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Formalizations of the Retinex model and its variants with variational
principles and partial differential equations
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Abstract. Edwin H. Land and John J. McCann introduced the Retinex model as a computational theory of color
vision. However, Retinex details were described rather algorithmically than mathematically. Soon after the birth of
Retinex, Horn proposed a drastic simplification of the model, which, however, had the merit of being mathematically
explicit and rigorous. As a consequence, at least two different interpretations of Retinex appeared in the literature
almost at the same time. This generated a lot of confusion about the name Retinex that persists even nowadays. The
aim of this paper is to present an overview about the different interpretations and the corresponding mathematical
formalizations of Retinex in terms of variational principles and partial differential equations.
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1 Introduction

The most popular paper about the original Retinex formulation is.1 Retinex stands for ‘Retina plus

Cortex’, which refers to the fact that the mechanisms underlying human color vision depend both

on the retinal photoreceptors catches and on the cortex interpretation of these signals. The original

Retinex is a computational model with the aim of finding a perceptual correlate of reflectance,

called ‘lightness’ by Land, to be tested with psychophysical measurements.

Through a series of groundbreaking experiments, mostly performed with the famous ‘Mondrian

tableaux’, Land and McCann proved that human perception of a surface’s color is influenced by

the spatial distribution of the surrounding surfaces, see Figure 1. As underlined by McCann in

many papers and conference speeches, spatial locality of color perception is the central concept

in the whole Retinex theory. Thus, at least in its original form, Retinex is not an algorithm for

discarding illumination and recover the intrinsic reflectance of surfaces, as several authors claim in

their papers even nowadays, but it is a computational model that uses the local information of the
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surround to recover color perception.

Fig 1 Digital (personal) reproduction of a typical Mondrian tableau used by Land and McCann for their color matching
experiments.

In spite of their innovative and important experimental achievements, neither Land nor McCann

‘carved their model into stone’ through a rigorous mathematical formulation and this generated

confusion, both about the role of the operations involved in the lightness computation, and in the

essence of their model.

In this paper, we are not going to discuss Retinex as a vision model (see2 for more details

about this), but the color enhancement algorithms for image processing that were inspired by it.

In particular, we will show that two major classes of Retinex that can be found in the literature:

ratio-reset Retinex and Horn’s Retinex.3 We will underline how profound is the difference between

these two interpretations thanks to variational principles and partial differential equations.

The variational models that will be discussed in this paper are the variational descriptions of

existing models, it is thus necessary to introduce, in the following section, the basic formalization

of the ratio-reset formula developed in.4 This will help us fix the ideas and the notation about many

concepts and notations that will be discussed in the following sections.

It is important to keep in mind that, since the Retinex theory attempts to estimate human color

sensation, pre- and post- calibrations are required to map the device responses into human re-
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sponses. Here, since we will concentrate on image processing purposes, we will not take into

account the calibrations procedures.

As a final remark: this paper is about mathematical formulations of Retinex models, their

similarities and differences, not about their outputs, which strongly depend on their parameters.

Coherently with this, no Retinex output will be presented in this paper.

2 Land and McCann’s ratio-threshold-reset Retinex model

As previously mentioned, the original Retinex model of Land and McCann1 is based on the as-

sumption that the HVS operates with three retinal-cortical systems, each processing independently

the low, middle and high wavelengths of the visible electromagnetic spectrum. Every indepen-

dent process forms a separate image determining a quantity that they called lightness and denoted

with L. Land and McCann found a computational way to reproduce lightness for their Mondrian

tableaux by introducing spatial comparisons among intensities, calculated over paths. The compar-

ison is performed through a multiplicative chain of ratios, subjected to these non-linear operations:

Threshold mechanism: if the ratio does not differ from 1 more than a fixed threshold value, then

it is set to be unitary; Reset mechanism: if the cumulated product of ratios overcomes the value 1

in a certain point of the path, then it is forced to 1, so that the computation restarts from it. In this

way, this point becomes a local white reference, so that the reset mechanism is responsible for the

white-patch behavior of Retinex.

Let us now present the mathematical formalization of the ratio-threshold-reset Retinex compu-

tation described in4 as an interpretation of.1 Other possible interpretations exist in the literatures,

see e.g.2 Given a discrete digital image function with normalized range, I : Ω ⊂ Z2 → (0, 1],

consider a collection of N oriented paths ~γ = {γ1, . . . , γN} composed by ordered chains of pixels

3



starting in yk and ending in x, k = 1, . . . , N . Let nk be the number of pixels traveled by the

path γk and let tk = 1, . . . , nk be its parameter, i.e. γk : {1, . . . , nk} → Ω ⊂ R2, γk(1) = yk

and γk(nk) = x. Write, for simplicity, two subsequent pixels of the path as γk(tk) = ytk

and γk(tk + 1) = ytk+1, for tk = 1, . . . , nk − 1. Consider, in every fixed chromatic channel

c ∈ {R,G,B}, their intensities I(ytk), I(ytk+1) and then compute the ratio Rtk =
I(ytk+1)

I(ytk )
with the

initial condition R0 = 1.

With this notation in mind, the value of lightness provided by the ratio-threshold-reset Retinex

algorithm for a generic pixel x ∈ Ω, in every fixed chromatic channel c (that we avoid specifying

for the same of a clearer notation), is given by:

Lε,~γ(x) =
1

N

N∑
k=1

nk−1∏
tk=1

δk(Rtk) (1)

where δk : R+ → R+, k = 1, . . . , N , are functions defined in this way: δk(R0) = 1 and, for

tk = 1, . . . , nk − 1,

δk(Rtk) =



Rtk if 0 < Rtk ≤ 1− ε

1 if 1− ε < Rtk < 1 + ε

Rtk if 1 + ε ≤ Rtk ≤ 1+ε∏tk−1
mk=0 δk(Rmk

)

1∏tk−1
mk=0 δk(Rmk

)
if Rtk >

1+ε∏tk−1
mk=0 δk(Rmk

)

(2)

being ε > 0 a fixed threshold. The second option is the mathematical implementation of the

threshold mechanism while the fourth implements the reset mechanism (and so the white patch

behavior) of the algorithm.

4



It is useful to write the contribution of the single path γk to Lε,~γ(x) as:

Lε,γk(x) =

nk−1∏
tk=1

δk(Rtk), (3)

so that formula (1) reduces simply to the average of these contributions, i.e. Lε,~γ(x) = 1
N

N∑
k=1

Lε,γk(x).

Before passing to the analysis of the limit ε→ 0, it is worthwhile specifying two issues. Firstly,

an independent processing of the three chromatic channels is a correct assumption only for the very

first stages of human vision. In fact, as soon as the visual signal arrives to ganglion cells, the output

signals coming from the photoreceptors start to intertwine.5–7 Secondly, the ratio-threshold-reset

algorithm described above is implemented in the so-called Milano Retinex algorithms2 to perform

color enhancement in digital images through a spatial color processing inspired by the Retinex

principles.

2.1 The limit behavior ε→ 0

The analytical formula to describe the ratio-threshold-reset Retinex algorithm just introduced al-

lowed making predictions about the model. As explained in,4 this can be done if the threshold

mechanism is disregarded, or, equivalently, by considering the case ε→ 0.

As ε→ 0, the functions δk become much simpler:

δk(Rtk) =


Rtk if 0 < Rtk

tk−1∏
mk=0

δk(Rmk
) ≤ 1

1
tk−1∏
mk=0

δk(Rmk
)

if Rtk

tk−1∏
mk=0

δk(Rmk
) > 1

(4)

hence, when ε→ 0, δk behaves either as the identity or the reset function.
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In4 it was proven that this implies the following formula:

L0,~γ(x) =
1

N

N∑
k=1

I(x)

I(yHk
)
, (5)

where yHk
is the pixel with highest intensity traveled by γk. From now on, we will refer to formula

(5) as describing the ‘ratio-reset Retinex algorithm’.

Notice that he presence of paths makes the ratio-reset Retinex a local algorithm, where locality

is intrinsically represented by the geometry of paths used. However, when nk → |Ω|, the ratio-

reset Retinex loses its local properties and reduces, see,4 to the global diagonal von Kries model.8

On the other hand, nk and N contribute to the creation of noise when their value is small.

Finally, it is important to underline that, since intensity values are normalized, 0 < I(yHk
) ≤ 1

for every k = 1, . . . , N and then
∑N

k=1
1

I(yHk
)
≥ N . It follows that L(x) ≥ I(x) for every pixel i

and this proves that an image filtered with the ratio-reset Retinex is always brighter or equal to the

original one. This shows an important limitation of this algorithm: an over-exposed picture can

only be worsened by the application of the ratio-reset Retinex used as a color corrector.

2.2 From paths to pixel sprays: RSR and related algorithms

The information obtained thanks to the mathematical formulation of Retinex has important conse-

quences on the structure of Px(Ω), the set of paths embedded in the image domain Ω and ending in

the point x. After formula (5), on this set it is natural to define the following equivalence relation:

given γ, η ∈ Px(Ω),

γ ∼ η ⇔ max
y∈γ∗
{I(y)} = max

y∈η∗
{I(y)} (6)
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where γ∗ and η∗ are the co-domains of the paths, i.e. the collections of pixels traveled by γ and η,

respectively.

Paths belonging to different equivalence classes give different contributions to the lightness

computation, while every path in a given equivalence class gives rise to the same value of L0,γk(x).

It follows immediately that Px(Ω) contains redundant paths and that the correct set of paths to

consider is given by the quotient set Px(Ω)/ ∼, whose elements are the equivalence classes of

paths with respect to the equivalence relation defined in (6).

In each equivalence class one can choose a single representative path to compute L0,γk(x),

in particular, the most efficient one is the two-points path whose co-domain is simply given by

{yHk
, x}. Moreover, by a mathematical point of view, paths are topological manifolds of dimension

1 embedded in the image, which is a topological manifold of dimension 2, so paths do not really

scan local neighborhoods of a pixel, rather particular directions in these neighborhoods. This

directional extraction of information can lead to halos or artifacts in the filtered image, see e.g.9

These considerations led the authors of10 to consider 2-dimensional objects such as areas in-

stead of 1-dimensional paths to analyze image locality for an efficient color correction. Roughly

speaking, their idea is to implement spatial locality by selecting a fraction of pixels from these ar-

eas with a density sample that changes according to a given function of their distance with respect

to the target pixel x. Each function generates a different kind of pixel selection around x, leading

to different kind of ‘sprays’, as the one depicted in Figure 2, each of which shows different local

filtering properties. The new implementation of the ratio-reset Retinex that follows this idea is

called RSR for ‘Random Sprays Retinex’.

In RSR the role of a path γk traveling nk pixels and ending in the target x is played by Sk(x), a

spray with nk pixels centered in x. Actually, once the number of points per spray is chosen, there
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Fig 2 An example of (normalized) random spray. Normalization refers to the fact that the horizontal and vertical axes
have been normalized between 0 and 1.

is no need to vary it with k, hence, from now on, we will write n instead of nk to denote the number

of pixels per spray. The ratio-reset operation along a path is substituted by the search of the pixel

with highest intensity in the whole spray. The functional expression of formula (5) to compute the

lightness remains exactly the same in both algorithms, so the ratio-reset Retinex and RSR share

the same intrinsic properties.

In11, 12 two techniques have been proposed to reduce noise generation also decreasing the com-

putational time of RSR.

Let us start by describing the strategy described in11 and called ‘Light Random Sprays Retinex’

(LRSR) devised to avoid noise formation when a small value of n and/or N is used. Consider

an arbitrary input image I and apply RSR to it, obtaining the image L, the ratio C = I
L

is called

intensity change image. In LRSR, the noise is reduced through a convolution with a kernel function

k. This can be done after the computation of C, obtaining C ′k = (C ∗ k)(x), ∀x ∈ Ω, or before it,

i.e. applying the blurring on I and L, obtaining C ′′k (x) = (I∗k)(x)
(L∗k)(x)

, ∀x ∈ Ω. By combining the two
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approaches, i.e filtering before and after calculation with two (possibly identical) kernels k1 and

k2, respectively, one can define the new intensity change matrix: C∗k1,k2(x) = (C ′′k1(x) ∗ k2)(x).

The output image O of LRSR is calculated via the formula:

O(x) =
I(x)

C∗k1,k2(x)
∀x ∈ Ω, (7)

the size of kernels k1 and k2 used in11 25× 25.

In,12 the same authors attacked the problem of computational complexity reduction with a

technique called ‘Smart Light Random Memory Sprays Retinex’ (SLRMSR). The basic concept

behind SLRMSR is that of ‘spray memory’, which consists in creating a single spray that will be

gradually modified while browsing the image by modifying just one pixel of S(x) each time we

move from one pixel to another, by randomly selecting a pixel that lies in the neighborhood of

the last pixel. By iterating this procedure, the original spray is gradually and smoothly modified.

Thanks to this idea, the computational complexity passes fromO(nN |Ω|) toO(n|Ω|) because now

one spray is used. In,13 these techniques have been extended from RSR to RACE.

In14 the spray technique was used to fuse RSR with ACE,15 another perceptually-inspired color

correction algorithm that makes use of the gray-world hypothesis.16 The hybrid algorithm is called

RACE and it is able to color correct both under and over exposed images.

A more recent proposal to fuse white-patch (WP) and gray-world (GW) features in a single al-

gorithm is that presented in17 and called STRESS for Spatio-Temporal Retinex-like Envelope with

Stochastic Sampling. As Retinex, STRESS computes, for each pixel, the local white reference, but

also the black reference in each chromatic channel. This is done through calculating the maximum

and minimum envelope functions, denoted as Emax(x) and Emin(x), respectively.
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The computational steps needed to get the envelope functions are the following: fix a pixel x ∈

Ω and N random sprays10 Sk(x), k = 1, . . . , N , centered in x, then compute Mk = max
x∈Sk(x)

I(x),

mk = min
x∈Sk(x)

I(x) and the following objects:

rk(x) = Mk(x)−mk(x), vk(x) =


1
2

if Mk(x) = mk(x)

I(x)−mk(x)
Mk(x)−mk(x)

otherwise,

thus, essentially, the value of vk(x) is either the middle gray if x lies in a homogeneous area, or

it is the linearly stretched value of I(x) with respect to the interval [mk(x),Mk(x)]. By denoting

with r̄(x) and v̄(x) the average values of rk(x) and vk(x) over the N sprays, i.e.

r̄(x) =
1

N

N∑
k=1

rk(x), v̄(x) =
1

N

N∑
k=1

vk(x),

the authors can finally define the two envelope functions Emin(x) as follows:

Emin(x) = I(x)− v̄(x)r̄(x), Emax(x) = I(x) + (1− v̄(x)r̄(x)) = Emin + r̄(x). (8)

The final output of STRESS is the stretched value of I(x) on the interval [Emin, Emax], namely:

STRESS(I(x)) =
I(x)− Emin

Emax − Emin

. (9)

STRESS, as RACE, is capable of handling both under and over exposed images, but it is affected by

the same noise problems of RSR. In section 3 we will see a variational extension of the technique

used to compute the envelope functions based on the total variation. This will allow avoiding the
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noise problems related to the random spray technique.

Finally, let us mention some related works. In,18 the RSR sampling technique has been studied

from a probabilistic point of view, resulting in the algorithm QBRIX, in,19 further comparisons

among Retinex models are discussed, in20 a noise-free, exact mapping of RSR into a probabilistic

framework is presented, in21 fuzzy variants of RSR are taken into account and, finally, in22 a

random spatial sampling method halfway through path-based and 2D-based is discussed.

3 A variational framework for the ratio-reset Retinex

The similarities between the ACE formula15 and the gradient descent equations for histogram

equalization obtained in,23 led to the discovery of a variational interpretation of ACE in the pa-

per.24 The framework were further extended in25 and, finally, in26 a variational framework for

(an anti-symmetric version of the) ratio-reset Retinex has been discussed. In order to understand

how this is possible, let us come back to the lightness formula (5). An algorithmic analysis of

these models has been provided in.27 Interestingly, this variational setting can be also extended to

consider cognitive phenomena, as it has been shown in.28

Land proposed a further Retinex mechanism, the scaling,29 implemented via a strictly increas-

ing compressive (concave) function f : (0, 1]→ (0, 1] such that f(r) ≥ r for all r ∈ (0, 1] applied

to the ratio r = I(x)
I(yHk

)
, so that the Retinex lightness formula becomes:

L0,~γ,f (x) =
1

N

N∑
k=1

f

(
I(x)

I(yHk
)

)
. (10)

The reset mechanism of Retinex and the scaling operation can be merged: in fact, we can extend
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f to (0,+∞) preserving its continuity by defining

f̂(r) =


f(r) if r ∈ (0, 1]

1 if r ∈ [1,+∞).

It is clear that applying this new scaling function f̂ to the ratios I(x)/I(y), with x fixed and y that

varies in Ω, jointly implements the scaling and the reset mechanism.

Now we have all the elements to introduce the continuous version of the Retinex algorithm

presented in26 under the name ‘Kernel-Based Retinex’, or KBR for short. Given x ∈ Ω, let Yw,x

be the random variable modeling the selection of a pixel in the neighborhood of x according to the

density w(x, y).

The output LKBR
w (x) of the KBR algorithm at the pixel x is defined as the conditional expecta-

tion of f̂
(

I(x)
I(Yw,x)

)
with respect to the distribution w of pixels around x, i.e.

LKBR
w (x) = EYw,x

[
f̂

(
I(x)

I(Yw,x)

)]
. (11)

This formula is used independently for each color channel and can be written more explicitly as

LKBR
w (x) =

∑
{y∈Ω:I(y)≥I(x)}

w(x, y) f

(
I(x)

I(y)

)
+

∑
{y∈Ω:I(y)<I(x)}

w(x, y). (12)

All the basic properties of the ratio-reset Retinex are faithfully implemented in (12): KBR is

founded on the propagation of a two-pixel ratio comparison between the fixed target x and the

generic pixel y that runs across the image; these comparisons are then subjected to the reset and

scaling performed by f̂ and, finally, locally averaged with weight w, in order to produce the value
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of LKBR
w (x).

To study the action of KBR of pixel intensities, it is useful to rewrite (12) introducing the

functions

sign+(ξ) :=


1 if ξ > 0,

1
2

if ξ = 0,

0 if ξ < 0,

sign−(ξ) = 1− sign+(ξ),

so that eq. (12) can be re-written as

LKBR
w (x) =

∑
y∈Ω

w(x, y) f

(
I(x)

I(y)

)
sign+(I(y)− I(x)) +

∑
y∈Ω

w(x, y) sign−(I(y)− I(x)). (13)

Thanks to eq. (13) we can verify that KBR always increases brightness as the ratio-reset Retinex

implementation. In fact, since f(r) ≥ r for all r ∈ (0, 1], then f
(
I(x)
I(y)

)
≥ I(x)

I(y)
≥ I(x), so

LKBR
w (x) ≥

∑
y∈Ω

w(x, y) I(x) sign+(I(y)− I(x)) +
∑
y∈Ω

w(x, y) sign−(I(y)− I(x)) (14)

moreover, being I(x) ≤ 1, we can write

LKBR
w (x) ≥

∑
y∈Ω

w(x, y) I(x) sign+(I(y)− I(x)) +
∑
y∈Ω

w(x, y) I(x) sign−(I(y)− I(x))

= I(x)
∑
y∈Ω

w(x, y)
[
sign+(I(y)− I(x)) + sign−(I(y)− I(x))

]
= I(x)

∑
y∈Ω

w(x, y) = I(x),

(15)

having used the fact that the kernel is normalized. As in the ratio-reset formulation, this prop-

erty implies that over-exposed pictures could not be enhanced with Retinex unless we use a post-
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processing stage and that further iterations of Retinex keep on increasing the intensity until a white

image is reached.

This equation of KBR does not correspond to the minimization of an energy functional. How-

ever, let us consider the sum of the function f
(
I(x)
I(y)

)
sign+(I(y) − I(x)) and of its the anti-

symmetrized version on the region {x ∈ Ω : I(y) ≤ I(x)}, i.e.

LaKBR
w (x) =

∑
y∈Ω

w(x, y) f

(
I(x)

I(y)

)
sign+(I(y)− I(x))

−
∑
y∈Ω

w(x, y) f

(
I(y)

I(x)

)
sign−(I(y)− I(x))

(16)

where aKBR stands for anti-symmetrized KBR.

In26 it was proven that the right-hand side of the previous equation can be interpreted as the

minimization of the energy functional given by:

Cf
w(I) =

∑
x∈Ω

∑
y∈Ω

w(x, y)f

(
min(I(x), I(y))

max(I(x), I(y))

)
. (17)

Minimizing Cf
w(I) corresponds to maximizing the contrast in a local (due to the presence of the

weightw) and non linear way (due to the ratio and to the presence of f ). In fact, since the functional

Cf
w(I) is defined via a quotient, its argmin will balance the minimization of the numerator and

maximization of the denominator, thus the minimal and the maximal intensity will be spread apart

and this will generate a contrast enhancement. This explained in a quantitative and qualitative

way how and why the somewhat involved ratio-reset mechanism of Retinex allows for a unilateral

contrast enhancement, always directed towards the highest intensity.

KBR, ACE, RACE and STRESS corrected this unilateral behavior. In30 the spatially-based
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variational framework was translated into a wavelet-based setting.

4 Retinex: a ‘melody’ that everyone plays differently

In image processing it is hard to find a model whose name has been interpreted in so many different

ways as ‘Retinex’. In this section, we present a synthetic description of the evolution of the Retinex

interpretation.

Path-wise Retinex share a local WP nature and mostly differ from each other by the path ge-

ometry used to explore spatial locality: Land and McCann used piecewise linear paths in.1 In31, 32

and33 those paths were substituted by double spirals, Brownian paths and traces of a specialized

swarm of termites, respectively.

Center/surround Retinex are local GW algorithms originated from,34 where Land noticed that

he could reproduce Mach bands originated by a spinning white square on a black background by

using a different Retinex formulation. Precisely, for every image point, the intensity of the center

x is replaced by the ratio between I(x) and the average value of the surround, sampled with a

density that decays as the inverse of the square distance from the center. Writing with LCS this

‘center/surround lightness’, we have: LCS(x) = I(x)/ < {I(y), y ∈ Surround} >, where < · >

represents the average operator. Comparing this last formula with (5), it can be seen that there

is a fundamental difference between this formulation and the ratio-reset one: there the ratio is

performed over the pixel with highest intensity, while in this formulation it is implemented over

the mean value of the surround. In practice, this last formulation can be seen as a gray-world

method to remove the illuminant component of the image.16

In 1997, Johbson, Rahman and Woodell35 re-elaborated Land’s idea presented in:34 they worked

with logarithmic data, approximating the average of the surround by convolving the image func-
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tion I with a normalized kernel function F , usually a Gaussian. If we use again, for simplicity, the

symbol LCS, we can write this model as follows: LCS(x) = log(I(x))− log((F ∗ I)(x)), ∀x ∈ Ω.

Multilevel Retinex algorithms were pioneered by Frankle and McCann in9 and further refined

in.36 In these works a multilevel version of the ratio-reset local WP Retinex is presented, the

authors abandon paths and consider a computation that takes into account all pixels. The input

image is progressively sub-sampled averaging a number of pixel that grows as increasing powers

of 2. On each sub-sample level a ratio-reset computation (without threshold) is operated a certain

number of times, from the coarser sub-sample level to the finest one. Because of the sub-sampling,

as we go far from the target pixel, we do not consider actual pixel values, but average values of

macroareas of increasing size. A rigorous mathematical formulation of these multilevel algorithms

is still lacking.

Based on this idea, Marini, Rizzi and De Carli32 constructed a local WP multilevel version

of Brownian path Retinex that reduced the amount of noise in the output images. A different

multilevel proposal has been pointed out by Johbson, Rahman and Woodell in:37 they introduced a

certain number S of scales where performing the convolutions with normalized Gaussian functions

Fs, s = 1, . . . , S. Each scale is associated to a suitable weight ws, which gives more importance

to finer scales than to coarser ones.

Finally there are WP Retinex versions based on solving a Poisson equation. They rely on a

work of Horn,3 in which he remarkably pointed out, for the first time, the need for a spatially

isotropic two-dimensional version of Retinex. Horn considered, as Land, only Mondrian tableaux

illuminated by a smoothly varying light. However, differently from Land, he explicitly tackled

the ill-posed problem of inverting the equation Ic(x) = Sc(x)Lc(x), c ∈ {R,G,B}, with re-

spect to Sc(x), the reflectance of the point x, knowing only the image intensity Ic(x) and not the
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illumination Lc(x). If we pass to logarithmic values, i.e. log Ic(x) = logSc(x) + logLc or, equiv-

alently, logSc(x) = log Ic(x) − logLc and we apply a differential operator D to both sides, then

D(logLc(x)) will be small but finite everywhere, while D(logSc(x)) will be different from zero

only if x is close to sharp edges.

If we apply a threshold operator δT defined as follows:

δT (s) =


s if |s| > T

0 elsewhere,

for all s ∈ R and if the threshold T > 0 is small enough, then we obtain D(logSc(x)) =

δT (D(log Ic(x))). Horn insisted on the choice of the Laplacian for D instead of the gradient, argu-

ing that first order derivatives are one-dimensional, while the second order derivatives involved in

the Laplacian are isotropic and thus more suited for the topology of an image. By substituting D

with the Laplacian operator ∆, the last formula becomes a Poisson equation:

∆(logSc(x)) = δT (∆(log Ic(x))), (18)

whose solution allows to recover the logarithmic reflectance logSc(x). It is clear that Horn’s

method is based on quite restrictive hypotheses: smoothness of illumination (violated by scenes

with deep shadows, for instance) and a Mondrian-like world (violated each time edges are not

sharp).
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5 Mathematical formalizations of Horn’s interpretation

Besides the variational framework described in section 3, in the literature there exist alternative

variational models of Retinex-like algorithms and also formalizations based on partial differential

equations (PDE). The aim of this section is not to give an exhaustive list, rather to discuss the main

features of the most famous alternative mathematical formalizations of Retinex-like algorithms

present in the literature.

The first authors to embed a Retinex-like algorithm in a variational framework were Kimmel

and colleagues in.38 They did not considered the ratio-threshold-reset Retinex, but Horn’s inter-

pretation. In fact, they started from the logarithmic equation log Ic(x) = logSc(x) + logLc(x),

c ∈ {R,G,B} and tried to solve it with respect to logLc(x) by imposing the hypothesis of smooth-

ness on the illuminant part of the logarithmic image. Once obtained an estimation of the illu-

mination, they could infer the reflectance information Sc(x). This one then undergoes suitable

transformations and gives an illuminant-invariant version of the original image.

It is important to underline a fundamental difference between this variational technique and the

one presented in the previous sections: here contrast enhancement of the original image log Ic(x)

is obtained by decreasing the contrast of the illuminant image logLc(x). In fact, log Ic(x) is

measured by the camera and so it is a fixed data, logLc(x) is estimated by using a smoothness

prior, thus the estimated reflectance logSc(x) = log Ic(x)− logLc(x), or Sc(x) = Ic(x)/Lc(x) is

forced to have a stronger contrast than the original image data. Instead, the variational principles

previously discussed act directly on the contrast of the original image, without taking into account

the separation between reflectance and illuminant and related approximations and priors.

Avoiding the subscript c, the functional proposed in,38 with the notations of this paper, can be
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expressed as follows:

Eα,β(logL) =
∑
x∈Ω

[|∇ logL(x)|2 + α(logL(x)− log I(x))2 + β|∇(logL(x)− log I(x))|2] (19)

with the constraints logL(x) ≥ log I(x), because the reflectance S(x) is always between 0 and 1,

and the boundary condition 〈∇ logL,~n〉 = 0 on ∂Ω, i.e. logL orthogonal to the normal ~n to the

boundary ∂Ω of Ω.

The first term of the functional forces spatial smoothness on the illumination L. The au-

thors chose that particular analytical form because the Euler-Lagrange equation associated to∑
x∈Ω |∇ logL(x)|2 is the Laplace PDE ∆ logL = 0, whose steepest descent solution is equiv-

alent to a Gaussian smoothing. The second penalty term forces a proximity between logL and

log I , so that their difference logS, the logarithmic reflectance, tends to 0, i.e. the reflectance R

tends to 1, or white. The authors declare that the principal objective of this term is to regularize the

problem, so that it is better conditioned in view of a numerical solution and they set the constant

α to a very small value not to force too much logL towards log I . The third term represents a

Bayesian penalty, which forces reflectance gradients to be smooth. The authors declared to have

introduced it to force R to be visually pleasing, without abrupt variations.

Morel, Petro and Sbert39 analyzed the Retinex model40 without the reset mechanism. They

showed that, if the Retinex paths are interpreted as symmetric random walks, then Retinex is

equivalent to the following Neumann problem for a Poisson equation:


−∆L(x) = F (x) x ∈ Ω

∂L(x)
∂~n

= 0 x ∈ ∂Ω,

where F is a suitable scalar field, see39 page 2830.
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Let us now consider the algorithm STRESS. We recall that the basic information needed by

STRESS is given by the two envelope functions Emin and Emax which, in the original formulation,

are computed through the same random spray technique of RSR.10 To avoid the typical noise

problems related to this technique, in,41 the authors proposed to compute the envelope functions

via the minimization of a functional based on the total variation, instead of using the random spray

technique. For this reason the corresponding algorithm is called STRETV and corresponds to the

minimization of the following functional for E (in this case E denotes the envelope and not the

energy functional): ∑
x∈Ω

[
|∇E(x)|+ λ

2
|E(x)− I(x)|2

]
(20)

subjected to E(x) ≥ I(x) to compute Emax and to E(x) ≤ I(x) for Emin.

The minimization of the first (total variation) term, assures the spatial smoothness of the en-

velope functions, the second term is a fidelity term used not to depart too much from the original

image values. The authors declare that the coefficient λ must be� 1 for good results. The authors

do not specify if they consider a spatial kernel to localize their computation or not.

The last variational formalization that we discuss here is that presented in42 relative to the

termite Retinex.33, 43 Here an energy functional is taken into account to determine the geometry of

the paths used by Retinex. Fixed a pixel x ∈ Ω, the authors search for the path γ : [0, 1] → Ω,

γ(0) = x, the minimizes the energy functional defined by:

E(γ) =

∫ 1

0

[
1

1 + (D2 − ‖x− γ(s)‖2)‖∇I(γ(s))‖2
+ θ(γ(s))

]
ds, (21)

where D is the diagonal of Ω and 1 is introduced to avoid singularities in the case the denominator
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is 0. The paths that minimize E(γ) are those which balance the fact to remain as close to x

as possible and, simultaneously, to explore image areas with high values of the gradient. Both

features maximize the denominator of the first term. If x lies in an area with a high density of

edges, γ will not go too far from x, instead, if x lies in a rather homogeneous area, γ will be forced

to explore the image points far away from x to find the important edge information. θ(γ(s)), the

so-called ‘poison term’, is set to zero at the beginning, and it increases each time a path has been

traveled, to prevent from exploring the same image area all the time. Once a set ofN path has been

selected, the intensity I(x) of the pixel x in each separate chromatic channel is modified with the

Retinex formula (5).

6 Conclusions

In the past fifteen years, variational methods have been used to formalize color correction algo-

rithms. This permitted to point out similarities and differences among several models that were

difficult to detect just looking at their direct equations. In this paper we have described, in a self-

contained way, both the direct and the variational versions of several color enhancement algorithms

inspired by the seminal Retinex theory of color vision. A particular emphasis has been put in high-

lighting the very different variational formulations of the original Retinex of Land and McCann

and those referring to Horn’s interpretation, which are often misleadingly mixed in the literature.

When the variational formulation of the ratio-reset Retinex is compared with Horn’s a clear differ-

ence is underlined, both in the functional terms and in the argument of the variational energies. A

more complete treatise about this subject can be found in.44
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current research interests include image processing and mathematical models of human vision.

List of Figures

1 Digital (personal) reproduction of a typical Mondrian tableau used by Land and

McCann for their color matching experiments.
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2 An example of (normalized) random spray. Normalization refers to the fact that

the horizontal and vertical axes have been normalized between 0 and 1.

27


	Introduction
	Land and McCann's ratio-threshold-reset Retinex model
	The limit behavior 0
	From paths to pixel sprays: RSR and related algorithms

	A variational framework for the ratio-reset Retinex
	Retinex: a `melody' that everyone plays differently
	Mathematical formalizations of Horn's interpretation
	Conclusions

