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To Robert Tichy, for his 60th birthday

Abstract

Let b ≥ 2 be an integer and let sb(n) denote the sum of the digits
of the representationof an integer n in base b. For sufficiently large
N , one has

Card{n ≤ N : |s3(n)− s2(n)| ≤ 0.1457232 log n} > N0.970359.

The proof only uses the separate distributions of the values of s2(n)
and s3(n).

1 Introduction

For integers b ≥ 2 and n ≥ 0, we denote by “the sum of the digits of n in
base b” the quantity

sb(n) =
∑
j≥0

εj, where n =
∑
j≥0

εjb
j with ∀j : εj ∈ {0, 1, . . . , b− 1}.

Our attention on the question of the proximity of s2(n) and s3(n) comes
from the apparently non related question of the distribution of the least non
zero digit of n! in base 12 (cf. [1] and [2]).

Computation shows that there are 48 266 671 607 numbers up to 1012 for
which s2(n) = s3(n), but it seems to be unknown whether the are infinitely
many integers n for which s2(n) = s3(n) or even for which |s2(n)− s3(n)| is
significantly small.
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The first result we mention may well be known but we did not find trace
of it in the literature. We recall that a sequence A ⊂ N of integers is said to
have asymptotic natural density 1 if

Card{n ≤ N : n ∈ A} = N + o(N).

Theorem 1. For any ψ be a function tending to infinity with its argument.
The sequence of natural numbers n for which(

1

log 3
− 1

log 4

)
log n− ψ(n)

√
log n ≤ s3(n)− s2(n)

≤
(

1

log 3
− 1

log 4

)
log n+ ψ(n)

√
log n

has asymptotic natural density 1.

Our main result is that there exist infinitely many n for which |s3(n)− s2(n)|
is significantly smaller than

(
1

log 3
− 1

log 4

)
log n = 0.18889... log n. More pre-

cisely

Theorem 2. For sufficiently large N , one has

Card{n ≤ N : |s3(n)− s2(n)| ≤ 0.1457232 log n} > N0.970359. (1)

This result is obtained by looking separately at the distributions of (s2(n))nand
(s3(n))n, without using any information (nor hypothesis) on their joint dis-
tribution, nor any Diophantine argument.

In Section 2, we provide a heuristic approach to Theorems 1 and 2; the
actual distribution of (s2(n))nand (s3(n))n is studied in Section 3. The proof
of Theorems 1 and 2 are given in Sections 4 and 5.

2 A heuristic approach

As a warm up for the actual proofs, we sketch a heuristic approach. A
positive integer n may be expressed as

n =

J(n)∑
j=0

εjb
j, with J(n) =

⌊
log n

log b

⌋
.
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If we consider an interval of integers around N , the smaller is j the more
equidistributed are the εj’s, and the smaller is a family J = {j1 < j2 <
· · · < js} the more independent are the εj’s for j ∈ J . Thus a first model

for sb(n) for n around N is to consider a sum of
⌊
logN
log b

⌋
independent random

variables uniformly distributed in {0, 1, . . . , b − 1}. Thinking of the central
limit theorem, we even consider a continuous model, representing sb(n), for
n around N by a Gaussian random variable Sb,N with expectation and dis-
persion given by

E (Sb,N) =
(b− 1) logN

2 log b
and V (Sb,N) =

(b2 − 1) logN

12 log b
.

In particular

E (S2,N) =
logN

log 4
and E (S3,N) =

logN

log 3
,

and their standard deviations have the order of magnitude
√

logN .

Towards Theorem 1. If ψ(N) is a function which tends to infinity when
N tends to infinity, we have

P
(∣∣∣∣S3,N −

logN

log 3

∣∣∣∣ ≤ ψ(N)
√

logN

)
= 1 + o(1)

and

P
(∣∣∣∣S2,N −

logN

log 4

∣∣∣∣ ≤ ψ(N)
√

logN

)
= 1 + o(1),

which implies that when N tends to infinity we have almost surely∣∣∣∣(S3,N − S2,N)−
(

1

log 3
− 1

log 4

)
logN

∣∣∣∣ ≤ 2ψ(N)
√

logN.

Towards Theorem 2. If we wish to deal with a difference |s3(n)−s2(n)| <
u log n for some u <

(
1

log 3
− 1

log 4

)
we must, by what we have seen above,

consider events of asymptotic probability zero, which means that a heuris-
tic approach must be substantiated by a rigorous proof. Our key remark
is that the dispersion of S3,N is larger than that of S2,N ; this implies the
following: the probability that S3,N is at a distance d from its mean is
larger that the probability that S2,N is at a distance d from its mean. So,
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we have the hope to find some u <
(

1
log 3
− 1

log 4

)
such that the proba-

bility that |S2,N − E(S2,N)| > u logN is smaller than the probability that
S3,N is very close to E(S2,N). This will imply that for some ω we have
|S3,N(ω)− S2,N(ω)| ≤ u logN .

3 On the distribution of the values of s2(n)

and s3(n)

In order to prove Theorems 1 and 2 we need
• a central limit theorem for s2 and s3,
• an upper bound for the tail of the distribution of s2,
• a lower bound for the tail of the distribution of s3.

3.1 Central limit theorem for sb

Proposition 1. Let ψ be any function tending to infinity with its argument.
We have, as N tends to infinit

Card

{
n ≤ N :

∣∣∣∣sb(n)− (b− 1) log n

2 log b

∣∣∣∣ ≤ ψ(n)
√

log n

}
= N + o(N).

We leave it to the Reader, as an exercise in elementary calculus to show
that Proposition 1 is a consequence of (and indeed is equvalent to) the fol-
lowing

Proposition 2. Let ϕ be any function tending to infinity with its argument.
We have, as the integer L tends to infinity

b−L Card

{
0 ≤ n < bL :

∣∣∣∣sb(n)− (b− 1)L

2

∣∣∣∣ ≤ ϕ(L)
√
L

}
= 1 + o(1). (2)

Proof. We consider L independant random variables X1, X2, . . . , XL which
are uniformly distributed in {0, 1, . . . , b}, and we let ΣL = X1+X2+ · · ·+XL
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be their sum. For any integer m one has

b−L Card
{

0 ≤ n < bL : sb(n) = m
}

= b−L
∑

`0+···+`b−1=L
`1+2`2+···+(b−1)`b−1=m

L!

`0! · · · `b−1!

= P(ΣL = m). (3)

Since

E (ΣL) =
(b− 1)L

2
and V (ΣL) =

(b2 − 1)L

12
,

Proposition 2 is but a reformulation of the central limit theorem applied to
the sequence (ΣL = X1 +X2 + · · ·+XL)L.

3.2 Upper bound for the tail of the distribution of s2

Proposition 3. Let λ ∈ (0, 1). For any

ν > 1− ((1− λ) log(1− λ) + (1 + λ) log(1 + λ)) / log 4

and any sufficiently large integer H, we have

Card{n < 22H : |s2(n)−H| ≥ λH} ≤ 22Hν . (4)

Proof. When b = 2, the distribution of the values of s2(n) is simply binomial;
Equation (3) becomes

Card
{

0 ≤ n < 22H : s2(n) = m
}

=

(
2H

m

)
.

Using the fact that the sequence (in m)
(
2H
m

)
is symmetric and unimodal plus

Stirling’s formula, we obtain that when m ≤ (1−λ)H or m ≥ (1 +λ)H, one
has (

L

m

)
≤ HO(1) (2H)2H

((1− λ)H)(1−λ)H((1 + λ)H)(1+λ)H

≤ HO(1)

(
22

(1− λ)(1−λ)(1 + λ)(1+λ)

)H
≤ HO(1)

(
2(1−((1−λ) log(1−λ)+(1+λ) log(1+λ))/2 log 2)

)2H
.

Relation (4) comes from the above inequality and the fact that the left hand
side of (4) is the sum of at most 2H such terms.
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3.3 Lower bound for the tail of the distribution of s3

Proposition 4. Let K be sufficiently large an integer. We have

Card{n < 3L : s3(n) = bL log 3/ log 4c} ≥ 30.9703591L. (5)

Proof. We use (3), and select one term in the sum. We choose

l2 = b0.235001143Lc ; l1 = bL log 3/ log 4c − 2 l2 ; l0 = L− l1 − l2.

The integers n which have l0 digits 0, l1 digits 1 and l2 digits 2, in base
3, have L digits and thus lie in the interval [0, 3L), have a sum of digits
l1+2 l2 = bL log 3/ log 4c and their number is L!/(l0!l1!l2!). A straightforward
application of Stirling’s formula, similar to the one used in the previous
subsection, leads to (5).

4 Proof of Theorem 1

Let us consider the two sets

AN =

{
n ≤ N :

∣∣∣∣s2(n)− log n

log 4

∣∣∣∣ ≤ ψ(n)
√

log n

}
and

BN =

{
n ≤ N :

∣∣∣∣s3(n)− log n

log 3

∣∣∣∣ ≤ ψ(n)
√

log n

}
.

Since those two sets of integers are included in [0, N ], we have, using Propo-
sition 1

Card (AN ∩ BN) = Card (AN) + Card (BN)− Card (AN ∪ BN) ≥ N + o(N).

When n belongs to AN ∩BN , it satisfies the double inequality of Theorem 1
(indeed with 2ψ(n) instead od ψ(n), which is irrelevant).

2
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5 Proof of Theorem 2

Let N be sufficiently large an integer. We let K = blogN/ log 3c − 2 and
H = b(K − 1) log 3/ log 4c+ 2. We notice that we have

N/27 ≤ 3K−1 < 3K < 22H ≤ N. (6)

We use Proposition 3 with λ = 0.14572319 log 4, which leads to

Card{n ≤ 22H : |s2(n)−H| ≥ λH} ≤ 20.97039581×2H ≤ N0.97039581. (7)

For any n ∈ [2 · 3K−1, 3K) we have s3(n) = 2 + s3(n − 2 · 3K−1) and so it
follows from Proposition 4 that we have

Card{n ∈ [2 · 3K−1, 3K) : s3(n) = H}
= Card{n < 3K−1) : s3(n) = H − 2}
= Card{n < 3K−1) : s3(n) = b(K − 1) log 3/ log 4c}
≥ 30.9703591(K−1) ≥ N0.97035905.

This implies that we have

Card{n ≤ 22H : s3(n) = H} ≥ N0.970395905. (8)

From (7) and (8), we deduce that for N sufficiently large, we have

Card{n ≤ N : bs2(n)− s3(n)c ≤ 0.1457232 log n} ≥ N0.970359.
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