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Introduction

For integers b ≥ 2 and n ≥ 0, we denote by "the sum of the digits of n in base b" the quantity s b (n) = j≥0 ε j , where n = j≥0 ε j b j with ∀j : ε j ∈ {0, 1, . . . , b -1}.

Our attention on the question of the proximity of s 2 (n) and s 3 (n) comes from the apparently non related question of the distribution of the least non zero digit of n! in base 12 (cf. [START_REF] Deshouillers | The least non zero digit of n! in base 12[END_REF] and [START_REF] Deshouillers | A footnote to The least non zero digit of n! in base 12[END_REF]).

Computation shows that there are 48 266 671 607 numbers up to 10 12 for which s 2 (n) = s 3 (n), but it seems to be unknown whether the are infinitely many integers n for which s 2 (n) = s 3 (n) or even for which |s 2 (n) -s 3 (n)| is significantly small.
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The first result we mention may well be known but we did not find trace of it in the literature. We recall that a sequence A ⊂ N of integers is said to have asymptotic natural density 1 if

Card{n ≤ N : n ∈ A} = N + o(N ).
Theorem 1. For any ψ be a function tending to infinity with its argument. The sequence of natural numbers n for which

1 log 3 - 1 log 4 log n -ψ(n) log n ≤ s 3 (n) -s 2 (n) ≤ 1 log 3 - 1 log 4 log n + ψ(n) log n
has asymptotic natural density 1.

Our main result is that there exist infinitely many n for which |s 3 (n) -s 2 (n)| is significantly smaller than (

) 1 
This result is obtained by looking separately at the distributions of (s 2 (n)) n and (s 3 (n)) n , without using any information (nor hypothesis) on their joint distribution, nor any Diophantine argument.

In Section 2, we provide a heuristic approach to Theorems 1 and 2; the actual distribution of (s 2 (n)) n and (s 3 (n)) n is studied in Section 3. The proof of Theorems 1 and 2 are given in Sections 4 and 5.

A heuristic approach

As a warm up for the actual proofs, we sketch a heuristic approach. A positive integer n may be expressed as

n = J(n) j=0 ε j b j , with J(n) = log n log b .
If we consider an interval of integers around N , the smaller is j the more equidistributed are the ε j 's, and the smaller is a family In particular

J = {j 1 < j 2 < • • • < j s }
E (S 2,N ) = log N log 4 and E (S 3,N ) = log N log 3 ,
and their standard deviations have the order of magnitude √ log N .

Towards Theorem 1. If ψ(N ) is a function which tends to infinity when N tends to infinity, we have

P S 3,N - log N log 3 ≤ ψ(N ) log N = 1 + o(1)
and

P S 2,N - log N log 4 ≤ ψ(N ) log N = 1 + o(1),
which implies that when N tends to infinity we have almost surely

(S 3,N -S 2,N ) - 1 log 3 - 1 log 4 log N ≤ 2ψ(N ) log N .
Towards Theorem 2. If we wish to deal with a difference

|s 3 (n) -s 2 (n)| < u log n for some u < 1 log 3 -1 log 4
we must, by what we have seen above, consider events of asymptotic probability zero, which means that a heuristic approach must be substantiated by a rigorous proof. Our key remark is that the dispersion of S 3,N is larger than that of S 2,N ; this implies the following: the probability that S 3,N is at a distance d from its mean is larger that the probability that S 2,N is at a distance d from its mean. So, we have the hope to find some u <

1 log 3 -1 log 4
such that the probability that |S 2,N -E(S 2,N )| > u log N is smaller than the probability that S 3,N is very close to E(S 2,N ). This will imply that for some ω we have

|S 3,N (ω) -S 2,N (ω)| ≤ u log N .
3 On the distribution of the values of s 2 (n) and s 3 (n)

In order to prove Theorems 1 and 2 we need • a central limit theorem for s 2 and s 3 ,

• an upper bound for the tail of the distribution of s 2 ,

• a lower bound for the tail of the distribution of s 3 .

Central limit theorem for s b

Proposition 1. Let ψ be any function tending to infinity with its argument. We have, as N tends to infinit

Card n ≤ N : s b (n) - (b -1) log n 2 log b ≤ ψ(n) log n = N + o(N ).
We leave it to the Reader, as an exercise in elementary calculus to show that Proposition 1 is a consequence of (and indeed is equvalent to) the following Proposition 2. Let ϕ be any function tending to infinity with its argument. We have, as the integer L tends to infinity

b -L Card 0 ≤ n < b L : s b (n) - (b -1)L 2 ≤ ϕ(L) √ L = 1 + o(1). (2) 
Proof. We consider L independant random variables X 1 , X 2 , . . . , X L which are uniformly distributed in {0, 1, . . . , b}, and we let

Σ L = X 1 +X 2 +• • •+X L
be their sum. For any integer m one has

b -L Card 0 ≤ n < b L : s b (n) = m = b -L 0 +•••+ b-1 =L 1 +2 2 +•••+(b-1) b-1 =m L! 0 ! • • • b-1 ! = P(Σ L = m). (3) 
Since

E (Σ L ) = (b -1)L 2 and V (Σ L ) = (b 2 -1)L 12 ,
Proposition 2 is but a reformulation of the central limit theorem applied to the sequence (

Σ L = X 1 + X 2 + • • • + X L ) L .
3.2 Upper bound for the tail of the distribution of s 2 Proposition 3. Let λ ∈ (0, 1). For any Using the fact that the sequence (in m) 2H m is symmetric and unimodal plus Stirling's formula, we obtain that when m ≤

ν > 1 -((1 -λ) log(1 -λ) + (1 + λ) log(1 + λ)) /
(1 -λ)H or m ≥ (1 + λ)H, one has L m ≤ H O(1) (2H) 2H ((1 -λ)H) (1-λ)H ((1 + λ)H) (1+λ)H ≤ H O(1) 2 2 (1 -λ) (1-λ) (1 + λ) (1+λ) H ≤ H O(1) 2 (1-((1-λ) log(1-λ)+(1+λ) log(1+λ))/2 log 2) 2H .
Relation (4) comes from the above inequality and the fact that the left hand side of (4) is the sum of at most 2H such terms.

Proof of Theorem 2

Let N be sufficiently large an integer. We let K = log N/ log 3 -2 and H = (K -1) log 3/ log 4 + 2. We notice that we have

N/27 ≤ 3 K-1 < 3 K < 2 2H ≤ N. (6) 
We use Proposition 3 with λ = 0.14572319 log 4, which leads to Card{n ≤ 2 2H : |s 2 (n) -H| ≥ λH} ≤ 2 0.97039581×2H ≤ N 0.97039581 .

For any n ∈ [2 • 3 K-1 , 3 K ) we have s 3 (n) = 2 + s 3 (n -2 • 3 K-1 ) and so it follows from Proposition 4 that we have

Card{n ∈ [2 • 3 K-1 , 3 K ) : s 3 (n) = H} = Card{n < 3 K-1 ) : s 3 (n) = H -2} = Card{n < 3 K-1 ) : s 3 (n) = (K -1) log 3/ log 4 } ≥ 3 0.9703591(K-1) ≥ N 0.97035905 .

This implies that we have Card{n ≤ 2 2H : s 3 (n) = H} ≥ N 0.970395905 . (8) From ( 7) and (8), we deduce that for N sufficiently large, we have Card{n ≤ N : s 2 (n) -s 3 (n) ≤ 0.1457232 log n} ≥ N 0.970359 .
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 132 -1 log 4 log n = 0.18889... log n. More precisely For sufficiently large N , one has Card{n ≤ N : |s 3 (n) -s 2 (n)| ≤ 0.1457232 log n} > N 0.970359 .

  the more independent are the ε j 's for j ∈ J . Thus a first model for s b (n) for n around N is to consider a sum of log N log b independent random variables uniformly distributed in {0, 1, . . . , b -1}. Thinking of the central limit theorem, we even consider a continuous model, representing s b (n), for n around N by a Gaussian random variable S b,N with expectation and dispersion given by E (S b,N ) = (b -1) log N 2 log b and V (S b,N ) = (b 2 -1) log N 12 log b .

  log 4 and any sufficiently large integer H, we have Card{n < 2 2H : |s 2 (n) -H| ≥ λH} ≤ 2 2Hν . (4) Proof. When b = 2, the distribution of the values of s 2 (n) is simply binomial; Equation (3) becomes Card 0 ≤ n < 2 2H : s 2 (n) = m = 2H m .

Lower bound for the tail of the distribution of s 3

Proposition 4. Let K be sufficiently large an integer. We have

(5)

Proof. We use (3), and select one term in the sum. We choose

The integers n which have l 0 digits 0, l 1 digits 1 and l 2 digits 2, in base 3, have L digits and thus lie in the interval [0, 3 L ), have a sum of digits l 1 +2 l 2 = L log 3/ log 4 and their number is L!/(l 0 !l 1 !l 2 !). A straightforward application of Stirling's formula, similar to the one used in the previous subsection, leads to (5).

Proof of Theorem 1

Let us consider the two sets

Since those two sets of integers are included in [0, N ], we have, using Proposition 1

When n belongs to A N ∩ B N , it satisfies the double inequality of Theorem 1 (indeed with 2ψ(n) instead od ψ(n), which is irrelevant).
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