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On the distribution modulo one of the mean values of some arithmetical functions, II

This article is a continuation of our first paper on this subject. Here, we consider the distribution modulo one of the mean value of slowly fluctuating arithmetic function over the values of quadratic polynomials.

Introduction

Our arithmetic functions are of the divisor type

g(n) = d|n h(d) (1) 
1 with

h(d) d -θ , θ > 1 2 . ( 2 
)
The typical example which was considered in the previous papers [START_REF] Deshouillers | On the distribution of some means concerning the Euler function[END_REF], [START_REF] Deshouillers | On the distribution modulo one of the mean values of some arithmetical functions[END_REF] and [START_REF] Deshouillers | Distribution modulo 1 of a linear sequence associated to a multiplicative function evaluated at polynomial arguments[END_REF] is

g(n) = ϕ(n) n = d|n µ(d) d . (3) 
It has been proved in [START_REF] Deshouillers | Distribution modulo 1 of a linear sequence associated to a multiplicative function evaluated at polynomial arguments[END_REF] that the sequence m≤n ϕ(m 2 + 1)

m 2 + 1 , n = 1, 2, . . . (4) 
is dense modulo one. In [START_REF] Hassani | On the distribution of a linear sequence associated to sum of divisors evaluated at polynomial arguments[END_REF] this result is extended to the function g(n) = m/σ(m) and some numerical computations are presented, suggesting that the associated sequence is uniformly distributed modulo one. Notice that sequences of the form (4) have also been considered by H. N. Shapiro (cf. [START_REF] Shapiro | Introduction to the Theory of Numbers[END_REF], p. 178).

In this paper, we establish relevant results which reduce the question of uniform distribution to the irrationality of suitable numbers.

Theorem 1. Let g = 1 * h with h satisfying [START_REF] Deshouillers | On the distribution modulo one of the mean values of some arithmetical functions[END_REF]. Put

α = d ω(d)h(d)d -1 , (5) 
where ω(d) denotes the number of roots ν (mod d) of the congruence ν 2 + 1 ≡ 0 (mod d). If α is irrational, then the sequence (a n ) given by

a n = 0<m≤n g(m 2 + 1), n = 1, 2, . . . (6) 
is uniformly distributed modulo one.

Note that ω is multiplicative with ω(2) = 1, ω(2 a ) = 0 if a ≥ 2, ω(p a ) = 2 if p ≡ 1(mod 4), a ≥ 1 and ω(p a ) = 0 if p ≡ 3(mod 4), a ≥ 1.
In the case (3) we get the number

α = 3 4 p≡1(4) 1 - 2 p 2 , (7) 
which we expect to be irrational, yet it remains an open question. Our more general Theorem 1 does not address the uniformity of distribution modulo one if the attributed number α given by the series ( 5) is rational; it seems hard to draw necessary conditions from our proof argument.

Fourier analysis of a n

First, we develop a suitable formula for every element of the sequence (a n ) with 0 < n ≤ N . By (1) we get 

a n = d≤D h(d) 0<m≤n m 2 +1≡0(d)
1 = n -ν d - -ν d = n d -ψ n -ν d + ψ -ν d where ψ(x) = x -[x] -1 2 .
Hence a n splits accordingly, namely

a n = α(D)n -Ψ D (n) + Ψ D (0) where α(D) = d≤D ω(d)h(d)d -1 (8) 
and

Ψ D (n) = d≤D h(d) ν 2 +1≡0(d) ψ n -ν d . (9) 
The last term Ψ D (0) is constant in n, so we keep it in this form

Ψ D (0) = d≤D h(d) ν 2 +1≡0(d) ψ -ν d . ( 10 
)
We break the middle term Ψ D (n) into two partial sums

Ψ D (n) = Ψ C (n) + Ψ CD (n) according as d ≤ C or C < d ≤ D
, where the breaking parameter C will be a rather small integer with 1 < C! < N . Note that Ψ C (n) depends only on the class of n modulo C!, so we can afford to leave Ψ C (n) alone. It remains to evaluate Ψ CD (n). To this end we establish the following formula Lemma 1. For integers and d ≥ 1 we have

ψ d = - 1 d 1≤k<d/2 cot πk d sin 2πk d - 1 2 δ d ( 11 
)
where δ is the indicator function of the integers.

Proof. If x = /d is an integer, then both sides of (11) are equal to -1/2. For any x / ∈ Z we have the approximation

ψ(x) = - 1≤k<K 1 πk sin(2πkx) + O(1/ x K)
where x denotes the distance of x to the nearest integer. In particular, for x = /d / ∈ Z and any positive integer A we have

ψ d = - 1 π 1≤k≤d 0≤a<A 1 ad + k sin 2πk d + O 1 A .
Note that the terms with k = d and k = d/2 vanish. Therefore, changing k

to d -k if d/2 < k < d, we get ψ d = - 1 π 1≤k<d/2 0≤a<A 1 ad + k - 1 ad + d -k sin 2πk d + O 1 A .
Letting A tend to infinity, we obtain (11), thanks to the relation (see (1.421.3) of [START_REF] Gradshteyn | Tables of Integrals, Series and Products[END_REF])

∞ a=0 1 a + x - 1 a + 1 -x = 1 x + ∞ a=1 1 a + x - 1 a -x = 1 x - ∞ a=1 2x a 2 -x 2 = π cot(πx),
which ends the proof of Lemma 1.

According to (11

) we split Ψ CD (n) = -Q CD (n) -R CD (n), where Q CD (n) = C<d≤D h(d) d ν 2 +1≡0(d) 1≤k<d/2 cot πk d sin 2πk n -ν d (12) and R CD (n) = 1 2 C<d≤D d|(n 2 +1) h(d). (13) 
Furthermore we break

Q CD (n) = Q CK (n) + Q KD (n)
with the breaking parameter K to be chosen later in the range C < K ≤ N 1/3 . Those two partial sums will be treated differently. Gathering the above results we obtain the desired formula

a n = α(D)n -Ψ C (n) + Ψ D (0) + Q CK (n) + Q KD (n) + R CD (n). ( 14 
)
3 Estimations for sums with ω(d)

We shall need estimates for various sums twisted by the arithmetic functions ω(d) and ω(d)ω(d -). The upper bounds for the sums under our consideration can be derived by partial summation from the following crude estimates

d≤x ω(d) x, d≤x ω 2 (d) x log x. Using ω(d)ω(d -) ≤ ω 2 (d) + ω 2 (d -) we get <d≤x ω(d)ω(d -) x log x
for all 1 ≤ < x, where the implied constant is absolute. Actually, one can show

<d≤x ω(d)ω(d -) x p| 1 + 1 p .

Simple estimations

First we get by (2) the following approximation for the leading coefficient α(D) in ( 14):

α(D) = α(∞) + O d>D ω(d)d -1-θ = α + O N -2θ .
Next we easily show that R CD (n) is small on average. Indeed, we have

R CD (n) C<d≤N d|(n 2 +1) d -θ + τ (n 2 + 1)N -θ ,
where τ denotes the divisor function. Hence

n≤N |R CD (n)| N d>C ω(d)d -1-θ + N 1-θ log N N C -θ . 5 Estimation of Q CK (n)
We shall prove that |Q CK (n)| is small on average. By (12) we get

n≤N |Q CK (n)| k n≤N C<d≤K 2k<d h(d) d cot πk d ν 2 +1≡0(d) e k n -ν d .
Applying Cauchy's inequality and x cot(πx)

1 if 0 < x < 1/2, we get n≤N |Q CK (n)| N 1/2 1≤k≤K k -1 T (k) 1/2
where

T (k) = C k <d 1 ,d 2 ≤K ω(d 1 )ω(d 2 ) (d 1 d 2 ) -θ n≤N e kn 1 d 1 - 1 d 2 and C k = max(C, 2k). Since |k/d 1 -k/d 2 | < 1/2, the sum over n is bounded by d 1 d 2 /k|d 1 -d 2 | if d 1 = d 2 and trivially by N if d 1 = d 2 .
The contributions of the terms with d 1 = d 2 is estimated by

N C k <d≤K ω(d) 2 d -2θ N C 1-2θ k log C k .
The contribution of the terms with d 1 = d 2 is estimated by

1≤ <d≤K ω(d)ω(d -) k d 2-2θ k -1 K 3-2θ (log K) 2 k -1 N 1-2θ/3 (log N ) 2 .
Adding those estimates we conclude that

n≤N |Q CK (n)| N C 1/2-θ (log C) 3/2 .
6 Estimation of Q KD (n)

We have shown that |Q CK (n)| is very small (on average) so the contribution of those parts will be insignificant for the problem of uniform distribution. It turns out that the |Q KD (n)| are also relatively small, but not quite enough to be eliminated straight away. We shall handle those parts by partial summation. To this end, we need to estimate the derivative

Q KD (t) = 2 K<d≤D h(d) d ν 2 +1≡0(d) 1≤k<d/2 πk d cot πk d cos 2πk t -ν d .
The inner sum over k is equal to .

- d/
Hence

Q KD (t) K<d≤D d -θ ν 2 +1≡0(d) 1 + t -ν d d -1
.

Actually, we need a bound for the mean value of |Q KD (t)|. By the above estimate we get

N 0 |Q KD (t)| dt K<d≤D d 1-θ ν 2 +1≡0(d) N/d 0 1 + u - ν d d -1
du.

Here we divide the range of d into dyadic type segments, precisely B < d ≤ 9B/8 with K ≤ B < D, and consider the fractions ν/d with ν 2 + 1 ≡ 0 (mod d). Those fractions can be split into two classes, each of which is δ-spaced modulo one with δ = 1/4B (see the lines above Lemma 2 of [START_REF] Fouvry | Gaussian primes[END_REF]).

Hence, given 0 < u < N/B, we obtain

B<d≤9B/8 ν 2 +1≡0(d) 1 + u - ν d B -1 ≤ 2 0≤a<4B 1 + a 4B B -1 log B.
This shows that the contribution of the terms with d in the B-segment is bounded by

B 1-θ N B -1 log B = N B -θ log B. Summing over B = (9/8) b K, b = 0, 1, 2, . . ., we conclude that N 0 |Q KD (t)| dt N K -θ log K. ( 15 
)
Notice that our proof of (15) holds for h(d) satisfying (2) with any θ > 0 and every D > K ≥ 2, N ≥ 1.

Proof of Theorem 1

By Weyl's criterion the uniform distribution modulo one of the sequence (a n ) is equivalent to the statement

W h (N ) = n≤N e (ha n ) = o(N ) (16) 
for any fixed positive integer h, as N tends to infinity. By the decomposition (14) and by the estimates established in Sections 4 and 5, we get

W h (N ) = e (Ψ D (0)) n≤N e (hαn -hΨ C (n) + hQ KD (n)) + O N 1-2θ + N C -θ + N C 1/2-θ (log C) 3/2
where C < K ≤ N 1/3 and D = N 2 + 1. Here we remove the last part e (hQ KD (n)) by partial summation. Putting

V (t) = n≤t e (hαn -hΨ C (n)) ,
we get

|W h (N )| = N 0 e (hQ KD (t)) dV (t) + O N C 1/2-θ (log C) 3/2 ≤ |V (N )| + N 0 |Q KD (t)V (t)| dt + O N C 1/2-θ (log C) 3/2 N 5/6 max 0<t≤N |V (t)| + N C 1/2-θ (log C) 3/2
by (15) with K = N 1/3 and because θ > 1/2. It remains to estimate V (t). We assume, as in the statement of Theorem 1, that α is irrational. Since Ψ C (n) is periodic in n with period C! we derive by splitting the summation into residue classes modulo C! that

|V (t)| ≤ C! αhC! -1 . Hence W h (N ) N 5/6 C! αhC! -1 + N C 1/2-θ (log C) 3/2
for any integer C in the range 1 < C < N 1/3 . Finally, letting C tend very slowly to infinity as N tends to infinity, we obtain (16).

8 Notes on the constant α Theorem 1 can be established, along the same lines, for general irreducible quadratic polynomials P ∈ Z[X] in place of X 2 + 1. The irreducibility of P is crucial in our arguments; it implies that the fractions ν/d are well-spaced modulo one, which property is exploited in Section 6. Suppose that the number ω(d) of roots ν(mod d) of P (ν) ≡ 0(mod d) satisfies

ω(p) = ω(p 2 ) = ω(p 3 ) = . . . = 1 + χ(p) if p q, ω(p) = 1, ω(p 2 ) = ω(p 3 ) = . . . = 0 if p|q,
where χ is a real primitive character of modulus q. For example, if P (X) = X 2 + b with b square free, then the above conditions hold with the Jacobi symbol χ( * ) = (-b/ * ) which extends to a primitive character of modulus q which divides 4b. Our case P (X) = X 2 + 1 holds with χ being the character of modulus 4. Theorem 1 is particularly interesting for multiplicative functions g = 1 * h, in which case the constant α defined by the series (5) has the Euler product representation α = p α p , with

α p = 1 + h(p) p if p|q, α p = 1 + (1 + χ(p)) h(p) p + h(p 2 ) p 2 + • • • if p q.
If h is totally multiplicative, then α factors into special values of Lfunctions. Indeed, for p q we have

α p = 1 + (1 + χ(p)) h(p) p 1 - h(p) p -1 = 1 - h(p) p -1 1 + χ(p)h(p) p = 1 - h(p) p -1 1 - h 2 (p) p 2 1 - χ(p)h(p) p -1
.

The last expression holds also for α p with p|q. Hence

α = L(1, h)L(2, h 2 ) -1 L(1, χh), (17) 
where, as usual,

L(s, f ) = ∞ n=1 f (n) / n s . An inspiring example of Theorem 1 is for g(n) = σ(n) n = d|n d -1 . Since h(d) = d -1 , the constant α becomes α = ζ(2)ζ(4) -1 L(2, χ) = 15π -2 L(2, χ).
Probably α is irrational for any real character χ = χ 0 . There is an extensive literature about the special values of L-functions. In the special case χ = χ 4 , we get the Catalan number

G = L(2, χ 4 ) = 1 - 1 3 2 + 1 5 2 -• • • = 0.915965 • • • .
It is not known whether G and α = 15π -2 G are irrational. In their beautiful paper [START_REF] Gun | A note on special values of L-functions[END_REF] Since χ 4 is an odd character, ξ and ξχ 4 have opposite parity; one knows that when k and χ have the same parity, then L(k, χ) is a rational multiple of π k . In particular, when k = 2 and ξ = 1, the irrationality of α is equivalent to that of ζ(3)/π 3 , which is predicted by several standard conjectures.

  , Sanoli Gun, Ram Murty and Purusottam Rath prove that either π -2 G is irrational or Γ 2 (1/4)/Γ 2 (3/4) is transcendental, where Γ 2 denotes the double gamma function. More generally, if ξ is a Dirichlet character and h(d) = ξ(d) / d k , we have α = L(k + 1, ξ)L(k + 1, ξχ 4 )L(2k + 2, ξ 2 ) -1 .
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