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Subgraph detection for average detectability:
application to SIS epidemics

Nicolas Martin, Paolo Frasca, Senior Member, IEEE, Carlos Canudas-de-Wit, Fellow, IEEE

Abstract—Observation and detection of networked systems aim to reconstruct the evolution of the system based on the measurement
of few nodes. In large-scale networks, reconstructing the exact state of each node becomes more complex and in practice it is often
superfluous. Reconstructing an aggregated version of the system is often sufficient. In the light of this observation, we consider the
notion of average detectability: A system is said to be average detectable if it is possible to reconstruct the average of the subset of its
unmeasured nodes. We show here that for a particular type of system, that is negative uniform networks, the average detectability
property is reached when the subgraph induced by the unmeasured nodes is regular. Thus, we study the detection of such regular
induced subgraph and we propose an algorithm to complete this task. We introduce also the relaxed notion of quasi-regularity ensuring
an approximate reconstruction of the average. This paper presents algorithms to detect regular induced subgraphs (RIS) and
quasi-regular induced subgraph (q-RIS). We propose an extension to detect multiple quasi-regular induced subgraphs (mq-RIS) in
order to reconstruct the average of several subgraphs of the system. Finally we apply our method to the evolution of an epidemic
spreading over a simulated contact network over the largest cities in France based on a SIS model.

Index Terms—Network theory, Regular induced subgraph, Observability, Detectability, Algorithmic, Network epidemics

F

1 INTRODUCTION

In network theory, observation problems aims to reconstruct the
state of the whole system by knowing only a fraction of the
states [1]. This subject has been widely studied and has raised
the question, among others, of the choice of the measured nodes
to improve the reconstruction [2], [3], [4]. While this issue has
been solved in some cases, in large-scale networks we face the
issue of complexity and limited number of sensors. Taking into
account this complexity and the cost of a sensor, it is often difficult
to reconstruct the state of a large-scale network. In the past few
decades, several graph-theoretical approaches for controllability
and observability of network systems have been proposed [5],
[6], [7], [8]. Most of theses works aims to reconstruct or to
control the whole state of the systems. However in numerous
cases, there is no need to reconstruct the state of each node,
but only an aggregation of these states. Recently, Niazi et al.
[9] took advantage of this observation and proposed the notions
of average observability and average detectability. These notions
refer to the reconstruction of the average state of the unmeasured
nodes respectively in closed-loop and in open-loop. In particular,
in an average detectable system, it is possible to design an open-
loop observer estimating the average of the unmeasured nodes
such that the error converges to zero. In the following, we will
only focus on this latter notion. In [9] the authors propose a
sufficient condition for average detectability. This condition allows
to test if a given network and a given subset of measured nodes
form an average detectable system. If it is possible to choose the
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placement of the measured nodes, a question emerges: given a
network system what is the smallest subset of measured nodes
fulfilling the average detectability condition ? Said otherwise, what
is the smallest subset of nodes to observe in order to be able to
reconstruct the average of the unmeasured nodes ? This is the
question we address through this article.
In order to transform the condition for average detectability into
a structural condition, we will restrict ourselves to a particular
type of system: negative uniform graph. With such system, when
a subgraph of unmeasured nodes forms a regular graph1, then
the system is average detectable. Hence, our problem becomes
detecting the largest regular induced subgraph (RIS) out of a
given graph. The question of finding induced subgraphs with
particular properties has been addressed in several works. For
example, we can cite the maximum clique problem [10] which
has implications, in particular, in social networks; Frequent subtree
mining [11] which is applied to data analysis; Induced subgraph
isomorphism problem [12] or its variant as Snake-in-the-box
problem or the maximum independent set problem. In most cases,
these problems are either oriented to data analysis or are graph-
theoretic problems with no direct application. To our knowledge,
the present work is the first to use an induced subgraph problem
for a reconstruction concern. As said, here the objective is also to
detect subgraph with a particular property which is regularity. The
regular subgraph detection have been studied in different contexts
and after introducing this property, we propose a brief review of
the works in this domain in Section 2.
However, the regular induced subgraph detection raises some
difficulties: first, the hypothesis on the system are very restrictive
and concern few real systems. Moreover the problem is known
to be NP-hard and so it is not scalable. Finally the solution found

1. Here, we call regular a graph in which all the nodes have the same out-
degree. The term out-regular would be more accurate, but we prefer regular
for readability concerns.
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implies often to measure a large proportion of nodes. Therefore, in
Section 3, we relax the problem by introducing the notion of quasi-
regularity, which qualifies a graph which is close to be regular. We
derive then a result linking the error of regularity and the error
of reconstruction: the more regular the unmeasured subgraph is,
the better is the reconstruction. On these grounds, we treat the
problem of quasi-regular induced subgraph detection (q-RIS). We
also extend the results, and the algorithm, to multiple quasi-regular
induced subgraph (mq-RIS). Finally, in Section 4 we present an
application of the mq-RIS approach on an epidemic spreading
case.

1.1 Preliminaries
In this article we will consider a directed graph G = (V, E),
where V = {v1, v2, . . . , vn} is the set of nodes and E ∈ V × V
is the set of directed edges. The graph can be represented by its
adjacency matrix A ∈ Rn×n, whose ij-th entry is given by

[A]ij =

{
aij if (vi, vj) ∈ E
0 otherwise (1)

where aij is the weight of the edge (vi, vj) ∈ E . We follow the
convention that the edge (vi, vj) goes from vi to vj : vi −→ vj .
We associate to this graph a linear time-invariant (LTI) network
system:

Σ :

{
ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

, (2)

where x(t) = [x1(t), . . . , xn(t) ]T is the network state vector
and u(t) = [u1(t), . . . , up(t) ]T is the input vector.
We will consider that the output vector y contains a sam-
ple of k components of the state vector x. This means that
y = [x1(t), . . . , xk(t) ]T and so C =

[
Ik 0

]
. The nodes

V1 := {v1, . . . , vk} are called the measured nodes while
V2 := {vk+1, . . . , vn} are the unmeasured nodes. We denote
m the number of unmeasured nodes: m = n− k. We also denote
x2(t) = [xk+1(t), . . . , xm(t) ]T , the state of unmeasured nodes
and xav2 the average value of the unmeasured nodes:

xav2 =
1

m
1T x2 (3)

We decompose the matrices A and B as follows:

A =

[
A11 A12

A21 A22

]
, B =

[
B1

B2

]
. (4)

WithA11 ∈ Rk×k,A22 ∈ Rm×m and all the other block matrices
of corresponding dimensions. We denote by σ the deviation vector
defined as:

σ = x2 − 1xav2 =


xk+1 − xav2

xk+2 − xav2
...

xn − xav2

 (5)

This vector contains the difference between the value of each
unmeasured nodes and the average value of the unmeasured nodes.
We have 1Tσ = 0. The evolution of xav2 is described by the
following equation:

ẋav2 = αxav2 + gy(t) + bu(t) + ησ(t) (6)

with α = 1
m1TA221, g = 1

m1TA21, b = 1
m1TB2 and η =

1
m1TA22.
Let x̂av2 be an open-loop observer for xav2 described as:

˙̂xav2 = αx̂av2 + gy(t) + bu(t) (7)

v1

v2 v3v4

-5
-1

-4

-2

-3

-5

Fig. 1. Outflow balanced graph: the sum of the weights going out is the
same for each node.

We will see in the next section the condition on the system to
ensure that the observer x̂av2 converges to xav2 .

2 REGULAR INDUCED SUBGRAPH DETECTION
FOR AVERAGE DETECTABILITY

2.1 Average detectable system
Definition 1 (Average Detectability: AD). A system Σ with a
subset V1 of measured nodes is said to be average detectable if
zero output implies that the average value of V2 converges to zero:

∀ xav2 (0) ∈ Rm, y(t) = 0 =⇒ lim
t→∞

xav2 (t) = 0 (8)

The average detectability of the system Σ is equivalent to
the convergence of the observer to the average value of the
unmeasured nodes [9], which is:

Σ AD ⇐⇒ x̂av2 (t) −→
t→∞

xav2 (t) (9)

In the following, we first exhibit a sufficient condition for average
detectability in the general case. We will introduce then a special
class of systems: negative uniform graphs. With such a system, it
appears that finding a subgraph V1 ensuring average detectability
amounts to find a regular induced subgraph. We investigate then
the problem of detecting regular subgraph in a graph.

2.2 Sufficient condition for average detectability
In order to introduce the condition for average detectability we
first define a graph-based notion.

Definition 2 (Outflow balanced graph). Let G be a directed
weighted graph represented by its adjacency matrix A. G is said
to be outflow balanced if the sum of the weights of the outgoing
edges is the same for every nodes, which is :

∃ γ ∈ R, 1TA = γ1T (10)

Moreover if γ < 0, then the graph is said to be negatively outflow
balanced.

Example 1. Consider the graph G represented in fig. 1. Its
adjacency matrix A is as follows:

A =


0 0 −2 −5
−5 0 −3 0
0 −1 0 0
0 −4 0 0

 (11)

We verify that 1TA = −5× 1T . Hence the graph G is negatively
outflow balanced.

Proposition 1 (Sufficient condition for average dectability - Theo-
rem 3 in [9]). Consider a system Σ associated to the graph G. We
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Fig. 2. By measuring the node v2, the unmeasured nodes V2 =
{v1, v3, v4, v5} induces a negatively outflow balancedGV2

with γ = −2.
Thus, the system is average detectable.

note GV2 the subgraph of G induced by the subset of unmeasured
nodes.
The system Σ is average detectable if GV2 is negatively outflow
balanced.

Therefore if the set of nodes can be partitioned into two subsets
such that one induced subgraph is negatively outflow balanced,
then measuring the nodes outside this subgraph makes the system
average detectable. Figure 2 gives an example of such a system.

2.3 Formal Problem statement
The problem we want to tackle is formulated as follows:

Problem 1 (Negatively outflow balanced induced subgraph detec-
tion). In a given graph G find the largest induced subgraph of G
which is negatively outflow balanced.

However, in an arbitrary graph with independent weights there
is, almost surely, no outflow balanced subgraph. That being said,
two solutions can be considered: Either we restrict ourselves to
particular systems for which we know that negatively outflow
balanced subgraphs can be found, either we relax the notion
of average detectability and hence the notion of regularity. The
second solution will be explored in Section 3 where we introduce
the notion of quasi-regularity. In the following of this section, we
focus on the first solution: we treat the problem for a particular
type of systems: the negative uniform graphs defined hereafter.

Definition 3 (Negative uniform graph: NUG). A graph G, repre-
sented by the adjacency matrix A, is said to be negative uniform
if all its weights are equal and negative, which is Aij ∈ {0; a}
with a < 0.

Proposition 2 (Sufficient condition for average detectability of
negative uniform graph). Let Σ be a system associated to a
negative uniform graph G. Σ is average detectable if GV2 is
regular.

Proof. In a negative uniform graph we remark that

1TA = a× degout(G), (12)

Therefore, with (10) and (12), a negative uniform graph is nega-
tively outflow balanced if there exists γ < 0:

a× degout(G) = γ1T

degout(G) =
γ

a
1T

This mean that all the out-degree of G must be the same, which is
G has to be regular

Finally we have:

NUG + RIS =⇒ AD ⇐⇒ x̂av2 (t) −→
t→∞

xav2 (t) (13)

Remark 1. While negative uniform graph is a quite restrictive case,
we can also consider positive uniform graph with a same negative
self-loop η. Indeed in this case, we have 1TA = a×degout(A)−
η1, and even with a > 0 the right side can be negative if the self-
loop η is large enough. Proposition 2 remains true if the system
is associated with such a graph. This type of graphs includes for
example some heat systems with high dissipation [13]. The model
presented in section 4 falls also in this sclope. In the following,
we only consider negative uniform graph for the simplicity of the
development.

We can now formulate the problem arising from Problem 1
restricted to the negative uniform graphs case.

Problem 2 (Regular induced subgraph detection). Let G be a
negative uniform graph. We look for the largest regular induced
subgraph of G, which is:

max
I⊂V
|I|,

s.t. GI is regular.
(14)

where GI is the subgraph of G induced by the subset of nodes I .

By measuring the nodes outside the subgraph solution of
Problem 2, we obtain an average detectable system. Figure 3
illustrates this problem.

2.4 Methods for RIS detection
In this section, we briefly present the existing literature on the
regular induced subgraph detection problem. We will see to wich
extent previous works can help to tackle Problem 2.
The problem we want to tackle is known as regular induced
subgraph (or RIS) detection. In the literature the problem, is
treated for a given degree k of the regularity and is called k-
regular induced subgraph (or k-RIS) problem. The works in this
domain can be classified as follows:

• Complexity of the k-RIS problem: A first work [14]
showed that the problem in the case k = 0 is NP-hard.
Then several works [15], [16] generalize the result for any
k and different type of graphs. Some studies [17], [18]
exhibit a polynomial complexity for some particular types
of graph.

• Algorithms to detect the largest k-RIS: Despite the
complexity of the problem, some algorithms have been
proposed to solve it. In the case k = 0, [19], [20]
propose fast-exponential algorithms (i.e. in O(cn) with
c ≤ 2). For any k, a fast-exponential algorithm based
on a branch-and-bound approach is proposed in [21] and
a polynomial algorithm for a particular type of graphs
in [22]. However these results consider undirected graph
and standard regularity (not out-regularity as us). Still,
the branch-and-bound approach proposed in [21] can be
extended to our case and will be presented later.

• Upper-bound on the size of the largest k-RIS: Facing
the complexity of the problem it is interesting to obtain
an upper-bound on the size of the optimal solution. An
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(a) We detect a regular in-
duced subgraph. Here the
five nodes in the center have
a same out-degree equal to
2.

(b) The system is excited with an arbitrary sinusoidal input in
some nodes. The dotted blue lines represent the evolution of the
unmeasured node in the initial system (2) and the solid blue line
their average. The solid red line represents the evolution of the
observer described in (7) which converges towards the averaged
value.

Fig. 3. Representation of the approach proposed here: (a) from an
initial negative uniform graph, a regular subgraph is detected; (b) as the
system is average detectable, the observer (7) allows to estimate the
averaged value of the unmeasured nodes.

intuitive upper-bound on the size of the largest k-RIS
is the size of the k-Core of the graph. The k-Core is a
subgraph obtained by removing iteratively nodes with a
degree smaller than k. More elaborate upper-bounds have
been proposed for any k [15], [23] or for particular values
of k [14], [24]. As above, these results are valid only
for undirected graph and. From our knowledge, only the
k-Core approach can be extended to our case.

• Approximating algorithm to find a sub-optimal solu-
tion: While it would be interesting to find an approximate
solution of our problem, it is shown that this problem is
hard to approximate [25].

2.5 The meta-algorithm and the sub-algorithms

As discussed in the previous section, the literature proposes only
methods to find the largest k-regular induced subgraph but nothing
to solve the problem for every k. A simple approach consists in
solving the problem for each k and then keeping the best solution:
We denote RIS(G) and k-RIS(G) respectively, the largest regular
and k-regular induced subgraphs of G. We have then:

RIS(G) = max
k∈N

k-RIS(G) (15)

Some tricks can be used to optimize the approach:

• As seen in the previous section, there are some meth-
ods allowing to find an upper-bound on k-RIS(G). We
denote this upper-bound by θk(G). While testing the
value of k-RIS(G) for every k, if θk0(G) is smaller
than the largest k-RIS(G) so far, it is useless to com-
pute k0-RIS(G). Noticing that the computation of this
upper-bound is faster by far than the computation of
the k-RIS(G), this helps the computation of the regular
induced subgraph.

• The cases with k = 0 and k = 1 are particular and a
specific algorithm can be applied.

• Using an approximate algorithm for the k-RIS would
imply a sub-optimal solution for the RIS which can be
interesting if the approximation is good.

Based on these remarks, we propose Algorithm 1 to detect the
largest regular induced subgraph within a given graph.

Algorithm 1 Regular induced subgraph detection
Require: G

1: RIS = []
2: for k = 0 : max(degout(G)) do
3: θk = UpperBound k-RIS(k,G)
4: if θk > |RIS | then
5: k-RIS = Find k-RIS(k,G)
6: RIS = max(RIS, k-RIS)
7: end if
8: end for

Ensure: RIS

This is actually a meta-algorithm as we only give the skeleton
of the method and not the sub-algorithms UpperBound k-RIS
and Find k-RIS. The choice of these sub-algorithm is discussed
hereafter.
Remark 2. The sub-algorithms Find k-RIS(k,G) and Upper-
Bound k-RIS(k,G) can be different algorithms for k = 0 and
k = 1.

We first discuss the implementation of the Upper-
Bound k-RIS(k,G) algorithm. This algorithm is detailed in Al-
gorithm 2 and is based on the k-Core. As said before, the k-Core
of a graph is the subgraph obtained after removing repetitively the
nodes with a degree smaller than k. It is clear that

k-RIS(G) ⊂ k-Core(G) (16)

and so, the size of the k-Core is an upper-bound on the size of
k-RIS.

Algorithm 2 k-Core
Require: G, k

1: I ← Nodes in G with out-degree < k
2: while I is not empty do
3: Remove I from G
4: I ← Nodes in G with out-degree < k
5: end while
6: θk ← number of nodes in G

Ensure: θk an upper bound on the size of the k-RIS

The implementation of the second sub-algorithm
Find k-RIS(k,G) is described in Algorithm 3. It is an
extension of the branch-and-bound approach proposed in [21]. It
is a recursive algorithm designed as follows: Given a graph G
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Fig. 4. Left: The largest regular induced subgraph found is highlighted
in red. Right: The upper-bound (k-Core) is displayed in blue for k ∈
{1; 2; 3; 4}. The real size of k-RIS are in dot red for k ∈ {1; 2; 3}.
The 4-RIS is not computed since σ(4) < |3-RIS|. The red dotted line
represents the size of the RIS.

and a degree k, we first compute the k-Core of G (line 1). If the
graph obtained is k−regular then the k-RIS is found (line 3) and
the algorithm terminates. Otherwise there is at least one node,
denoted r, with a degree larger than k (line 5). It is clear that
either r is not in the k-RIS either (at least) one of its successors2

is not (line 6). Thus, we consider the subgraphs obtained by
removing r or a successor of r (line 8). Finally we compute the
k-RIS for each of them (line 9) and select the largest one (line
11).

Algorithm 3 k-RIS

Require: G, k
1: G← k-Core(G, k)
2: if G is k−regular then
3: k-RIS← G
4: else
5: r ← a node of G with degree > k
6: I ← Nout(r) ∪ r
7: for i ∈ I do
8: Gtmp ← remove i in G
9: k-RIStmp{i} = k-RIS(Gtmp, k)

10: end for
11: k-RIS = max(k-RIStmp)
12: end if
Ensure: k-RIS

Remark 3. It is possible to use a technical trick to speed-up the
algorithm. The size of the current best solution can be stored and
passed to the recursive call to k-RIS (line 9). If the size of the
current subgraph is smaller than the size of the best solution, the
recursion stops. This shortcut is not in algorithm 3 for the sake of
readability.

Simulation 1. Figure 4 presents a result obtained with Algorithm 1
(and Algorithms 2-3). Considering that the graph is negative
uniform, the system is average detectable by measuring the 8
nodes outside of the red subgraph.

2.6 Discussions
The method proposed above suffers some limitations that we
present hereafter and which motivate the relaxed problem pre-
sented in next section:

2. Nout(r) is the set of successors of r

• Negative uniform systems are rare: It seems that there is no
practical example in the literature. Even when we consider
positive uniform systems with large negative self-loop (as
mentioned in Remark 1), the applications are scarce.

• RIS is a fragile notion: For example, a grid graph which
is very close to regular (only the nodes on the border
have a smaller degree) does not fulfill the condition of the
theorem. Moreover the largest RIS in a graph is generally
relatively small.

• The RIS problem is hard to solve: there is no specific
method for the RIS problem and the k-RIS problem has
to be solved several times. Moreover, as said before, the
k-RIS problem is a NP-hard problem and there is no
approximation algorithm to solve it.

Based on these statements, the RIS detection approach introduced
in this section is difficult to apply to real-world problems. We will
see that it is possible to accept some errors on the regularity while
preserving the possibility to reconstruct efficiently the average.
We introduce, in the next section, the notion of quasi-regularity
leading to more flexibility.

3 QUASI-REGULAR INDUCED SUBGRAPH DETEC-
TION

3.1 Preliminaries
In the previous problem, to reach average detectability, the con-
dition to satisfy was 1TA22 = γ1T with γ < 0. To relax the
problem we consider now that this equality is no more verified
and we introduce a perturbation vector s defined as:

s = 1TA22 − γ1T (17)

and the regularity error ε defined as:

ε =
‖s‖1
m|γ|

(18)

We denote ess the reconstruction error defined as:

ess = lim
t→∞

|xav2 − x̂av2 | (19)

The following proposition gives the link between the regularity
error and the reconstruction error.

Proposition 3 (Relation between regularity error and reconstruc-
tion error). The reconstruction error (19) is linked with the
regularity error (18) by:

ess ≤ σ̄
ε

1− ε
, (20)

where σ̄ = lim supt→∞ |σ(t)| is a constant of the system.

Proof. We consider that condition (10) is not fulfilled and so we
introduce s a perturbation vector:

1TA22 = γ1T + sT (21)

We denote x̃av2 := xav2 − x̂av2 the reconstruction error. From
equations (6) and (7) we have then:

˙̃xav2 (t) = αx̃av2 (t) + ησ(t) (22)

where σ defined in (5) is the deviation from average. From (21)
and the definition of α, we have:

α =
1

m
1TA221 =

1

m
(γ1T + sT )1 = γ +

1

m
sT 1 (23)
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From (21), the definition of η and since 1Tσ = 0, we have:

ησ =
1

m
1TA22σ =

1

m
(γ1T + sT )σ =

1

m
sTσ (24)

From these two results, (22) becomes:

˙̃xav2 (t) = (γ +
1

m
sT 1)x̃av2 (t) +

1

m
sTσ (25)

We denote ess := limt→∞ x̃av2 (t). By convergence of (25) we
have:

ess = −
1
ms

Tσ

γ + 1
ms

T 1
(26)

and therefore

|ess| =
|sTσ|

|mγ + sT 1|
≤ |sTσ|
|mγ| − |sT 1|

≤ ‖s‖1σ̄
m|γ| − ‖s‖1

(27)

with σ̄ := lim supt→∞ σ(t) and with the definition of ε given in
(18) we proved (20).

The constant σ̄ depends on the physical system of interest
and corresponds to the maximal difference between the value of
an unmeasured node and the average value of the unmeasured
nodes. According to Proposition 3, in order to minimize the
reconstruction error, it is interesting to find a subgraph having a
reasonable regularity error ε. Relation (20) is emphasized through
simulations in the following section.

Remark 4. As the reconstruction error ess grows with the regular-
ity error ε, it actually grows with the absolute error of regularity
‖s‖1 and decreases with the degree of regularity γ and the size
of the unobserved subgraph m. This means that the reconstruction
will be better if the subgraph of unmeasured nodes is large, close
to be regular and with a large degree of regularity.

3.2 Emphasis of the link between error of regularity
and error of reconstruction
Before investigating the q-RIS detection problem, we present
some simulations enlightening the relation described in Proposi-
tion 3. To this end, we first introduce a family of graphs for which
we can control the regularity.

Definition 4 (p−reg graph). Given a graph G, we denote
Nout(i) = {j, (j, i) ∈ E}, the set of successors of i.
A graph is said p−reg if it verifies:{

|Nout(i)| = 1 if i is odd
|Nout(i)| = p if i is even (28)

Graphs of this family have the particularity to have one half
of their nodes with out-degree 1 and the other half with out-
degree p. In particular if p = 1, the graph is 1-regular (it is
a cycle). By increasing the value of p, the regularity worsens
as shown in fig. 5. In the following numerical simulations, we
consider a series of graphs composed of a p-reg graph and one
additional measured node as in fig. 6. Therefore, with such graph,
by tuning the value of p we can modify the regularity of GV2
while preserving the shape of the system. The graph used in the
experiment contains 101 nodes (100 nodes in the p-reg graph plus
one extra node to measure). We add some arbitrary inputs to the
system and we compare the average value of the p-reg subgraph
and the reconstructed value of this average for different value of
p. The results are displayed in fig. 7. We notice that as predicted
by Proposition 3 the error of reconstruction grows with the error

Fig. 5. The family of p−reg graphs allows to control the regularity of a
graph.

v1

v2 v3

v4 v5

v6 v7

v8 v9

Fig. 6. A 2-reg graph as defined in Definition 4 with an additional node
to observe. For the experiments, a similar graph is used with 100 nodes
and p varying from 1 to 100.

Fig. 7. Error of reconstruction in function of the error regularity for
the family of p-reg graph. For each p ∈ [1, ..., 100], 25 p-reg graph
are generated with different inputs. The error of reconstruction is then
computed as the bias between the signal and the reconstruction at
t = 1000 (which is a good approximation of ess). This emphasizes the
link between the regularity of a subgraph and the ability to reconstruct
its average.
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of regularity. This simulation enlights the fact that by minimizing
the error of regularity ε we can control the error of reconstruction
ess.

Remark 5. While detecting quasi-regular, if a small error is
imposed on the regularity, the subgraph found might be small
(and so the number of nodes to measure would be high). In the
other hand, Proposition 3 ensures that the reconstruction would
be better. Consequently, a compromise between the number of
measure and the quality of the reconstruction has to be found.
An interesting way to implement this compromise is by fixing
a threshold for the error of regularity and then find the largest
subgraph whose regularity error is lower than this threshold. This
leads to the q-RIS detection problem defined hereafter.

Problem 3 (Quasi-regular induced subgraph detection). Let G be
a graph and ε0 > 0 a threshold for the quasi-regularity. We look
for the largest quasi-regular subgraph of G, which is:

max
I⊂V
|I|,

s.t. ε(GI) < ε0
(29)

where ε(G) is the regularity error associated to G as defined
in (18).

Therefore, by measuring the nodes outside the subgraph so-
lution of Problem 3 we can reconstruct the average value of the
subgraph with an error of the order of σ̄ ε0

1−ε0 .

3.3 Algorithm for q-RIS detection
We present here an algorithm providing a sub-optimal solution to
Problem 3. A combinatorial algorithm exploring every possible
subgraph would find the exact solution but it is uncomputable in
practice even for graphs with a relatively small size. We present
here a beam-search algorithm allowing to find an approximating
solution.
The principle of beam-search algorithms is as follows: A set of
candidate solutions is considered as a seed, a set of solution
deriving from these candidate is considered and the β most
promising are memorized (β is called the beam width) and form
the new set of candidate. The algorithm stops when a candidate
solution is satisfying enough or when the new candidates are no
more satisfying. In this latter case, the final solution is chosen
among all the previous candidates.
For the quasi-RIS detection the algorithm is described in Algo-
rithm 4: We initialize the set of candidates with the singletons of
each node (line 1). Then we iterate while one of the candidate
has a regularity error smaller than the minimum accepted ε0
(line 2) (see Remark 6 for a discussion on this point). At each
iteration, new candidates are derived from the current candidates
(line 4-5). These new candidates are all the subsets composed
by one current candidate c and any other nodes of the graph Si.
Finally all these new candidates are united (line 7), the β best
form the new candidates (line 8) and the best one is stored as
quasi−RIS (line 9). By repeating this operation several times,
the size of the candidates grows until none of the candidate have
a regularity error small enough. At the end, the candidate with
the smallest regularity error is chosen. Figure 8 illustrates this
algorithm. Beam-search algorithms, like this one, are a type of
greedy algorithm and hence do not provide an optimal solution.
However the computation is relatively fast and the solutions found
are rather good, as we will see.

Algorithm 4 quasi-RIS detection
Require: G: graph with n nodes, ε0 maximum acceptable error,

β beam width
1: Cand← {{1}; {2}; . . . ; {n}}
2: while minI∈Cand ε(GI) < ε0 do
3: for c ∈ Cand do
4: S ← [1, . . . , n]\c
5: Jc = {c ∪ S1; c ∪ S2; . . . ; c ∪ Send}
6: end for
7: Ω←

⋃
c Jc

8: Cand← β smallest ε(Gc) for c ∈ Ω
9: quasi-RIS← smallest ε(Gc) for c ∈ Ω

10: end while
Ensure: quasi−RIS

Fig. 8. Illustration of the algorithm 4 (on an undirected for readability).
Here the beam width β = 2, so at each step the 2 best candidate are
kept (solid line). Two light modifications are brought to make the example
more readable: the seed is a single candidate while in the algorithm the
seed is composed of the singletons of each node. Secondly, here the
new candidates are the subsets composed of a previous candidate and
a node neighboring this candidate while it is any node in the algorithm.

Remark 6. In Algorithm 4 the while loop will stop if none of
the candidate have a regularity error small enough. However, this
condition is relatively strict as it is possible that it is not verified at
some iteration but it will be verified in the future. Thus, a relaxed
condition would be to stop if the the condition is disrespected
several iterations in a row. Then the solution would be the last
candidate verifying the condition.

Remark 7. The new candidates are chosen in a way that may
induce a disconnected subgraph. This allows to explore more
potential solutions. However, for some applications the connected-
ness of the unobserved subgraph may be required or wished. For
example when the network has a geographical nature (as urban
traffic network or electrical grid), it is interesting to estimate the
average of a geographical area. In this case, the algorithm can be
adapted by changing line 4 with S ← Nin(c)∪Nout(c). Figure 8
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(a) In blue, the quasi-regular sub-
graph detected with algorithm 4.

(b) Reconstruction of the average of the quasi-regular subgraph obtained

Fig. 9. Illustration of the q-RIS approach. Our algorithm is able to detect
a subgraph (a) which is enough regular to make the reconstruction of its
average quite good (b).

implements this solution. See [26] for a discussion on the lowering
of the solution due to the connectedness constraint.

Simulation 2. We present in this paragraph a simulation of Algo-
rithm 4. We designed a graph endowed with a particularly regular
subgraph to emphasize the ability of the algorithm to detect it. In
this simulation the parameters are ε0 = 0.1 and β = 300 which
means that at each step we conserve the 300 best candidates. The
subgraph obtained is presented in fig. 9(a). We compute then the
reconstruction of the average in this subgraph. Figure 9(b) shows
the actual average and the estimation made by measuring the nodes
outside the subgraph.

We have seen how to detect a regular or quasi-regular subgraph
in order to estimate their average. We propose to generalize
this approach, to detect several subgraphs and estimate different
averages. The next section presents an extension of the current
results to the multiple subgraphs case.

3.4 Extension to Multiple quasi-Regular Induced Sub-
graphs (mq-RIS)

In the previous problems we tried to find one regular or quasi-
regular subgraph in order to estimate its average. We wonder,
now, to which extent it is possible to detect several regular or
quasi-regular subgraphs and estimate their respective average.
Considering the limitations posed by the regularity case evoked in
section 2.6, we focus only on the quasi-regular problem. However
a similar generalisation can be led for the regularity case. In the
RIS and q-RIS problems we wanted to have the minimum number
of nodes to measure leading to the minimisation problems 2 and 3.
Here again we have the same objective to minimize the number
of measured nodes. Thus, we want to find disjoint quasi-regular
induced subgraphs GI1 , . . . , GIm maximizing the cardinality of
the union of all the subgraph. We denote I = [I1, . . . , Im] the
set of the subsets. Moreover these subgraphs can not share any

successors, i.e. nodes outside the subgraph and pointed by a node
of the subgraph. This is because the successors of a subgraph are
measured to estimate the average value of the subgraph. If a node
is pointed by two nodes belonging to two different subgraphs, the
condition for the reconstruction does not hold (see [9]).

Problem 4 (Multi quasi-regular induced subgraph detection). Let
G be a graph and ε0 > 0 a threshold for quasi-regularity. We
look for a set of quasi-regular subsets I minimizing the number
of nodes to measure, which is:

max
I=[I1,...,Im]

∣∣∣∣∣∣
⋃
j

Ij

∣∣∣∣∣∣ ,
s.t. ∀ i, ε(GIi) < ε0

∀ i, j, (Ii ∪Nout(Ii)) ∩ (Ij ∪Nout(Ij)) = ∅

(30)

The second constraint translates the non-overlapping of the
subgraphs and their successors. The quasi-RIS detection algo-
rithm 4 presented in the previous section can be extended almost
straightforwardly to the multiple subgraphs case as follows: a
first quasi-regular subgraph is detected, the subgraph and its
neighborhood (which are the nodes to measure) are removed from
the graph and the process is repeated with the new graph. To
limit the number of nodes to measure it is interesting to limit the
number of neighbors of the subgraph selected at each iteration.
To this aim, we propose to find at each iteration the subgraph
maximizing |I|/|Nout(I)| i.e. the ratio between its size and the
size of its neighborhood instead of the subgraph minimizing ε(GI)
in Algorithm 4.

The algorithm for multi quasi-RIS detection is described in
Algorithm 5 where quasi-RIS? refers to the algorithm 4 where
line (9) has been replaced by

quasi- RIS = arg max
c∈Ω, ε(Gc)<ε0

|c|
|Nout(c)|

(31)

Algorithm 5 Multi quasi-RIS detection
Require: G: graph with n nodes, ε0 maximum acceptable error,

β beam width, imax maximum number of subgraph detected
1: I = []
2: I = quasi-RIS?(G, ε0, β)
3: while I is not empty do
4: I = I ∪ I
5: G = remove I ∪Nout(I) from G
6: I = quasi-RIS?(G, ε0, β)
7: end while

Ensure: I set of subsets inducing multiple quasi-RIS

Simulation 3. We propose here a simulation of Algorithm 5 for
the mq-RIS detection. To this end, we consider an initial graph
(fig. 10) designed with five zones more regular than the average.
This aims to test the capacity of the algorithm to detect regular
subgraphs which are almost invisible to the naked-eye. The result
of the simulation is displayed in fig. 11. In this case, the quasi-RIS
detection algorithm is applied five times before no more satisfying
subgraphs can be found. At each step, we can see that the subgraph
and its out-neighborhood found at the previous step is removed
and the algorithm is applied with the graph obtained.
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Fig. 10. The initial graph is a grid with some irregularities making certain
zones more regular. The algorithms aims to find these zones.

4 APPLICATION TO NETWORK EPIDEMIOLOGY

In this last section we apply the mq-RIS algorithm to a real-world
case: we consider the spreading of a disease over a contact network
of the main cities in France and we aime to estimate the evolution
of the proportion of infected people in different areas.

4.1 The epidemiological model
Several models have been developed to capture the mechanisms
of disease spreading, the most common ones are the so-called
compartmental models. In these models, the population is divided
in compartments representing the state (infected, susceptible, re-
covered, ...) of the individuals [27]. Moreover these type of models
may have an underlying network structure. In this case, nodes
represent individuals or group of individuals and edges represent
interactions between individuals or between the groups. A state
is assigned to each node and a dynamical equation describes
the evolution in function of the state of the node, the state of
its neighbors and the parameters of the disease. Among this
network compartmental models, we consider here one of the most
commonly used: the SIS model. Within this model, each node can
be susceptible (S) or infected (I) and can pass from one state
to another with a certain probability: as shown in fig. 12, an
infected individual may recover with probability δ (the recovery
rate) and a susceptible individual may be infected with probability
β (the infection rate) scaled by the state of its neighborhood. The
dynamics is detailed hereafter:

Xi : 0→ 1 with rate β
∑
Nin(i)

Xj

Xi : 1→ 0 with rate δ
(32)

where Xi = 0 means that i is susceptible and Xi = 1 means that
node i is infected and where Nin(i) is the set of predecessors of
i. We consider here a mean-field approximation of the SIS model
introduced in [28]. In this case, the nodes of the network does not
represent individuals but groups of people. The nodes are not in a
determined state S or I but have a proportion p of people infected.
The dynamics of p is then:

ṗ(t) = (AB −∆)p(t)− P (t)ABp(t), p(0) = p0 (33)

where p = [p1, . . . , pn] are the proportions of infected peo-
ple in each group (and P = diag(p)), A is the adjacency
matrix of the underlying network, B = diag(β1, . . . , βn),
∆ = diag(δ1, . . . , δn) are the parameters of the epidemic and p0

is the initial proportion of infected people in each group. In order

to use the approach developed before, we consider a linearized
version [27] of the dynamics in (33):

ṗ(t) = (AB −∆)︸ ︷︷ ︸
A

p(t), p(0) = p0 (34)

To complete the system we add some inputs:

ṗ(t) = Ap(t) + Bu(t), p(0) = p0 (35)

The matrix B ∈ {0; 1}n×b identifies some nodes which are in
contact with a source of infection3, and the function u(t) ∈ Rb×1

gives the dynamics of each source of infection. We consider that
∀i, βi = β and δi = δ (the rate of infection and recovery are the
same in the whole network) resulting in an adjacency matrix with
the following form:

A =



−δ β 0 β 0 0 0
0 −δ 0 0 β β 0
β 0 −δ 0 0 0 0
β 0 β −δ 0 β 0
0 0 0 0 −δ 0 β
0 0 0 β β −δ 0
0 0 0 0 0 β −δ


(36)

This adjacency matrix correspond to a system which falls in
the scope of positively uniform system with a large negative self-
loop as discussed in Remark 1.

4.2 The estimation problem

It is often relevant to estimate the evolution of a disease: as it is
very costly to determine the state of each individual, one needs
methods to reconstruct the spreading of the epidemic. Based on
such methods, it is then possible to propose an heatmap as in
fig. 13 allowing for example to take appropriate sanitary measures,
or to study the efficiency of a treatment.
We propose here to use our approach to estimate the evolution of

the proportion of infected people in different areas, by measuring
the state of few groups. Thus, we consider here the propagation
of a disease over a network representing a contact network of
the main French cities (detailed after). By means of the mq-RIS
approach presented above, we aim to estimate the evolution of the
epidemic with few measured nodes.

4.3 Construction of the graph

We consider a graph of interaction between groups of individuals
at a country scale. The graph is structured at two different scales:
a level within the cities and a level between cities. It is known that
at the level of a city, individuals are strongly interconnected and
tend to form clusters [29], [30]. Here we use the Watts-Strogatz
model [31] which is known to well capture the features of social
networks. At the level of the country, there are fewer connections
between groups of different cities and the number of connections
between two cities is proportional to their number of inhabitants
and inversely correlated to their distance. We generate such a
network by considering twenty two of the most populated cities in
France (fig. 14). The details of the construction of the graph are
given in table 1.

3. Sources of infection may be a polluted area, insect bites, a population of
infected animals, ...
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(a) A first subgraph is found (in blue). On the right the evolution of the
regularity error through the iterations. The red dot corresponds to the
iteration where the subgraph maximizing (31) is found.

(b) The first subgraph found and its successors are removed and the
algorithm is applied again to detect a second subgraph (in blue).

(c) The second subgraph found and its successors are removed and the
algorithm is applied again to detect a third subgraph (in blue).

(d) The graph obtained when merging the subgraphs obtained at each
steps. By measuring the remaining nodes, the average of the subgraphs
detected can be estimated.

Fig. 11. (a-c) left: in blue the subgraph within the current graph; right: the evolution of the regularity error of the best candidate is displayed through
the iteration. Moreover a red dot shows the iteration of the selected subgraph. Two other subgraphs are found but it is not shown here. (d) represents
the graph obtained by merging the different subgraphs. This reduced graph offers an estimation of the initial graph, and thus can be seen as an
aggregation of it.

Infected Susceptible

β

δ

Fig. 12. Sketch of the SIS model

Population
Number of groups (nodes) 1404
Pop. per groups 5000
Number of cities 22
Graph
Model within cities Watts-Strogatz
Mean degree K 10
Prob. rewire β 0.1

Prob. connection inter-cities ed
2/10

850
Number of input 323

SIS model
Infection rate β 0.05
Recovery rate δ 0.98

TABLE 1
Parameters for the graph of interaction and the SIS model

Fig. 13. Interpolating map of the number of individual infected with flu
for 100000 inhabitants in January 2019 in France. Map available on
www.sentiweb.fr. c©Inserm

4.4 Simulation

Figure 15 presents the partition found with algorithm 5. The graph
has been divided in 11 subgraphs containing 1112 nodes in total.
Thus, only 292 nodes remains to measure which represents only
20.80% of the nodes. Some of the parts fit cities while others
include a whole region. The figure gives also the regularity error ε,
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Fig. 14. Graph of interaction of the main cities of France. It is composed
of 1404 nodes, each representing a population of 5000 individuals.
The subgraphs within the cities is based on the Watts-Strogatz model
while the graph between cities is a random graph where the probability
of connection between two nodes decreases exponentially with the
distance.

Fig. 15. Partition obtained via the mq-RIS algorithm 5. The legend gives
the error of regularity, the number of nodes and the mean degree for
each subgraph detected.

the number of nodes |V| and the mean degree k for each subgraph.

Now that we have this partition where each subgraph is quasi-
regular it is possible to estimate the value of the average inside
the subgraphs. We chose β = 0.05 and δ = 0.98 and arbitrarly
add 323 sources of infection randomly distributed in the territory.
To be close to the reality we use as initial conditions the situation
presented in fig. 13 and available on www.sentiweb.fr. Figure 16
shows the evolution of the proportion of infected individuals
inside each subgraph and the estimation made with the open-
loop observer x̂av2 described in (7). The solid lines are the actual
averages while the dotted lines are the estimated average. Figure
17 shows the evolution of the absolute error for each subgraph. We
observe that, as expected, the estimations errors decrease quickly
and remain relatively small. However, as we did not find exact
regular subgraphs, the system is not detectable and the error does
not converge to zero. Instead there is a small residual error which
is acceptable.

Fig. 16. Proportion of infected individuals within each subgraph. The
solid lines are the ground-truth values and the dotted lines are the
average estimated from the measurements.

Fig. 17. Semi-log representation of absolute errors between the ground-
truth value and the estimated value for each subgraph. The errors
decrease but they do not converge to zero.

5 CONCLUSION

Based on the novel notion of average detectability we proposed
here three algorithms providing measured node placement in order
to estimate the average of a subset of the system. Considering a
particular type of system, the first algorithm finds regular induced
subgraph to reach full average detectability, i.e. the estimation of
the average is asymptotically unbiased. Due to the limitation of
this first problem, we proposed a relaxation: we focused on the
detection of quasi-regular induced subgraph which results in an
estimation of the average with a bias which depends on the quasi-
regularity. The second algorithm achieves this task. The third
algorithm allows to detect several quasi-regular induced subgraphs
to estimate the averages of different subsets of the system. Finally,
we apply the third algorithm to estimate the evolution of a disease
spreading in a contact network on French territory.
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