumptions that underlie this picture are
challenged. Indeed, in this setting, data is transient, obtained through a web
of, possibly heterogeneous, sensors with limited computational, memory and
communication bandwidth capabilities. Furthermore, both for reasons of scarce
resources and because of real-time demands, data must be processed, at least
partly, on the fly and locally. Applications in fusion of environmental sensor
measures, in the analysis of information gathered by web/blog crawlers that in-
dependently sip through collections of texts and links, in analysis and control of
distributed communication networks have been already cited. But many more
are coming fast in scientific, business and industrial contexts.
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These new constraints challenge the existing data mining techniques and
require a significant research effort to overcome their current limitations. Resource Limi-

tationFirst of all, at the level of each individual device or agent, the limitations
on both computing power, memory space and time will constrain the type of
processing that can be done. For instance, floating point operations may be
unavailable, and processing power may be severely limited beyond the one re-
quired to run the normal operations of the device. Therefore, algorithms for
local data mining must require very low complexity processes, possibly at the
cost of degraded output. In many settings, sensor nodes and computing units
(e.g. handheld devices) lack sufficient memory to run classical data mining
techniques which require that the results of the intermediate processing steps
be resident in memory over the processing time of the running algorithm. Data,
often coming in the form of continuous streams, will have either to be parti-
tioned into subsets small enough as to be tractable, or processed on a one-pass
only basis. Furthermore, the locally available data may be too restricted to
permit an informed enough data mining process, and queries will have to be
addressed to other agents. Similarly, it is possible to envision cases where one
device will have to recruit the computing power of other less busy agents to
meet its own needs. In all these cases, this will require that the individual de-
vices have sufficient self-monitoring capabilities so as to know when to ask for
additional information or for help in the form of computing power. Integration

Secondly, at a more integrated level, several issues will need to be addressed.
To begin with, at quite a basic level, the heterogeneity of the individual devices
will introduce problems of communication when the set of measurements and
the formats in which they are expressed will differ among agents. For instance,
in sensor networks, work on a sensor model language called sensorML has been
started as part of the Opengeospatial Consortium. It uses XML to encode and
describe sensor models. The whole process ranging from input to output and
associated parameters are described using this language. Apart from the issue
of heterogeneousness of the devices, the whole system will have to be respon-
sive even in face of faulty or missing measurements, drifting characteristics of
the sensors and generally haphazardous malfunctions. Furthermore, measured
data might well be redundant on one side, but also different in their own right
because issued from different locations and aimed at different tasks. These
characteristics will require that methods for the management of the system be
developed. With regards to learning, meta-learning methods will be needed in
order to distribute learning processes when needed and to integrate the results
on a anytime basis. Since the architecture of the system may well not incorpo-
rate a global master device, these management capabilities will have themselves
to be distributed and part of the self-aware computing capacities of the individ-
ual agents. In this respect, much remains to be done, and we do not have, at
this time, a mature methodology to meet that challenge. Bandwidth

LimitationThe limited communication bandwidth between the agents poses other ques-
tions. In-network knowledge integration is an open research issue in Ubiquitous
Data Mining. It has impact on many problems like: merging of clustering mod-
els, of classification decisions and frequent patterns mining. Controlling the
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accuracy of the resulted integrated knowledge is fast becoming a critical re-
search question. Exchange of data should not be done without some form of
preprocessing that clean the data, selects a right degree of precision, remove
outliers and generally filter out irrelevant or non representative measurements.
Techniques exist for preprocessing data in data mining, however, they often as-
sume that data is available in its entirety and that sufficient computing power
and memory space is available. As will be seen in more details in the sections
devoted to data streaming, algorithms have to be completely reconsidered in
the limited rationality and lifelong setting. At the other end of the learning
process, the results of learning that have to be stored or shared between agents
should require only compact transmissions and storage.

Overall, new techniques for intelligent sampling, to use generate synopsis and
summarized information, and to output approximate solutions are required. But
this brings a new problem. Since the degree of approximation is dependent on
the specifics of the ubiquitous system and on the application, ubiquitous data
mining systems must be able to adapt to the characteristics of the problem and
to their own limitations. In other words, they must be self-aware to a certain
degree in order to optimize their own parameters and deliver on-time the best
possible analysis. In the field of data mining per se, a powerful meta-learning
approach has been developed since the 90s, that of ensemble learning [31]. The
technique makes use of the combination of multiple models learned by weak
learners in order to boost the overall performance of the learning system. In the
context of ubiquitous data mining, it is tempting to view these ensemble learning
techniques as means to turn the curse of distributed and limited data mining
algorithms into a strength, by using local models as base learners. Nevertheless,
so far, few works [27] have addressed the problem of incremental, online, and
distributed maintenance of ensembles of decision models [20].

2.2.1 A lifelong perspective for Machine Learning

Aside the computational and communication problems inherent in ubiquitous
environments, there are issues linked to the nature of the data themselves. As
soon as one is contemplating lifelong learning tasks with data originating from
various places, new problems arise. Mostly, they resort to two categories of
questions. The first one is related to the fact that data are geographically
situated. The second is related to the temporal nature of the data generation
of which several aspects are important for learning. Namely, data now arrive in
streams and can only be processed on a one-pass basis, data is no longer i.i.d.
and the underlying regularities may change over time.

In the following, these two categories of problems are examined in turn.

Mining spatially tagged data. There are now several data generation en-
vironments where the nodes generating the data are spatially spread and inter-
related and where these relations are meaningful and important for data mining
tasks. New types of applications are thus emerging in health services, in environ-
mental monitoring or in distributed and real-time control of vehicles. It is also
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possible to record characteristics of the landscape itself as in satellite recordings
and to monitor the spatial location of objects. The latter has become very pop-
ular with the emergence of mobile phones, GPS and RFID. In sensor networks,
for instance, sensors are often explicitly spatially related to each other and this
spatial information can be considered as a king of meta tagging of the data. In
other applications, where, for instance, the agents themselves are moving (e.g.
vehicles on roads), GPS information can accompany the set of measurements
made.

In all of these applications, the spatial information is essential in the pro-
cessing of the data and the discovery of meaningful regularities. So far, works
on spatial data mining has been scarce even though applications in satellite
remote sensing and geographical databases have spurred a growing interest in
methods and techniques to augment databases management and mining with
spatial reasoning capabilities.

The time situation of data. The fact that, in ubiquitous environments,
data are produced on a real-time basis, or, at least, in a sequential fashion, and
that the environment and the task at hand may change over time, profoundly
modifies the underlying assumptions on which rest most of the existing learning
techniques and demands the development of new principles and new algorithms.

In the following, we discuss these new set of issues along two main directions.
The first one deals with the sequential nature of data, the fact that it comes as
streams of indefinite length and must be processed with limited resources. The
second ones discusses the consequences of the fact that data can no longer be
considered as independently and identically distributed.

2.3 Distributed Data Mining

The combination of distributed systems and the pervasive/ubiquitous comput-
ing paradigms can lead into the area of distributed data mining. It is a broad
area characterized by combinations of multiple learning algorithms as well as
multiple learning problems. These learning problems are also directed by con-
straints such as security, privacy, communication costs and energy restrictions. Autonomous

AgentsThe idea of ubiquitous knowledge discovery and autonomous agents is closely
related. An agent need to be able to discover, sense, learn, and act on its own.
The research on agents is extensive. There are basically two types of agent
architectures, one in which the agents are tied to one node and one in which
the agents move between nodes. In systems such as Objectspace’s Voyager, the
agents move between the machines, while a peer-to-peer system such as JXTA
only allows agents to be tied to the nodes. In both systems the agents either re-
side or migrate to nodes that are prepared for receiving. Distributed objects can
be seen as a premise for agents: only some additional characteristics need to be
adorned to the distributed object. It has been noted that agents normally differ
from machine learning algorithms in that the nature of the problems addressed
by the agents are larger than those traditionally associated with machine learn-
ing [11]. Intelligent agents are more involved software than just an agent, which
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can be compared to a distributed object. The term distributed object perhaps
belongs to systems in which the focus is more on the distributed system than
on the interaction between the agents. One such example is the Java Agents
for Meta-Learning (JAM) system developed by Stolfo et al. [32]. The agent can
communicate with other agents using the Knowledge Query and Manipulation
Language (KQML) [13] together with the Knowledge Interchange Formalism
(KVI) [17] agent information exchange format. These communications and as-
sociated exchange formats allow the agent to express first order requests. A
complementary system for agent corporation is the Open Agent Architecture
(OOA) [24]. In some cases the agents will query other agents and perhaps ex-
change examples or models. To exchange an example sounds simple, but it
requires that the data format is agreed to and understood on both sides of the
exchange. Research in general purpose languages for model exange is recent.
An example is the Predictive Model Markup Language (PMML), a XML mark
up language to describe statistical and data mining models.

The strong limitations of the first scenario is discussed in [28]. The authors
point out ’a mismatch between the architecture of most off-the-shelf data mining
algorithms and the needs of mining systems for distributed applications’. Such
mismatch may cause a bottleneck in many emerging applications. Some hard-
ware limitations related to the limited bandwidth channels. Most important,
in applications like monitoring, centralized solutions introduce delays in event
detection and reaction, that can make mining systems useless.

2.3.1 Sensor Networks

Restrictions like size and power source will define how complex is the process-
ing performed in the sensors. We may have in one extreme centralized systems
and in the other extreme completely distributed systems, where almost all the
intelligent processing is performed in the sensors. The solution considered in
Ubuiquitous Data Mining can broadly be seen as belonging to one of the fol-
lowing categories: data-centric, process-based or network-based: Categories for

Ubiquitous
Data Mining

• Data-centric solutions
The data is preprocessed before the actual learning phase takes place. It
could be in the form of processing a subset of data such as sampling and
load shedding. It also could be in the form of dimensionality reduction
such as sketching. Finally it could be by summarizing the streaming data
such as aggregation and creating data synopsis [2] .

• Process-based solutions
The focus of this category of approaches is to deal with the actual process-
ing of the algorithm. Approximation and randomized algorithms are the
traditional solutions used in this category [26]. Recently, sliding windows
is used in a two-fold objective. The first is to capture the most recent
output. The other objective is solve the problem of concept drift.

• Network-based solutions
Different networking approaches can provide approximate results taking
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into consideration the limitations of ubiquitous computing environments.
Peer-to-Peer (P2P) computing [10], clustering of sensor nodes and effi-
cient routing [35], and grid computing [7] are typical approaches used in
this category. In P2P computing, the data mining algorithm is executed
locally onboard a sensor node or a handheld device. The algorithm al-
lows message exchange in order to integrate local results. Approximate
global model could be computed accordingly. Clustering of sensor nodes
aims at prolonging the network life-time by choosing nodes with highest
energy to be the cluster heads. Cluster heads then collect and aggregate
data to be sent to the base station. In grid computing, a so-called knowl-
edge grid is built to benefit from the services provided by the grid in the
distributed data mining process. These services include information and
resource management, communication and authentication.

Sensor networks can be used to detect the occurrence of complex events pat-
terns with spatial and temporal characteristics. Traditionally, sensor networks
communicate sensed data to a central server that runs offline data mining al-
gorithms. In the KDUbiq perspective, analysis should be done done in situ
using local information. The main difference is the conceptual framework. Cur-
rent Data Mining techniques assume iid examples, static models, finite training
sets, unrestricted resources. Even ignoring resources, they might be applied
with high maintenance costs: retraining models from time to time. KDubiq ap-
proach (dynamic models that evolve over time, incorporating change detection
mechanisms, taking into account the resources available) is the most appropriate
option.

An Illustrative Example: Distributed Clustering. The scenario is in a
sensor network where each sensor produce a continuous stream of data. Suppose
we have m distributed sites, and each site i has a data source St

i at time t. The
goal is to continuously maintain a k-means clustering of the points in St = ∪m

i St
i .

The distributed algorithm presented in Conquering the Divide: Continuous
Clustering of Distributed Data Streams [9] is based on the Furthest Point clus-
tering. The base idea consists of selecting randomly the first cluster center c1

among data points. Subsequent k − 1 cluster centers are chosen as the points
that are more distant from the previous centers c1, c2, ..., ci−1, by maximizing
the minimum distance to the centers. This algorithm requires k passes over
training points. It has an interesting property. It ensures a 2-approximation of
the optimal clustering. A skeleton of the proof is: Suppose a k + 1 iteration,
producing k + 1 points separated by a distance at least D. The optimal k clus-
tering must have a diameter at least D. By the triangular inequality the chosen
clustering has diameter at most 2D. Based on the Furthest Point algorithm the
authors developed a one pass clustering algorithm: the Parallel Guessing Clus-
tering. The base idea consists of picking an arbitrary point as the first center,
and for each incoming point p compute rp = minc∈Cd(p, c). If rp > R Set
C = C ∪ p. This strategy would be Ok, if we know R, the problem is that R is
unknown in advance! The solution proposed in [9] consists of making multiple
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guesses for R as (1 + ǫ/2), (1 + ǫ/2)2, (1 + ǫ/2)3, and run the algorithm in
parallel. If a guess R generates more than k centers, implies R is smaller than
the optimal radius (Ro). For a guess of R ≥ 2Ro that find k or fewer centers,
and generate a valid clustering.

Each local site maintains a Parallel Guessing Algorithm using its own data
source. Whenever it reachs a solution, it sends to the coordinator the k centers
and the radius Ri. Each local only re-send information when the centers change.
The coordinator site maintains a Furthest Point Algorithm over the centers sent
by local sites. Data Streams

Data stream mining techniques use the above approaches in different data
mining strategies including clustering, classification, frequent pattern discovery,
time series analysis and change detection [15]. While few of these techniques
are resource-aware when applying the above solution approaches, others are
not. This problem needs to be addressed in order to realize UDM algorithms
in real-life applications. For example if a data stream mining technique uses
an approximate solution to preserve the available memory with constant factor,
the algorithm may run out of memory due to the extremely low availability of it
in a ubiquitous computing environment. However, if the algorithm is resource-
aware, the approximation factor can change over time in order to cope with the
critically low availability of memory. The same analogy applies to the different
available resources. This has been demonstrated in [14]. The area of adaptation
and resource-awareness is still open. Many data stream mining algorithms are
required to be resource-aware and adaptive in order to realize its applicability
in ubiquitous computing environments.

2.4 Knowledge Discovery from Data Streams

In the last two decades, machine learning research and practice has focused on
batch learning usually with small datasets. In batch learning, the whole training
data is available to the algorithm, that outputs a decision model after processing
the data eventually (or most of the times) multiple times. The rationale behind
this practice is that examples are generated at random accordingly to some
stationary probability distribution. Most learners use a greedy, hill-climbing
search in the space of models.

2.4.1 Static versus Streaming

What distinguishes current data sets from earlier ones are the continuous flow
of data and the automatic high-speed data feeds. We do not just have people
who are entering information into a computer. Instead, we have computers
entering data into each other [26]. Nowadays there are applications in which
the data is best modeled not as persistent tables but rather as transient data
streams. In some applications it is not feasible to load the arriving data into
a traditional DataBase Management Systems (DBMS), and traditional DBMS
are not designed to directly support the continuous queries required in these
applications [2]. Streaming Al-

gorithms
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Algorithms that process data streams deliver approximate solutions, provid-
ing a fast answer using few memory resources. They relax the requirement of
an exact answer to an approximate answer within a small error range with high
probability. In general, as the range of the error decreases the space of com-
putational resources goes up. In some applications, mostly database oriented,
an approximate answer should be within an admissible error margin. Some re-
sults on tail inequalities provided by statistics are useful to accomplish this goal.
The basic general bounds on the tail probability of a random variable (that is,
the probability that a random variable deviates greatly from its expectation)
include the Markov, Chebyshev and Chernoff inequalities [25].

Data Streams Management Systems developed a set of techniques that store
compact stream summaries enough to approximately solve queries. All these
approaches require a trade-off between accuracy and the amount of memory used
to store the summaries, with an additional constrain of small time to process
data items [26]. The most common problems end up to compute quantiles,
frequent item sets, and to store frequent counts along with error bounds on
their true frequency.

In the streaming model (see [26]), the input elements a1, a2, . . . , aj , . . . arrive
sequentially, item by item and describe an underlying function A. Streaming
models differ on how ai describe A. We can distinguish between:

1. Insert Only Model: once an element ai is seen, it can not be changed.

2. Insert-Delete Model: elements ai can be deleted or updated

From the viewpoint of a data streams management system, several research
issues emerge. For instance, one such issue is related to the need of approximate
query processing techniques in order to evaluate queries that require unbounded
amount of memory. Sampling techniques have been used to handle situations
where the flow rate of the input stream is faster than the query processor.
One important question is raised by the existence of of blocking operators (e.g.
aggregation and sorting) in the presence of unending streams. It is essential
to identify them and to find ways to circumvent their blocking effect. The
following table summarizes the main differences between traditional and stream
data processing:

Traditional Stream
Number of passes Multiple Single
Processing Time Unlimited Restricted
Available Memory Unlimited Fixed
Result Accurate Approximate
Distributed No Yes

2.4.2 When data points are no longer i.i.d.

When the samples of data are both spatially and time situated, data points can
no longer be considered as independently and identically distributed, a fact that
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is compounded when the underlying generative process is itself changing over
time.

One consequence is that the statistical theory of learning [33] does not hold
anymore. In particular, the inductive criteria that are based on additive mea-
sures of cost (e.g. the empirical risk and the real risk associated with a candidate
hypothesis) are no longer satisfactory. The question then becomes: how to re-
place this fundamental theory? Works on weak long term correlations exist in
statistics, but they are still far from answering the challenge that faces machine
learning in this respect. Ordering

EffectsOne interesting question concerns ordering effects: the fact that the result
of a (on-line) learning session may depend on the order of presentation of the
data points. This has usually been considered as a nuisance that one should
try to get rid of. However, the order of the data points can clearly convey
potentially useful information about the evolution of the underlying generative
process, or even, this order could result from a clever and helpful teacher. In
this case, one should on the contrary try to take advantage from this source
of information. Apart from a few works in constructive induction and some
pioneering works in inductive logic programming, almost everything remains to
be done in this direction. Reasoning about the evolution of the learning process
is also a potential research line that remains almost unexplored.

Concretely, data streams require that the learners be endowed with on-line
or incremental learning capabilities. This means in particular that they should
be able to process the data sequentially as they arrive and that they should be
able to produce either decisions or hypotheses about the surrounding world in
an anytime fashion. Since, their memory is limited and because the underlying
generative process, or the task at hand, may change, they have to be able to
measure the relevance of a piece of information over time, and be able to forget
no longer relevant data pieces.

Questions about how to sample and summarize the data, how to carry on
on-line learning are discussed below.

2.4.3 Where we Are

Recent developments in Machine Learning point out directions for learning in
ubiquitous environments. For example, in [18] the authors present a general
method to learn from arbitrarily large databases. The method consists of de-
riving an upper bound for the learner’s loss as a function of the number of
examples used in each step of the algorithm. Then use this to minimize each
step’s number of examples, while guaranteeing that the model produced does not
differ significantly from the one that would be obtained with infinite data. This
general methodology has been successfully applied in k-means clustering [18],
decision trees [12, 19, 16], etc. The proposed method can be useful to solve
one aspect of Learning in ubiquitous environments. Nevertheless many others
remain unsolved. For example, learning from distributed data, we need efficient
methods in minimizing the communication overheads between nodes. Work in
this direction appears in [3].
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illustrative Algorithm. We have pointed out the necessity of new algo-
rithms for clustering variables in the stream setting. The Online Divisive-
Agglomerative Clustering (ODAC) system [30] continuously maintains a tree-
like hierarchy of clusters that evolves with data. ODAC uses a top-down strat-
egy. The splitting criterion is a correlation-based dissimilarity measure among
time series, splitting each node by the farthest pair of streams, which defines
the diameter of the cluster. In stationary environments expanding the structure
leads to a decrease in the diameters of the clusters. The system uses a merge
operator, that agglomerates two sibling clusters, in order to react to changes in
the correlation structure between time series. The splitting and merge operators
are triggered in response to changes in the diameters of existing clusters. The
system is designed to process thousands of data streams that flow at high-rate.
The main features of the system include update time and memory consumption
that do not depend on the number of examples in the stream. Moreover, the
time and memory required to process an example decreases whenever the cluster
structure expands.

Approximation and Randomization techniques has been used to solve dis-
tributed streaming learning problems. Approximation allows answers that are
correct within some fraction ǫ of error, while randomization allows a probability
δ of failure. The base idea consists of mapping a very large input space to a
small synopsis of size O( 1

ǫ2
log( 1

δ
)). Approximation and Randomization tech-

niques has been used to solve problems like measuring the entropy of a stream,
association rule mining frequent items [23], k-means clustering for distributed
data streams using only local information [9], etc.

illustrative Algorithm. Hash functions as been used to project attributes
with huge domains into lower space dimensions. The Count-Min Sketch has
been used to approximately solve point queries, range queries, and inner product
queries. Here we present a simple couting example: How many times an item
in high-speed stream as been seen so far.

A Count-Min Sketch is an array of w× d in size. Given a desired probabilty
level (δ), and an admissible error (ǫ), w = 2/ǫ and d = log(1/δ). Each entry
x in the stream, is mapped to one bucket per row. It uses d hash functions to
map vector entries to [1..w]. At any time, the estimate x̂[j] is given by taking
minkCM [k, hk(j)]. The important properties of this estimate are: x[j] ≤ x̂[j]
and x̂i ≤ ǫ × ||xi||1, with probability 1 − δ.

The idea of the agent’s limited rationality lead us to ensemble models used
to collectively solve problems. In [20], the authors proposed a method that offer
an effective way to construct a redundancy-free, accurate, and meaningful rep-
resentation of large decision-tree ensembles often created by popular techniques
such as Bagging, Boosting, Random Forests and many distributed and data
stream mining algorithms.
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2.4.4 Online, Anytime and Real-time Learning

The challenge problem for data mining is the ability to continuously maintain
an accurate decision model. This requires learning algorithms that can modify
the current model whenever new data is available at the rate of data arrival.
Moreover, they should forget older information when data is outdated. In this
context, the assumption that examples are generated at random according to a
stationary probability distribution does not hold, at least in complex systems
and for large periods of time.

In the presence of a non-stationary distribution, the learning system must
incorporate some form of forgetting past and outdated information. Learning
from data streams require incremental learning algorithms that take into ac-
count these changes in the data generating process. Solutions to these problems
require new sampling and randomization techniques, and new approximate, in-
cremental and decremental algorithms. In [18], the authors identify desirable
properties of learning systems that are able to mine continuous, high-volume,
open-ended data streams as they arrive. Learning systems should be able to
process examples and answering queries at the rate they arrive. Overall, some
desirable properties for learning in data streams include: incrementality, online
learning, constant time to process each example, single scan over the training
set, and taking drift into account.

Cost-Performance Management Incremental learning is one fundamental
aspect for the process of continuously adaptation of the decision model. The
ability to update the decision model whenever new information is available is
an important property, but it is not enough. Another required operator is the
ability to forget past information [22]. Some data stream models allow delete and
update operators. Sliding windows models require forgetting old information. In
all these situations the incremental property is not enough. Learning algorithms
need forgetting operators that reverse learning: decremental unlearning [8].

The incremental and decremental issues requires a continuous maintenance
and updating of the decision model as new data is available. Of course, there
is a trade-off between the cost of update and the gain in performance we may
obtain. The update of model depends of the complexity of its representation
language. For instance, very simple models, using few free-parameters, are easy
to adapt in face of changes. Small and potentially insignificant variations in
the data will not result in unwarranted changes in the learned regularities. The
variance of the hypothesis class is said to be limited. However, the downside
is an associated high bias. The hypothesis space cannot accommodate a large
variety of data dependencies. This is known as the bias-variance tradeoff. This
tradeoff is fundamental in classical one-shot learning. It becomes even more so in
on-line learning. In addition, the more complex the hypothesis space (the larger
the number of effective parameters), the more costly are the update operations.
Effective means of controlling it must be devised. Continuous learning therefore
requires efficient control strategies in order to optimize the trade-off between
the gain in performance and the cost of updating. To this aim, incremental and
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decremental operators have been proposed, including sliding windows methods.
An illustrative example is the case of ensemble learning techniques, such

as boosting, that rely on learning multiple models. Theoretical results show
that it is thus possible to obtain arbitrary low errors by increasing the number
of models. To achieve a linear reduction of the error, we need an exponential
increase in the number of models. Finding the Breakeven point, that is the point
where costs equalize benefits, and not going behind that, is a main challenge.

Monitoring Learning When data flows over time, and, at least, in case of
large periods of time, the assumption that the examples are generated at random
according to a stationary probability distribution becomes highly unlikely. In
complex systems and for large time periods, we should expect changes in the
distribution of the examples. A natural approach for these incremental tasks
are adaptive learning algorithms, incremental learning algorithms that take into
account concept drift.

Concept drift means that the concept related to the data being collected may
shift from time to time, each time after some minimum permanence. Changes
occur over time. The evidence for changes in a concept are reflected in some
way in the training examples. Old observations, that reflect the past behavior
of the nature, become irrelevant to the current state of the phenomena under
observation and the learning agent must forget that information.

The nature of change is diverse. Changes may occur in the context of learn-
ing, due to changes in hidden variables, or in the characteristic properties of the
observed variables. In fact, it is usual to distinguish between:

• Changes in the underlying distribution over the instance descriptions (de-
noted DX , the distribution over the description space X ).

• Changes in the conditional distribution of the label w.r.t. the description
(denoted DY|X , where Y is the label space). This is usually called “concept
drift”.

• Changes in both of the distributions.

In the former case, the change affects the space of the available instances, but not
the underlying regularity. This, however, may require changes in the decision
rules in order to optimize the decision process over the dense regions of the
instance space. In the second case, the identified decision rule has to be adapted.

Most learning algorithms use blind methods that adapt the decision model
at regular intervals without considering whether changes have really occurred.
Much more interesting is explicit change detection mechanisms. The advantage
is that they can provide meaningful description (indicating change-points or
small time-windows where the change occurs) and quantification of the changes.
The main research issue is how to incorporate change detection mechanisms in
the learning algorithm. Embedding change detection methods in the learning
algorithm is a requirement in the context of continuous flow of data. The level
of granularity of decision models is a relevant property, because if can allow
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partial, fast and efficient updates in the decision model instead of rebuilding a
complete new model whenever a change is detected. The ability to recognize
seasonal and re-occurring patterns is an open issue.

Novelty Detection. Novelty Detection refers to the automatic identification
of unforeseen phenomena embedded in a large amount of normal data. It corre-
sponds to the appearance of a new concept (e.g. a new label or a new cluster)
from unlabelled data. Learning algorithms must then be able to identify and
learn new concepts. Novelty is always a relative concept with regard to our cur-
rent knowledge. Intelligent agents that act in dynamic environments must be
able to learn conceptual representations of such environments. Those concep-
tual descriptions of the world are always incomplete. They correspond to what
it is known about the world. This is the open world assumption as opposed to
the traditional closed world assumption, where what is to be learnt is defined in
advance. In open worlds, learning systems should be able to extend their rep-
resentation by learning new concepts from the observations that do not match
the current representation of the world. This is a difficult task. It requires to
identify the unknown, that is, the limits of the current model. In that sense,
the unknown corresponds to an emerging pattern that is different from noise, or
drift in previously known concepts.

2.4.5 Issues and Challenges in Learning from Distributed Data Streams

Streaming data and domains offer a nice opportunity for a symbiosis between
Streaming Data Management Systems and Machine Learning. The techniques
developed to estimate synopsis and sketches require counts over very high dimen-
sions both in the number of examples and in the domain of the variables. The
techniques developed in data streams management systems can provide tools for
designing Machine Learning algorithms in these domains. On the other hand,
Machine Learning provides compact descriptions of the data than can be useful
for answering queries in DSMS.

Incremental Learning and Forgetting. In most applications, we are inter-
ested in maintaining a decision model consistent with the current status of the
nature. This lead us to the sliding window models where data is continuously
inserted and deleted from a window. Learning algorithms must have operators
for incremental learning and forgetting. Incremental learning and forgetting are
well defined in the context of predictive learning. The meaning or the semantics
in other learning paradigms (like clustering) are not so well understood, very
few works address this issue.

Change Detection. Concept drift in the predictive classification setting is a
well studied topic. In other learning scenarios, like clustering, very few works
address the problem. The main research issue is how to incorporate change
detection mechanisms in the learning algorithm for different paradigms.
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Feature Selection and Pre-processing. Selection of relevant and informa-
tive features, discretization, noise and rare events detection are common tasks
in Machine Learning and Data Mining. They are used in a one-shot process.
In the streaming context the semantics of these tasks changes drastically. Con-
sider the feature selection problem. In streaming data the concept of irrelevant
or redundant features are now restricted to a certain period of time. Features
previously considered irrelevant may become relevant, and vice-versa to reflect
the dynamics of the process generating data. While in standard data mining,
an irrelevant feature could be ignored forever, in the streaming setting we need
still monitor the evolution of those features. Recent work based on the fractal
dimension [5] could point interesting directions for research.

Ubiquity in the Feature Space. In the static case, similar data can be
described with different schemata. In the case of dynamic streams, the schema
of the stream can also change. We need algorithms that can deal with evolv-
ing feature spaces over streams. There is very little work in this area, mainly
pertaining to document streams. For example, in sensor networks, the number
of sensors is variable (usually increasing) over time. For instance, clustering
of data coming through streams on different sensing and computing sites is a
growing field of research that brings completely new algorithms (see for instance
[21, 1]).

Evaluation Methods and Metrics. An important aspect of any learning
algorithm is the hypothesis evaluation criteria. Most of evaluation methods
and metrics were designed for the static case and provide a single measurement
about the quality of the hypothesis. In the streaming context, we are much
more interested in how the evaluation metric evolves over time. Results from
the sequential statistics [34] may be much more appropriate.

There is a fundamental difference between learning from small datasets and
large datasets. As pointed-out by some researchers [6], current learning algo-
rithms emphasize variance reduction. However, learning from large datasets
may be more effective when using algorithms that place greater emphasis on
bias management.

2.5 Where We Want to Go: Emerging Challenges and

Future Issues

KDUbiq points out to systems and algorithms with high level of autonomy.
These systems address the problems of data processing, modeling, prediction,
clustering, and control in changing and evolving environments. They self-evolve
their structure and knowledge on the environment.

In contrast to the main stream in Machine Learning theory and practice,
KDubiq points out a world in movement where things evolve in time
and space. The main difference is the conceptual framework. Current DM
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techniques assume a static world, that we can monitor using unrestricted re-
sources. If we ignore resource constraints, they might be applied with high
maintenance costs (retraining models from time to time). In the KDubiq per-
spective the world is in movement; any learning task requires decision models
that evolve over time, incorporating change detection mechanisms, and taking
into account the resources available. The relevant point is not what we can do
more, but what we can better.

The definition of standards to represent and exchange models, incorpora-
tion of domain knowledge, vizualization, the definition of processes and systemic
approaches, are traditional issues in data mining that are reinforced from the
emerging applications like bioinformatics, semantic Web, sensor networks, radio
frequency identification, etc.

The main lesson we, researchers in knowledge discovery, can learn from the
challenges that ubiquity poses is that learning algorithms are limited. Real
world is much greater even than a network of computers. The design of learning
algorithms must take memory, space, time, communication, etc into account.

Simple objects that surround us are changing from static, inanimate objects
into adaptive, reactive systems with the potential to become more and more
useful and efficient. Smart things associated with all sort of networks offers new
unknown possibilities for the development and self-organization of communities
of intelligent communicating appliances. Learning in these contexts must be
non pervasive, and become invisible.
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