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Abstract 11 

The crisis of biodiversity we currently experience raises the question of the impact of anthropogenic chemicals 12 
on wild life health. Endocrine disruptors are notably incriminated because of their possible effects on 13 
development and reproduction, including at very low doses. As commonly recorded in the field, the burden they 14 
impose on wild species also concerns invertebrates, with possible specificities linked with the specific physiology 15 
of these animals. A better understanding of chemically-mediated endocrine disruption in these species has 16 
clearly gained from knowledge accumulated on vertebrate models. But the molecular pathways specific to 17 
invertebrates also need to be reckoned, which implies dedicated research efforts to decipher their basic 18 
functioning in order to be able to assess its possible disruption. The recent rising of omics technologies opens 19 
the way to an intensification of these efforts on both aspects, even in species almost uninvestigated so far.  20 

Keywords: endocrine disruption; endocrine disrupting chemicals (EDCs); nuclear receptors; oestrogeno-21 
mimetics; ecdysteroids ; Juvenile hormone; omics; mollusks; annelids; arthropods 22 

 23 

1. Introduction 24 

Anthropogenic pollutants are seen as one of the main causes concurring to the ongoing collapse of global 25 
biodiversity. Among them endocrine disrupting chemicals (EDCs) pervade virtually all ecosystems on Earth. They 26 
are largely reported in marine as well as freshwater environments, notably since actual treatment systems fail to 27 
completely remove them from wastewater (e.g. Aris et al., 2014; Huang et al., 2019; Salgueiro-González et al., 28 
2015). They also complex to sediments where they can accumulate and persist, sometimes leading to 29 
permanent release in the milieu following soil erosion. At last, many EDCs (notably phthalates, polychlorinated 30 
biphenyl (PCBs), polycyclic aromatic hydrocarbons (PAHs), brominated flame retardants, dioxins, alkylphenols, 31 
perfluorinated chemicals (PFCs) and also some pesticides) have been shown to be present in the atmosphere at 32 
worrying concentrations (Annamalai and Namasivayam, 2015), and maybe conveyed by the microplastic 33 
particles recently detected in the atmospheric compartment (Dris et al., 2016). Although they belong to various 34 
classes of synthetic and natural compounds, the common feature of EDCs lays in that they can interfere at 35 
different levels of the endocrine system of animals, disrupting physiological, biochemical and /or molecular 36 
processes that control development, growth or reproduction; recent works add neurological and immune 37 
processes to the list (Jones et al., 2017). Toxicological studies have uncovered multiple effects of EDCs, many of 38 
which are hard to predict due to non-monotonic dose-response, frequent cocktail effects and transgenerational 39 
implications (Flint et al., 2012; Skinner, 2014; Vandenberg et al., 2012; Xin et al., 2015; Z. Xu et al., 2017). Beyond 40 
actual concerns as regards human health, the large spread of these molecules, through all ecosystems, from 41 
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Arctic ices to primitive rainforests, also raises concern about the effects of such contamination on animal health 42 
and, ultimately, on worldwide biodiversity (Lenoir et al., 2016; Lyons, 2006; Sonne, 2010). In this respect, 43 
studying endocrine disruption in invertebrate species is meaningful. First, from an anthropocentric point of view, 44 
invertebrates are tremendous tools to detect and quantify the presence of EDCs in natural substrates, and thus 45 
may serve as useful bioindicators. They also allow us to gain knowledge about EDC toxicological properties at the 46 
scale of the individual’s lifetime, which is much more difficult with vertebrate models (Hutchinson, 2007). 47 
Besides, due to their small size which make them easy to handle and stock in the laboratory, and to the large 48 
quantity of material they provide when rearing is possible, they represent a convenient and quick option to set 49 
up multigenerational assays to investigate potential transgenerational effects of EDCs. Second and most 50 
importantly, from an ecological point of view, invertebrates represent a huge part of worldwide biodiversity and 51 
fulfill many crucial ecological roles in every ecosystem (Wilson, 2006); this implies that their present decline is a 52 
clear worrying issue that requires to be handled urgently.  53 
Because of their specific physiology (that diverged from that of vertebrates more than 600 MA ago) it appears 54 
necessary to develop and use invertebrate models allowing to detect and predict the whole set of effects of 55 
environmental EDCs on invertebrates wild populations. Contamination routes are likely multiple, with 56 
proportions depending on species’ life history, and often different from that of vertebrates. In particular, 57 
because of their small size and thus relatively high surface/volume ratio compared to vertebrates, invertebrates 58 
suffer from higher relative exposure levels, which can imply a higher bioaccumulation, or the need to develop 59 
greater excretion capacities. In the aquatic environment, absorption coefficients may be higher compared to 60 
vertebrate species due to the properties of invertebrates body wall, which is often a functional surface of 61 
exchange, for respiratory gases for instance. As regards terrestrial invertebrates, direct contact and oral route 62 
are so far considered as the most probable ways of contamination. However, the possible role of arthropods 63 
cuticle as a trap for atmospheric pollutants just begins to be studied. It could constitute an effective way of 64 
contamination disregarded so far (Lenoir et al., 2014, 2012). Noteworthy, invertebrates generally lack the blood-65 
gonad barrier that provide some protection to reproductive organs in mammals. At last, as for fishes and 66 
amphibians, mature gametes are in most cases directly released in the environment, which implies an exposure 67 
of organisms all along the life cycle – from gametogenesis to adulthood – including the highly vulnerable first 68 
stages of development. In short, apprehending the consequences of invertebrates exposure to EDC implies to 69 
take into account many of their peculiarities, and specific researches are required in this field, which is reflected 70 
by the growing body of literature dedicated to the subject.  71 
In this review, we will first try to gauge the burden environmental EDCs place on invertebrate populations in 72 
nature, focusing as much as possible on studies that evaluate disruption in wild caught animals, exposed to EDCs 73 
in real situations. Then, we will produce an overview of the most recent molecular insights that may enlighten 74 
our comprehension of endocrine disruption in invertebrates. Finally, we will discuss the contribution of the 75 
recent approaches that rely on omics, to get a wider view of EDCs impact on invertebrate physiology. Note that 76 
the vast majority of our current knowledge relates to protostome species (mainly arthropods, mollusks and 77 
annelids), which explains that the present review will mainly focus on this taxonomic group. 78 

 79 
2. Delineating the burden of endocrine disruption on wild invertebrates 80 

Risk assessment procedures have been using invertebrate models (mainly aquatic species) for long, both to 81 
detect potential EDC activities in mixtures, and to gain a basic understanding of the ecological effects of known 82 
EDCs. Conversely, field studies demonstrating EDCs effects on invertebrate wild populations and communities 83 
are scarcer, in aquatic as well as in terrestrial ecosystems (Amiard and Amiard-Triquet, 2015).  84 

2.1 In aquatic ecosystems 85 

In aquatic ecosystems, the most relevant case certainly remains the imposex phenomenon that affects 86 
gastropod mollusks living in areas contaminated by organotins: tributyltin [TBT] and triphenyltin [TPT], at levels 87 
as low as few ng per liter (DeFur, 1999). These organometallic compounds have been used as antifouling agents 88 
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for several decades until their progressive ban by most countries, in the 80s. However, incomplete observation 89 
of worldwide legislation, as well as organotins desorption from contaminated sediments explain that organotins 90 
contamination is still a major toxicological concern (Laranjeiro et al., 2018). At the individual level, endocrine 91 
disruptive effects in contaminated areas result in the imposition of male sex characteristics on female snails, 92 
with a clear relationship between the extent of the masculinization process and the dose of organotins detected 93 
in the environment (Graceli et al., 2013). At some point, affected females suffer from impaired reproduction 94 
ending up to sterility and even to death (DeFur, 1999). Individual defects due to environmental contamination 95 
thus translate into population-level concerns, with a demographic fall and acute risk of local extinction in the 96 
worst polluted areas (Bryan et al., 1986; Langston et al., 2015; Roach and Wilson, 2009). In the field, TBT was 97 
also shown to affect other invertebrates, disturbing shell calcification and reproduction in bivalve mollusks, and 98 
affecting crustacean growth, carbohydrate and lipid metabolism and sexual maturation (Graceli et al., 2013; 99 
Vogt et al., 2018). More recently, concerns were raised over the toxicity of TBT in terrestrial ecosystems that can 100 
be contaminated notably through soil enrichment with marine sediments or sewage sludge. Silva and colleagues 101 
(2014) assessed TBT toxicity in terrestrial invertebrates and observed negative effects on the food consumption 102 
and assimilation capabilities in isopods (Porcellionides pruinosus), and on juvenile production and/or mortality in 103 
collembolans (Folsomia candida). But additional studies in field conditions are still required, notably in terms of 104 
TBT doses, especially in soils continuously enriched with sewage sludge. 105 
In line with the vertebrate (and especially fish) situation, field exposure cases to estrogenic compounds (e.g. 106 
xeno-estrogens such as 17α-ethinylestradiol (EE2), bisphenol A (BPA), nonylphenols and octylphenols) provide 107 
another illustration of endocrine disruption in wild aquatic invertebrates (Amiard and Amiard-Triquet, 2015; Jin 108 
et al., 2012), with effects including sex-ratio modification, delayed sexual maturity and intersexuality. Numerous 109 
studies have reported disruptive effects of estrogens in invertebrate models, including at concentrations 110 
compatible with doses measured in the field (ng/l) (Aris et al., 2014; Bovier et al., 2018; Flint et al., 2012; Herrero 111 
et al., 2015; Leonard et al., 2017; Liu et al., 2012; Morales et al., 2018; Oehlmann et al., 2009, 2007; Oetken et 112 
al., 2004; Wright-Walters et al., 2011). Experimental studies have also demonstrated that the reproduction of 113 
the Potamopyrgus antipodarum snail (a freshwater mollusk quite abundant in Europe) is impaired by the 114 
exposure to a mixture of environmental estrogens. This response was found to be comparable to that of four 115 
species of freshwater fishes, with a similar sensitivity to these molecules (Jobling et al., 2004), suggesting that 116 
EDC concerns extend to wild invertebrate populations exposed to estrogenic effluents, especially as regards 117 
sessile species. In good agreement with this study, when caged downstream of an effluent discharge, the same 118 
snail species was found to bioaccumulate more alkylphenols, BPA, Estradiol and Testosterone than when 119 
animals were located upstream. These experiments also demonstrated a sharp decrease of reproductive 120 
parameters in these animals (reduction in the number of embryos produced) after 6 weeks of exposure (Gust et 121 
al., 2014). Concomitant measures of egg proteins and mRNA levels allowed authors to demonstrate that 122 
reproductive disruption did not affect oocyte development, but rather targeted early embryonic development, 123 
suggesting the disruption of estrogen signaling pathways (Gust et al., 2014). Recent in situ surveys on the marine 124 
mussel Mytilus trossulus also evidenced some reproductive impairment in bivalve wild populations exposed to 125 
presumed estrogenic water wastes. Individuals living in the vicinity of a sewage purification plant outlet showed 126 
an increased frequency of gonadal regression and atresia and malformations, which were successfully mimicked 127 
by an experimental exposure to 50 or 500 ng/dl of EE2 (Smolarz et al., 2017). Such experimental exposure in 128 
natural conditions is a powerful way to evidence local contamination by EDCs, but requires a careful choice of 129 
the biomarkers recorded. The level of yolk protein vitellogenin, most often estimated by the Alkali Labile 130 
Phosphate method, has been commonly used as a biomarker of feminization in several aquatic species. Both the 131 
method (Sánchez-Marín et al., 2017) and its results (Boulangé-Lecomte et al., 2017; Short et al., 2014) have 132 
recently been questioned by proteomic and transcriptomic approaches, respectively. 133 
In freshwater ecosystems, chironomids are increasingly imposing themselves as a convenient and suited model 134 
of study. Studies carried out in Chironomus riparius recently contributed to reveal the endocrine disruptive 135 
effects of complex mixtures of heavy metals in experimental settings in which larvae were reared in sediments 136 
(more or less contaminated) originating from abandoned mines, polluted shores or reference sites. Among other 137 
negative effects recorded as regards biomass and respiration rate, exposed individuals showed disrupted 138 
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expression of ecdysone-related genes, impaired reproduction and growth, both at the larval and adult stages 139 
(Arambourou et al., 2020, 2019). 140 

2.2 In terrestrial ecosystems 141 

In terrestrial ecosystems, the main cases for which endocrine disruption effects are well identified under field 142 
conditions relate to insect growth disruptors (IGD, formerly named insect growth regulators or IGR). Such 143 
substances have been designed by purpose to affect insect growth and development through a specific 144 
disruption of their endocrine regulatory pathways, including juvenile hormone analogues (JHA), and steroidal 145 
ecdysone agonists (Pener and Dhadialla, 2012). For these molecules, the drop of target insect populations is the 146 
hallmark of their efficacy. Unfortunately, although the design of these molecules was intent to produce more 147 
selective pesticides (they are often sold as “reduced-risk insecticides”), non-target species sharing similar 148 
hormone systems can also be affected. Pener and Dhadialla (2012) reviewed several studies demonstrating 149 
lethal or sublethal effects of IGD on non-target species, especially predators or parasitoids of the target species, 150 
proving the diffusion of IGD in food webs. Lawler (2017) recently reviewed the environmental effects of 151 
methoprene use for mosquito control and pinpointed some negative issues at realistic environmental levels, 152 
mainly on aquatic invertebrate species: lobster larvae, mysid shrimp embryos, small diptera and zooplankton-153 
sized crustacean. Although often disregarded, these species, and especially planktonic species which occupy key 154 
positions in aquatic food webs, for sure deserve further attention on the subject of endocrine disruption in field 155 
context. Regarding IGD’s use for agronomic purposes, the potential threatening of pollinators and other 156 
beneficial insects’ survival is a big subject of concern, due to the huge ecosystemic services they fulfill. This 157 
concerns domestic honeybees but also Lepidoptera, parasitic wasps, Coleoptera and numerous wild bees that 158 
play crucial roles in plant-insect mutualistic networks (Quesada and Sadof, 2019; Steffan-Dewenter et al., 2005). 159 
Beyond direct mortality provoked by many pesticides, some IGD are responsible of sublethal effects that may 160 
contribute to the actual decline of (wild and managed) pollinators and beneficial insects populations (Johnson et 161 
al., 2010; Mommaerts and Smagghe, 2011). Bees illustrate how complex and multiple the routes of exposure can 162 
be: in addition to direct contact associated with spraying as well as the interaction with treated plants, foragers 163 
collect nectar and pollen susceptible to be contaminated. They also bring it back to the nest to feed all the 164 
members of the colony (social bees) or their larvae (solitary bees). For brood as well as for hive bees, 165 
contamination thus probably mainly arise through food intake, which may strongly lead to specific toxic effects 166 
(Sanchez-Bayo and Goka, 2014; Stanley and Preetha, 2016). Recent studies evidenced a clear contamination of 167 
the pollen stored into beehives, by many pesticides and herbicides at sublethal concentrations, among which 168 
ecdysone analogues (tebufenozide, methoxyfenozide) and JHA (fenoxycarb, pyriproxyfen, methoprene) (Böhme 169 
et al., 2018; Calatayud-Vernich et al., 2018; Hakme et al., 2017). Experimental work had previously 170 
demonstrated that exposure of micro-colonies of Bombus terrestris to JHA (pyriproxifen or kinoprene), through 171 
pollen contamination (e.g. not through sugar water contamination) at the maximum field recommended 172 
concentration, has no acute toxicity on workers but enhances larval mortality. This effect was hypothesized to 173 
be linked with a lethal blocking of development before metamorphosis (Mommaerts et al., 2006). In the same 174 
study, authors evidenced a stimulatory effect of a very low dose of kinetoprene (0.0650 mg/l) on the 175 
development of the female reproductive system, together with a higher reproductive output, strongly arguing in 176 
favor of an endocrine nature of the disruption. Even though neurotoxic pesticides – and in the first place all 177 
neonicotinoids – are the most incriminated molecules in the complex interactions that lead to bee CCD (colony 178 
collapse disorder; Sanchez-Bayo and Goka, 2014), IGD chronic exposure should not be disregarded, as regards its 179 
potential sublethal effects and possible involvement in synergistic effects. Furthermore, neonicotinoids 180 
themselves were recently shown to exert EDC-like effects in bees, generating sublethal effects suspected to 181 
largely contribute to population extinctions over a long time scale (Woodcock et al., 2016; Baines et al., 2017). 182 
More field studies are now needed to assess and cross-reference several key parameters of pollinators’ potential 183 
poisoning by pesticides. These include (1) the dynamics of pollen contamination in relation with its species of 184 
origin and the nature of the contaminants; (2) the persistency of chemicals under specific conditions inside real 185 
hives and along seasons; (3) the link between external exposure (direct contact and/or chronic ingestion) and 186 
potential risk; (4) the possible interaction between contaminants, which needs to be addressed by testing 187 



5 
 

realistic pesticide mixture (see Böhme et al., 2017); (5) the direct effects on bee survival and activity but also 188 
sublethal effects (fertility, abnormal larval development) that may affect colony productivity; (6) the side-effects 189 
that may arise through the disturbance of other functions such as olfactive performance (see e.g. Chakrabarti et 190 
al., 2015), orientation and learning capacities, which are essential to foraging process and feeding, flight activity 191 
and foraging efficiency (see Prado et al., 2019), pheromonal communication (notably blurring of nestmate 192 
identification) and social interactions (see e.g. Fourrier et al., 2015); and (7) the indirect adverse effects that may 193 
ensue from microbiota modifications.  194 
More generally, all herbivorous invertebrates may come across EDCs through the contamination of their food: 195 
some well identified or emerging organic contaminants including BPA, nonylphenol or triclosan are largely 196 
distributed in the water cycle and end up in reclaimed water eventually used for food crop irrigation. This can 197 
lead to their accumulation in leafy vegetables (Dodgen et al., 2013) and to a direct exposure of herbivorous 198 
species. In the insect crop pest Spodoptera littoralis, Maria and colleagues (2019) evidenced a higher mortality at 199 
pupal stage and an increase in some larval instar duration associated with modifications of ecdysteroid titers 200 
and nuclear receptor expression, after consumption of food contaminated with BPA concentrations similar to 201 
that found in plants. At last, atmospheric contamination also potentially concerns all epigeic species. Although 202 
this route of exposure has barely been considered so far, we recently evidenced a chronic contamination of 203 
several species of aerial insects (mainly ants but also crickets and honeybees) by phthalates, which are potent 204 
EDCs (Oehlmann et al., 2009; e.g. Mankidy et al., 2013). These phthalates impregnate the cuticle and mix with 205 
the cuticular components (Lenoir et al., 2012). In these studies, all tested individuals were found to be 206 
contaminated, with varying contamination levels depending on the species. Phthalates accounted for 0.11 to 207 
2.66% of the cuticular compounds in the different ant species tested, 0.73% in honey bees and 2.76% in the 208 
wood cricket Nemobius sylvestris. This contamination was clearly established to originate from the atmosphere. 209 
It seems that, due to its biochemical properties, insects cuticle can traps the phthalates present in both the 210 
vapor phase and the particulate phase (adsorbed to atmospheric particles; Lenoir et al., 2014; Teil et al., 2006). 211 
The insect cuticle keeps trace of this contamination in the form of a basal level of phthalates mixed to cuticular 212 
compounds, which can be measured by GC-MS. In addition, phthalates were also clearly demonstrated to be 213 
able to cross the epidermal barrier in these insects, as they were detected inside the body of animals, mainly in 214 
fat. Experimental contaminations by environmental doses spiked onto the cuticle induced a reduction of queens’ 215 
eggs output and disturbed immune gene expression in workers of the black garden ant (Lasius niger), suggesting 216 
possible endocrine disruptive effects in natural populations (Cuvillier-Hot et al., 2014). Considering that these 217 
observations may potentially apply to all invertebrate species possessing a cuticle or a lipophilic integument, it 218 
appears necessary to pursue investigations on other species, in order to examine whether it is necessary to 219 
include this mode of contamination in risk assessment protocols for terrestrial invertebrates. 220 
 221 

3. New insights in invertebrate molecular disruption 222 

As an emerging science, EDC ecotoxicology first based on a vertebrate-centered approach, taking advantage of 223 
our better knowledge of vertebrates physiology, to detect and identify disturbances linked with environmental 224 
exposure to contaminants. Then, knowledge acquired from vertebrate models was transposed to invertebrates 225 
and researches have focused on susceptible endocrine pathways shared between invertebrates and vertebrates, 226 
and in a first place on the possible disruption of the estrogen receptor (ER)-associated cascades. But, as more 227 
than 600 Million years have elapsed since the split between protostomes and deuterostomes, the former 228 
acquired endocrine systems of regulation unique to them (e.g. ecdysteroids, Juvenile hormones), which are 229 
potential targets for environmental endocrine disruption and which call for dedicated researches. Even 230 
nowadays, while substantive knowledge has been accumulated for some groups (e.g. insects), a main gap of our 231 
current knowledge over endocrine disruption in invertebrates remains our lack of detailed comprehension of 232 
endocrine signaling pathways in many disregarded groups of invertebrates (Castro and Santos, 2014; 233 
Hutchinson, 2007). This concerns receptors and ligands, associated cascades and regulation, but also the 234 
dynamics of bioaccumulation and elimination of potential disruptors. This basic knowledge is necessary to 235 
ascertain that an adverse effect observed in the field is indeed the result of an endocrine disruption mechanism 236 
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rather than a more general direct or indirect toxic effect (Barata et al., 2004; Hutchinson, 2007; Lagadic et al., 237 
2007; Weltje and Schulte-Oehlmann, 2007). In the past years, some attempts have been made to develop 238 
arthropods-specific in vitro assays dedicated to screen environmental contaminants for ecdysteroid 239 
agonist/antagonist activities (Dinan et al., 2001; Kontogiannatos et al., 2015; Soin et al., 2009; Swevers et al., 240 
2004; Yokota et al., 2011; Zotti et al., 2013). However, it appears that ecdysteroid receptors have ligand-binding 241 
properties that can substantially vary between invertebrate species, even among members of a same order 242 
(Graham et al., 2007). This suggests that the results of such molecular assays can hardly be generalized among 243 
species on a large scale and involve the need to develop taxa-specific tests (Santos et al., 2018; Yokota et al., 244 
2011). 245 
EDCs can interfere with the endocrine pathways of animals in many ways. They can affect endogenous hormonal 246 
levels, or those of hormone receptors by disturbing their specific synthesis and/or catabolism; they can also 247 
disturb hormonal receptor functions by spatially mimicking endogenous hormones, thus affecting receptors 248 
availability or leading to unexpected signalization (agonist or antagonist). For decades, physiological and 249 
developmental endpoints have been used to detect and characterize EDCs in invertebrates, all the more that 250 
several model species, easy to breed and possessing a short generation time are available in several taxonomic 251 
groups. Many reviews have reported about lists of suspected EDCs and proposed modes of action based on the 252 
examined studies (e.g. Hutchinson, 2002; Lagadic et al., 2007; LeBlanc, 2007; Oehlmann et al., 2007; Oetken et 253 
al., 2004; Rodríguez et al., 2007; Soin and Smagghe, 2007; Zou, 2005). More recently, molecular approaches 254 
allowed a deeper investigation of the mode of action of these EDCs in invertebrates, which we will focus on in 255 
the next chapter. Figure 1 sums-up the main molecular regulatory pathways hypothesized or demonstrated to 256 
be affected by chemicals in protostomes. 257 

3.1 Molecular pathways susceptible to endocrine disruption and shared with vertebrates 258 

3.1.1. Estrogen receptors and relatives 259 
In vertebrates, many EDCs exert their action as agonists of estrogen receptors (ER) or/and antagonists of 260 
androgen receptors (AR). The invertebrate orthologs of these receptors are thus potential targets for 261 
environmental endocrine disruption. To date, the only steroid receptor evidenced in protostomes belongs to the 262 
ER family and shares a common ancestor with vertebrate steroid receptors (SR) named AncSR, which would 263 
have arose before protostome and deuterostome cleavage (Castro and Santos, 2014; Jones et al., 2017; Markov 264 
et al., 2009). Absent from the Ecdysozoa, ERs orthologs have been characterized in mollusks (Hultin et al., 2014; 265 
e.g. Keay et al., 2006; Matsumoto et al., 2007; Raingeard et al., 2013; Thornton, 2003; Zhang et al., 2012), 266 
annelids (Keay and Thornton, 2009; Lv et al., 2017) and recently in rotifers (Jones et al., 2017). As in vertebrates, 267 
these receptors have genomic signaling pathways that activate gene transcription through the direct binding of 268 
the nuclear ER complex to ERE (estrogen-response elements) sites (or indirectly through AP-1 or Sp-1 binding 269 
sites) upstream of target genes (Hamilton et al., 2017). However, the modalities of ER commitment clearly differ 270 
among invertebrate groups. Indeed, the Mollusca receptor was shown to have been vestigialized through some 271 
decisive substitutions that froze the ER in an active conformation, resulting in its constitutive activity. 272 
Subsequent mutations then filled the ligand pocket with bulky residues precluding any ligand binding and 273 
rendering unlikely any reversal to the ancestral function (Bridgham et al., 2014). ERs in mollusks are thus ligand-274 
independent transcriptional activators, which implies that mechanisms of endocrine disruption by estrogenic 275 
environmental contaminants in these species are necessarily independent of any nuclear ER activation (Canesi 276 
and Fabbri, 2015). On the contrary, annelids and rotifers ERs display the classic properties of vertebrates ER, 277 
including apparent sensitivity to estrogens (Castro and Santos, 2014; Jones et al., 2017; Keay and Thornton, 278 
2009). However, the exact nature of their endogenous ligand is still unknown. Steroidogenesis exists in 279 
protostomes but has evolved independently from vertebrate cascades, partly through the recruitment of 280 
cytochrome P450 enzymes formerly involved in xenobiotic detoxification (Markov et al., 2009). Recent work by 281 
Blalock and collaborators (2018) evidenced, for the first time in a protostome (the mussel Mytilus edulis), a 282 
partial protein equivalent to vertebrate CYP11A enzyme, responsible for the side-chain cleavage of cholesterol 283 
to pregnenolone. Hence, within the whole steroid biosynthesis pathway, only the last step of aromatization of 284 
testosterone into estradiol would still be missing in lophotrochozoa, the aromatase CYP19A appearing restricted 285 
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to chordates (Goldstone et al., 2016; Markov et al., 2009). For this reason and also because unbiased methods to 286 
detect steroids in invertebrate tissues so far failed to find estrogens, some authors refute the idea of an 287 
estrogen-like endogenous ligand for protostome ERs (Holzer et al., 2017a; Scott, 2013). But whatever their origin 288 
– endogenous or exogenous – estrogens clearly affect the physiology of many invertebrates, including mollusks, 289 
paving the way to possible endocrine disruption by œstrogeno-mimetics. In vertebrates, ERs can be activated by 290 
several estrogenic endogenous ligands (estradiol, Δ5-androstenediol, 5α-androstanediol, and 27-291 
hydroxycholesterol). They also are responsive to several plant-derived compounds with estrogenic activity such 292 
as genistein, coumestrol, and resveratrol (Baker and Lathe, 2018). This promiscuous responsiveness is proposed 293 
to explain their response to synthetic chemicals such as BPA and phthalates (Engel et al., 2017; Flint et al., 2012). 294 
Similar cross-binding may be considered for ligand-sensitive ER described in protostomes. Keay and Thornton 295 
(2009) for example report an agonist effect of genistein and an antagonist effect of BPA on Platynereis dumerilii 296 
ER.  297 
In vertebrate models, it is well established that ER signaling can be modulated by estrogen-related receptors 298 
(ERRs). These are also nuclear receptors sharing sequence similarity with ERs, but that respond very weakly to 299 
endogenous estrogens while being stimulated by some xenoestrogens. They may thus interfere with ER signaling 300 
upon environmental EDC exposure, along several modalities: (1) by directly interacting with ERs, (2) by 301 
competing with ERs for ERE site binding or (3) by targeting similar genes as ERs via the presence of ERR-response 302 
elements in their promoter region, alongside with ERE (Xu et al., 2017). As a consequence, influence of ERR 303 
activation on ER signaling will clearly depend on the level of expression and tissue distribution of both receptors. 304 
Sequences homologous to ERRs have been described in annelids (the marine worm Capitella and the leech 305 
Helobdella, Baker, 2008) and in mollusks (the snail Lottia, Baker, 2008; the snail Physa, Morales et al., 2018; two 306 
Mytilus species, Nagasawa et al., 2015). Quite expectedly, mRNA of ER homologues were abundantly detected in 307 
reproductive tissues (ovary but also pedal ganglion) in the mussels Mytilus edulis and M. galloprovincialis, while 308 
mRNA of ERR homologues, otherwise involved in metabolism regulation and mitochondrial function (Hubbard et 309 
al., 2015), had high levels of expression in the gill and digestive gland ; however, both receptors had basal levels 310 
of expression in all tissues examined and may thus interfere with each other (Nagasawa et al., 2015). In M. 311 
edulis, ER expression in ovary appeared regulated by in vitro exposure to 17β-estradiol, while that of ERR did not 312 
(Nagasawa et al., 2015). In the snail Marisa cornuarietis, various vertebrate-like estrogens were tested for their 313 
possible ER and ERR gene transcription modulation, but gave negative results for both genes. Only genistein and 314 
BPA up-regulated gene expression of ER and ERR orthologs respectively (Bannister et al., 2013). In this species, 315 
BPA exposure at environmentally relevant concentrations had clear disruptive effects, leading to a 316 
superfeminization phenomenon characterized by enlargement and malformations of female organs, and higher 317 
egg mass production (Oehlmann et al., 2006). Also in the snail Physa acuta, BPA exposure led to a significant 318 
increase in the mRNA levels of both ER and ERR, suggesting that these receptors could be involved in molecular 319 
events that regulate the endocrine disruptor activity of this chemical in Gastropods (Morales et al., 2018). 320 
Interestingly, ERR gene homologues have also been characterized in insects and their expression appeared 321 
modulated by EE2 (Bovier et al., 2018) and ethylparaben (Liu et al., 2014) in Drosophila melanogaster, and by 322 
Bisphenol S (BPS), Triclosan, BPA, nonylphenol or diethylhexyl phthalate (DEHP) in Chironomus riparius larvae 323 
(Herrero et al., 2018, 2015; Martínez-Paz et al., 2017; Park and Kwak, 2010). In these cases, disruption is 324 
proposed regarding the 20-Hydroxyecdysone pathway (see § 3.2), highlighting the multi-target character of 325 
many EDCs. 326 
Alongside and apart from direct interactions of estrogeno-mimetics with nuclear estrogen receptors, many 327 
studies in vertebrates pointed out more rapid effects of these molecules (within seconds to minutes) through 328 
non-genomic signaling pathways (Xu et al., 2017). They may be initiated by estrogen-responsive non-nuclear 329 
receptors and may lead to local effects such as modification of ion fluxes or to activation of cytosolic kinase 330 
cascades that ultimately affect gene transcription. Several studies reviewed by Janer & Porte (2007) suggested 331 
the involvement of such non-genomic processes in endocrine regulation also in invertebrates. Recent 332 
contributions from Omics studies brought further support: individuals of the mudsnail Potamopyrgus 333 
antipodarum exposed to an effluent discharge, while accumulating alkylphenols, BPA and vertebrate-like sex-334 
steroid hormones, showed an inhibition of the expression of genes involved in non-genomic signaling pathways, 335 
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together with an induction of the repressors of the genomic pathway; this led to a drastic decrease in embryo 336 
production (Gust et al., 2014). Similarly, a transcriptomic approach of mussels exposed to EE2 or 4-nonylphenol 337 
(leading notably to female-skewed sex-ratios) revealed similar patterns of gene dysregulation with main targets 338 
belonging to the non-genomic estrogen signaling pathway (Blalock et al., 2018).  339 
 340 

3.1.2. Other nuclear receptors 341 
At the molecular level as at the individual and population scales, the case of endocrine disruption by organotins 342 
was much investigated and led to many relevant trails. In the imposex phenomenon, endocrine disruption is 343 
highly suspected at different levels. High levels of testosterone observed in TBT treated prosobranch females 344 
could ensue from an inhibition of enzymes involved in steroid metabolism (reviewed in Graceli et al., 2013, 345 
Lafont and Mathieu, 2007). TBT may also induce adverse neuromodulation through the production of 346 
APGWamide which was shown to induce imposex in mud snails (Ilyanassa obsoleta, Oberdörster and McClellan-347 
Green, 2002). Finally Pascoal and colleagues (2013) strengthened the hypothesis of a disruption of the retinoid X 348 

receptor (RXR) – peroxisome proliferator-activated receptor-γ (PPARγ) pathway by evidencing a strong 349 
transcriptional response of the retinoid receptors and of putative members of this signaling pathway after TBT 350 

treatment in Nucella lapillus. They also showed that activating this pathway with a vertebrate ligand of PPARγ 351 
led to imposex in this species. As additional support to this third presumed mechanism, it had been previously 352 
established that TBT was able to bind and activate RXR–PPAR vertebrate heterodimers, by mimicking 9cis-353 
retinoic acid interaction with RXR (le Maire et al., 2009). All these clues suggest a strong involvement of this 354 
signaling pathway, quite shared between vertebrates and invertebrates, in imposex physiopathology (André et 355 
al., 2014; Iguchi and Katsu, 2008). 356 
RXRs are nuclear receptors involved in numerous signaling pathways and biological functions since they can 357 
signal as homodimers, but also form heterodimers with many partners, such as PPAR (as exemplified above), 358 
retinoic acid receptor (RAR) or thyroid hormone receptor (TR). In Ecdysozoans, RXRs homologues (known as 359 
ultraspiracle (USP) in insects) are the obligate heterodimeric partners of ecdysteroid receptors (EcR, see §3.2). 360 
RXRs are widely distributed among metazoans and show a great degree of homology between taxa. 361 
Furthermore, their sensitivity to 9-cis-retinoic acid (RA) appears as an ancestral character already present in the 362 
common ancestor of Cnidaria and Bilateria, widely shared among metazoans and secondarily lost in ecdysozoans 363 
(André et al., 2017). Their functional partner in RA sensing, RARs, have also been detected in some annelids and 364 
mollusks. In both cases, the essential of the signaling machinery is present so that functional RA signaling 365 
pathways is expected, but according to specific processes, given that the molluscan RAR were proved insensitive 366 
to retinoids (Gutierrez-Mazariegos et al., 2014; Handberg-Thorsager et al., 2018). Finally, genome data mining 367 
recently identified key players possibly involved in retinoid metabolism and storage process in some 368 
protostomes, providing new potential targets for disruption. All this lead André et al. (2017, 2014) to suggest 369 
that RXR-dependent modulation by organotins might be evolutionary conserved among lophotrochozoans and 370 
vertebrates, and foresee that many more metazoan species might be potential targets for EDCs through 371 
disruption of the retinoid system. The identification of the physiologic effects of such disruptions clearly 372 
deserves future research in all invertebrate groups.  373 
Over the last years, the endocrine disruption of vertebrate biological processes controlled by thyroid hormone 374 
receptors (TRs) has been of growing concern, mainly because we progressively uncover the importance of this 375 
endocrine system on embryogenesis and early neurogenesis. Several EDCs including PCBs, the pesticide 376 
chlorpyrifos, BPA, poly-fluorinated surfactants and polybrominated diethyl ethers (PBDEs), are suspected to 377 
disrupt TH regulated pathways (Préau et al., 2015). TRs are also nuclear receptors functioning as ligand-378 
dependent transcription factors; they mediate thyroid hormone (TH) effects by genomic and non-genomic 379 
mechanisms. If the genome of Drosophila melanogaster and Caenorhabditis elegans appeared deprived of TR-380 
like sequences, lophotrochozoans on the contrary clearly possess TR orthologs (Orozco et al., 2017; Sainath et 381 
al., 2019). Note that putative TR orthologs have been proposed from Daphnia pulex and D. magna genomes, but 382 
their high sequence divergence poses question about their real origin (Sainath et al., 2019). Activating ligands 383 
are clearly different for protostome and deuterostome TRs, in agreement with the poor degree of conservation 384 
of their respective ligand-binding domains; and so far, endogenous ligands of protostome TRs remain unknown. 385 
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Still, endogenous synthesis of TH by the sea hare Aplysia californica is supported by its enzymatic equipment 386 
(Heyland et al., 2006), T4 and T3 have been extracted from Crassostrea gigas hemolymph (Huang et al., 2015), 387 
and TH were shown to induce settlement and metamorphosis in several mollusk species suggesting that TH 388 
signaling is possible in Lophotrochozoa (Holzer et al., 2017b; Taylor and Heyland, 2017). Although up to now no 389 
clear link has been established between TH and activation of TR in this group, the question remains open about 390 
the possible effect of environmental thyroid disruptors on invertebrates development and physiology, and 391 
urgently requires fundamental scientific work to understand the role of the thyroid endocrine system in 392 
protostomes. 393 
 394 

3.2 Molecular pathways susceptible to endocrine disruption and specific to Protostomes 395 

Protostomes have developed specific endocrine regulatory pathways that can also be affected by environmental 396 
EDCs. In arthropods, there are three main classes of hormones: peptide hormones, ecdysteroids (mainly 20-397 
hydroxyecdysone (20E) in insects and crustaceans, together with ponasterone A in chelicerate species), and 398 
terpenoids (mainly juvenile hormones (JH) in insects, methyl farnesoate (MF) in other arthropods). All three 399 
systems interact to regulate notably growth, development and reproduction. The hormonal action of 20E exerts 400 
via the activation of the ecdysone receptor (EcR), again a member of the superfamily of nuclear hormone 401 
receptors, that regulates gene transcription through heterodimerization with RXR (called USP in insects) and 402 
genomic binding to EcRE (ecdysone responsive element). It is now clear that the developmental events that lead 403 
to prepupal and pupal molt depend on a tightly timed dynamic of hemolymphatic 20E titer. A sharp rise 404 
followed by a clear decrease in the circulating levels of 20E are both important to regulate the expression of the 405 
different waves of transcription factors that coordinate the different molting processes, trigger apolysis, timely 406 
induce the expression of chitin synthase genes, regulate the production of the molting fluid needed to degrade 407 
the old cuticle and provoke its shedding (Guittard et al., 2011; Song et al., 2017). Numerous EDCs, beginning 408 
with IGDs that have been purposely developed to disrupt molting in insect pests (see §2.2), are able to 409 
negatively affect synthesis or secretion of 20E, or to interfere with EcR (Soin and Smagghe, 2007). As a 410 
consequence, it deregulates the fine-tuned signalization by 20E, causing notably molting failure and death, or 411 
impairing gametogenesis or embryogenesis. All the adverse consequences of chemically mediated disruption of 412 
molting in arthropods have recently been reviewed and illustrated by Song and colleagues (2017), highlighting 413 
the multiplicity of potential EDCs targets in the process that can lead to mortality by ecdysis failure. In many of 414 
the investigated cases, EDCs exert 20E agonistic effects, evidenced notably by an up-regulation of EcR or other 415 
genes involved in the ecdysone cascade (e.g. four oestrogeno-mimetics in an amphipod, Gismondi, 2018; BPA in 416 
the Lepidoptera Sesamia nonagrioides, Kontogiannatos et al., 2015; the insecticide fipronil in a copepod, 417 
Gaertner et al., 2012; Triclosan, Martínez-Paz et al., 2017; Nonylphenol, Nair and Choi, 2012; several commonly 418 
used UV-filters, Ozáez et al., 2014, 2013; the phthalate BBP, Planelló et al., 2011; BPA, Planelló et al., 2008; and 419 
Bisphenol S, a subtitute of BPA, in the Chironome aquatic larvae, Herrero et al., 2018). For most of these 420 
chemicals, gene expression changes came along with affected developmental endpoints such as molting 421 
malformations, increased pupation time and reduced emergence success in S. nonagrioides (Kontogiannatos et 422 
al., 2015), emergence failures (Nonylphenol, Lee and Choi, 2006), delay in embryo hatching (Ozáez et al., 2014) 423 
and reduced survival (Planelló et al., 2008) in Chironomus riparius. Noteworthy, a cell-based reporter assay in 424 
Bombyx mori Bm5 cell line confirmed the agonistic effect of BPA in Lepidoptera (Kontogiannatos et al., 2015). 425 
Less frequently, EDCs act as anti-ecdysteroids (e.g. 5-chloro-1H-benzotriazole, tamoxifen or testosterone in 426 
Daphnia magna; resp. Giraudo et al., 2017a; Jo et al., 2018; Mu and LeBlanc, 2002). It is clearly the case for the 427 
phthalate DEHP, which was shown to induce a significant drop in EcR transcription both at short exposures to 428 
high doses or at long exposures to low doses (i.e. environmental concentrations and below) in the Chironome 429 
larvae (Herrero et al., 2017; Planelló et al., 2011). Similar antagonist effects have been observed in the 430 
lepidopteran Spodoptera littoralis, also manifest through longer larval / pupal stages and global delay in adult 431 
emergence (Aviles et al., 2019). On the other hand, very few is known over ecdysteroid function and possible 432 
disruption outside of the arthropod group. EcR orthologs have been detected in the genome of mollusks, 433 
annelids and nematods and in silico analyses predict possible binding to an ecdysone-related steroid (Laguerre 434 
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and Veenstra, 2010). Interestingly, while the exact role of such molecules in lophotrochozoa physiology is so far 435 
unknown, the expression of EcR in the earthworm Eisenia fetida have been shown to be down-regulated in male 436 
reproductive tissues after exposure to low doses of BPA (Novo et al., 2018), and up-regulated in full body 437 
extracts after exposure to sublethal doses of 4-hydroxybenzophenone, a main product of degradation of 438 
benzophenone-3 that is currently used as UV-filter in sunscreens (Novo et al., 2019). The endogenous roles of 439 
such receptors in mollusks and annelids need clarification.  440 
The sesquiterpenoid hormones, JH and MF, are also key regulators in arthropods, regulating various 441 
developmental and reproductive processes such as molting, growth, metamorphosis, and gonad maturation. 442 
The elucidation of the signaling pathway of sesquiterpenoid hormones in the last decade evidenced 443 
Methoprene-tolerant (Met; germ-cell expressed, Gce, in Drosophila) as their main receptor. The Met/Gce-444 
hormone complexes are translocated to the nucleus, where they bind, together with the co-activator SRC (Tai in 445 
Drosophila), the specific JH response elements (JHRE) to activate transcription of the downstream target genes 446 
(Qu et al., 2018). Easy screening of putative EDCs with JH-like activity is now possible with the OECD TG211 447 
ANNEX 7 assay that use daphnids. Daphnid species are parthenogenetic species that produce only females in 448 
controlled conditions, but may generate male offspring in response to JHs. The validated assay takes advantage 449 
of this specificity to specifically detect JH analogs. Recently, Abe and colleagues (2015b) developed a derivative 450 
short-term screening assay using adult Daphnia magna and with a chemical exposure of only 7 days. This test 451 
notably ascertained the JH agonist effect of the IGD Diofenolan. In parallel, a two-hybrid assay evidenced that 452 
diofenolan induced heterodimerization of Met and SRC, suggesting its direct binding to the JH receptor; 453 
microarray analyses confirmed the dysregulation of many gene markers of JH action, evidencing this chemical as 454 
a strong JH agonist  (Abe et al., 2015a). The same study evidenced a concomitant disruption of the ecdysteroid 455 
signaling pathway, reinforcing the hypothesis of a cross-talk between JH and ecdysteroid signaling pathways in 456 
arthropod developmental processes, as previously suggested with other JH agonists such as fenoxycarb, 457 
pyriproxyfen or Tris(2-butoxyethyl) phosphate, a flame retardant (Giraudo et al., 2017b; Tuberty, 2005). 458 
Sesquiterpenoid hormones had long been thought restricted to arthropods. However, Schenk and colleagues 459 
(2016) recently established in Platynereis dumerilii that the hormone called nereidin, produced by head ganglia 460 
and known to regulate growth and sexual maturation in annelids by inhibiting the switch to reproductive state, 461 
corresponds to MF. They also evidenced that eleocytes, the cells that produce vitellogenin then captured by 462 
maturing oocytes, express a Met ortholog, whose transcription is up-regulated both by nereidin and by 463 
exogenous MF. Interestingly, the JHA methoprene and pyriproxyfen mimicked the effect of nereidin at similar 464 
concentration (10nM), reducing vitellogenin expression in cultured eleocytes. Recent insights over EcR and JH 465 
presence in annelids raise clear concerns about this group, notably as crucial members of the soil infauna.  Their 466 
endogenous way of life makes them largely exposed to IGD sprayed on fields and cultures. We need to acquire 467 
background knowledge over the role of such putative regulatory pathways in this group so as to assess their 468 
possible disruption in natural conditions.  469 

4. The promises of the high-throughput omics era 470 

Over the last decades, omics techniques became within reach of researchers to decipher how expressed genes 471 
(transcriptomics), proteins (proteomics) and metabolites (metabolomics) are altered by exposure to 472 
environmental pollutants (Colin et al., 2016). This gave rise to a new research field called ecotoxicogenomics 473 
that contributes to an ongoing mutation of our comprehension of the effect of endocrine disruption. Indeed, 474 
these recent techniques now make possible to compare different taxa on a large scale, to consider the 475 
multiplicity of the endogenous targets of individual toxics, and to monitor endocrine disruption in natural 476 
conditions much more precisely (Oliveira et al., 2016). Proteomics and metabolomics for instance enable to 477 
investigate how entire pathways react to toxic exposure, giving more weight to subtle changes that may have 478 
gone unnoticed if only few markers had been considered. Thereby, metabolomics profiling suggested that DEHP 479 
has negative effects on energy production and more particularly on TCA cycle, as in vertebrates, in the crop pest 480 
Spodoptera littoralis (Aviles et al., 2019). Tests on Daphnia magna metabolome confirmed that dissolved organic 481 
matter specifically affects the bioavailability of some drugs present in waste water (Kovacevic et al., 2019), and 482 
revealed convergent metabolic effects of some psychiatric drugs, despite different modes of action (Garreta-483 
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Lara et al., 2018). Lastly, metabolomics approaches highlighted alterations in energy metabolism, amino acids 484 
metabolism and glycerophospholipid metabolism in mussels exposed to a synthetic progestin while no changes 485 
in gonad maturation and in steroids level were recorded (Cappello et al., 2017). For their part, coupled to NGS 486 
technologies, genomics and transcriptomics offer via de novo approaches an unprecedented power of 487 
description and analyses of gene sequences whose expression is altered after exposure, even in 488 
environmentally-relevant species for which physiological and genomic knowledge had been historically poor. It 489 
can reveal so far undetected disruption, and identify new biomarkers for the monitoring of given species in 490 
specific environmental conditions. For example, the transcriptomic analysis of the response to mercury exposure 491 
of two copepod species recently revealed an endocrine-disrupting potential for this metal, evidencing a 492 
dysregulation of the estrogen signaling pathway in both species (Wang et al., 2017). Similarly, microarray 493 
analyses of oysters exposed to microplastic particles revealed a molecular signature of endocrine disruption, in 494 
the form of differential expression of hormone receptors or transcripts involved in hormonal pathways 495 
(Sussarellu et al., 2016). Interestingly no EDC could have been detected in the biological samples of this study, 496 
illustrating the pre-eminence of bio-assays over chemical quantification when incriminated substances are active 497 
at very low doses and possibly below detection limits. Even more remarkable, omics approaches can unveil 498 
endocrine disruption even in cases where compensatory mechanisms suppress any noticeable physiological 499 
effects. For instance, in Daphnia magna, several studies screened the gene regulation changes after exposition 500 
to different potent EDC (Giraudo et al., 2015; Houde et al., 2016). Contrary to other benzotriazoles, 1H-501 
benzotriazole (BTR) has no effect on molting frequency but RNAseq analyses revealed the up-regulation of 502 
cuticular proteins after BTR exposure, suggesting the latters could have compensated a possible molting 503 
disruption (Giraudo et al., 2017a). 504 
We seemingly are at the beginning of a new era of research possibilities, with much more tools to apprehend 505 
complex toxic effects and intricate organism responses. This is especially true for invertebrates, so far neglected 506 
with respect to the huge biodiversity they represent. Furthermore, constant progresses in high-throughput 507 
sequencing techniques, both in terms of rapidity and prices, enhance the possibilities to compare multiple 508 
species, populations, life-stages or tissues, expanding the scope of experimental possibilities (e.g. An et al., 2014 509 
for a comparative study of testis and digestive gland response to estrogen exposure in Chlamys farreri). Finally, 510 
combining genetic, proteic or metabolic changes detected through omics approaches with the description of 511 
altered apical endpoints (e.g. body condition indexes, lipid content, fertility measures…) will undoubtedly 512 
provide useful insights into the genes, proteins and metabolites possibly implicated in physiological disorders, 513 
unveiling unknown molecular mechanisms of the physiological pathways affected (see Ciocan et al., 2012, and 514 
Grilo and Rosa, 2017 for examples about intersex in invertebrates). A good example is probably that of the dog 515 
whelk (Nucella lapillus), for which transcriptomics coupled to in vitro testing confirmed the alteration of some 516 
processes already evoked (steroid metabolism, neuroendocrine regulation and retinoid mechanisms) following 517 
TBT exposure, but also revealed the involvement in imposex of a regulatory pathway (peroxisome proliferator-518 
activated receptor or PPAR), not reported until then in invertebrates (Pascoal et al., 2013). The next challenge is 519 
now to integrate omics in routine environmental monitoring studies notably to help regulatory agencies in their 520 
management of environmental risks (Gouveia et al., 2019; Oliveira et al., 2016; Piña et al., 2018). 521 

 522 

5. Conclusion 523 

A growing research effort coupled with the use of ever more accurate and efficient methods and approaches 524 

now allow us to better identify EDCs and refine our knowledge of their mode of action, even in non-model 525 

animal species for which basic knowledge is limited. The disruption of hormonal regulatory pathways is of 526 

course the hallmark of these harmful chemicals, but additional toxicological modes of action may also be 527 

involved in sub-lethal effects (Flint et al., 2012). In addition to classical endpoints related to reproduction and 528 

development, more and more studies pinpoint additional disturbed processes and pathways in invertebrates 529 

exposed to EDCs, including immune deficiencies that may hamper the ability of individuals to fight their natural 530 

pathogens and parasites (Canesi et al., 2007; Gagné et al., 2008; Lu et al., 2013) and behavioral changes that 531 
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may negatively affect food finding, habitat choice or sexual partner selection (Baglan et al., 2018; Clotfelter et 532 

al., 2004; Lam et al., 2010; McCallum et al., 2013), with possible transgenerational effects (Giraudo et al., 2017b; 533 

Li et al., 2018; Oliveira-Filho et al., 2009). Epigenetic modifications are notably evoked as possible mechanism 534 

entailed (Novo et al., 2018; Schwindt, 2015) but, as in vertebrates, the identification of the precise mechanisms 535 

involved, as well as their implication in invertebrates require deeper investigations. Among future challenges, it 536 

is necessary to accurately identify all involved mechanisms, in order to better characterize organisms as well as 537 

populations response to multiple environmental stressors. 538 

 539 
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 1072 

Figure 1. Main molecular regulatory pathways susceptible to endocrine disruption in protosomes; 1073 

some are shared with deuterostomes (dark blue background), while others are specific to invertebrates 1074 

(light blue background). Outer colored rings indicate the groups in which corresponding orthologs have 1075 

been evidenced. Hatched display points out non-functional receptors (insensitivity to ligand), and a 1076 

question mark signifies that an ortholog has been described but its functional activity needs further 1077 

confirmation. In italic font below each molecular pathway, are listed examples of EDCs strongly 1078 

suspected to interfere with the corresponding molecular pathway in protostomes (IGD, insect growth 1079 

disruptors; BPA, bisphenol A; BPS, bisphenol S; NP, nonylphenol; DEHP, di-ethylhexyl phthalate; BBP, 1080 

benzyl butyl phthalate; E2, 17β-estradiol; EE2, 17α-ethinylestradiol; TBT, tributyltin; TPT, triphenyltin).  1081 
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