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Abstract 

This review aims at synthetizing data available in brain molecular imaging, i.e. Single Photon 

Emission Computer Tomography (SPECT) but also inter-ictal Fluoro-Deoxy-Glucose 

Positron Emission Tomography (FDG PET) in focal epilepsies. SPECT imaging is able to 

measure regional cerebral blood flow and its major originality remains its ictal imaging value. 

On the other hand, FDG PET, which has higher spatial resolution and lower background 

activity than SPECT, enables to define glycolytic metabolism in inter-ictal state. Therefore, 

inter-ictal FDG PET has higher sensitivity than inter-ictal SPECT, especially in temporal lobe 

epilepsies (TLE). 
18

F-FDG PET is thus a necessary step in pre-surgical evaluation in TLE but 

also in extra-temporal epilepsies (ETE) leading to contribute to more than 30% in decision of 

surgery. In addition, FDG PET provides a particular diagnostic value in focal epilepsy with 

normal MRI. Moreover, PET has a good prognostic value on post-surgical outcome as well as 

cognitive impairment, especially in case with limited hypometabolism extent. The notion of 

epileptic network is also well underlined by functional imaging, allowing to better understand 

substrates of this pathology. Future development of quantitative analysis software, novel 

radiotracers and cameras will certainly enhance its clinical utility. 

 

Key-words: Brain molecular imaging; SPECT; FDG-PET; pharmaco-resistant focal epilepsy. 
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Introduction 

Seventy million people in the world suffer from epilepsy, with 34 to 76 new cases diagnosed 

per 100,000 every year (1). Focal epilepsies are the most common forms and they are 

characterized by seizure onset localized in a region (the epileptogenic zone, EZ) of the 

cerebral cortex. Focal seizures are generally characterized by the emergence of rapid 

discharges occurring within networks either discretely localized or more widely distributed 

(2,3). Overall, more than 30% of patients with epilepsy are thought to have drug-resistant 

seizures (1). In this context, surgical resection of the EZ is a valid option if the potential 

benefit is assessed to outweigh the risk (4). This EZ corresponds to the brain area necessary 

and sufficient for the generation of habitual seizures, generally less extensive than the whole 

irritative zone (area generating the inter-ictal spikes) (5). A medico-economic analysis shows, 

that in addition to being safe and effective, surgery of epilepsy is cost-effective in the medium 

term, and should therefore be considered earlier in the treatment of refractory epilepsies (6).  

Pre-operative evaluation aims to precisely define EZ. In this line, surgical techniques have 

been refined over years with the help of non-invasive techniques such as High-Resolution 

electroencephalography (EEG) and Magnetoencephalography (7,8), magnetic resonance 

imaging (MRI), as well as invasive techniques such as Stereotactic electroencephalography 

(SEEG; a stereotactic guiding for the placement of depth electrodes for intracerebral EEG 

monitoring). This evaluation also includes brain molecular imaging with perfusion SPECT 

(single photon emission computed tomography), and/or metabolic PET (positron emission 

tomography) using 
18

F-FDG (
18

F-Fluorodeoxyglucose). This global approach has led to more 

precise localization of EZ, allowing the removal of the minimal necessary amount of tissue 

with reduction of post-operative neurological deficit (9). It is noteworthy that surgical final 

decision is taken after interpretation of all these data within multidisciplinary staff discussion.  
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In this context, this review aims at synthetizing data available in brain molecular imaging, i.e. 

SPECT but also inter-ictal FDG PET in focal pharmaco-resistant epilepsies (temporal (TLE) 

and extra-temporal (ETE)).  Future perspectives would also be discussed for 
18

F-FDG PET 

analysis and novel PET radiopharmaceuticals.  
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1. SPECT in focal epilepsy 

 

SPECT imaging is able to measure regional cerebral blood flow (rCBF) associated with 

epileptic seizures (10). In this indication, its major originality remains its ictal imaging value. 

Actually, the radiopharmaceutical administration can be performed during an epileptic 

discharge, with a brain uptake irreversibly completed in one to two minutes (11). During an 

“ictal” scan, the brain regions involved in seizure generation and early propagation 

demonstrates increased perfusion, while most epileptic networks are hypoperfused during 

inter-ictal state (12). 
99m

Technetium radiolabeled tracers such as HMPAo 

(HexaMethylPropyleneAmine oxime) or ECD (Ethyl Cystine Dimer) are currently used. 

SPECT image acquisition can start 30 to 90 minutes after injection with acquisition duration 

of about 20 minutes, and a radiation dosimetry of approximately 6 mSv (13).  

Ictal SPECT has shown a sensitivity of 73% and specificity of 75%, while inter-ictal SPECT 

has a much lower localization value with 50% of sensitivity and 75% of specificity (14). 

Moreover, SPECT has higher performances in detection of epileptic networks in temporal 

epilepsies in comparison to non-temporal epilepsies, in ictal as well as in inter-ictal state (15). 

Subtraction of ictal and inter-ictal SPECT, co-registered to MRI (SISCOM), is particularly 

useful (Figure 1); this has been shown to improve the sensitivity and specificity of seizure 

localization networks only demonstrating hypoperfusion during inter-ictal scan (16). In this 

line, studies found that SISCOM localization sensitivity was higher than 90% in temporal 

lobe seizures, but much lower in extra-temporal lobe epilepsies (17,18). Similarly, SISCOM 

provides useful information for seizure localization in patients with focal cortical dysplasia, 

even with normal MRI (19). Notably, ictal SPECT seems also suitable in children with focal 

refractory epilepsies associated with focal cortical dysplasia (20). 
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Several studies have assessed the practical clinical value of SISCOM in preoperative 

evaluation, comparing SISCOM with either MRI, PET, ictal EEG or EEG-fMRI, surgical site 

or combined modalities (21–24). For instance, hyperperfusions from SISCOM images were 

localized more often than with side-by-side SPECT evaluation (71.0 vs. 47.4%) (21), whereas 

SISCOM images led to a concordant or only slightly worth results than  PET, MRI and EEG 

modalities alone or combined (22–24).  Interestingly, if SISCOM localization is concordant 

with the surgical resection site or other traditional techniques, then postoperative outcomes 

are expected to be favorable (25–28).  

Nevertheless, spatial resolution of SPECT is poor. Consequently, inter-ictal studies in focal 

epilepsies are currently performed with PET imaging which leads to a better sensitivity in 

detection of epileptic networks (29). This statement could be revised in future with 

instrumentation development, particularly Cadmium-Zinc-Telluride (CZT) cameras. They 

provide semi-conductors detectors with better sensitivity of detection, spatial and energy 

resolution (30). 

 

2. 18
F-FDG PET in focal epilepsy 

PET has higher spatial resolution and lower background activity than SPECT (31). Therefore, 

inter-ictal PET has higher sensitivity than inter-ictal SPECT, as described in a previous meta-

analysis by Spencer, especially in temporal lobe epilepsies (84 vs. 66 %) (29). One 

complementary explanation for this better sensitivity could also be the uncoupling of blood 

perfusion and metabolism, leading to more reduction in regional cerebral glucose metabolic 

rates than in regional cerebral perfusion. It could also be related to a shorter reversibility in 

perfusion state during inter-ictal phase (32). Evidence for this uncoupling was demonstrated 
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in prior studies using 
15

O-H2O and 
18

F-FDG PET (33,34), and using ratio imaging of inter-

ictal 
99m

Tc HMPAO SPECT divided by 
18

F-FDG PET (32,35).  

However, even if some studies have explored ictal 
18

F-FDG-PET (36), the temporal resolution 

of 
18

F-FDG-PET remains weak, with a longer uptake period (30 minutes), leading to a 

mixture of inter-ictal-, ictal-, and postictal-phase images (31), which rends difficult the 

analyze of ictal 
18

F-FDG-PET. Some studies have nevertheless correlated interical PET 

hypometabolism with clinical epileptic semiology such as déjà-vu in TLE or hyperkinetic 

seizures in ETE (37,38). 

18
F-FDG PET, which evaluates the cerebral metabolic rate for glucose (CMRGlc), visually 

demonstrates the whole irritative zone (i.e. the EZ and subsequent neural networks involved 

in the generation of inter-ictal paroxysms) (39). The fact that 
18

F-FDG PET sensitivity differs 

according to the site of the epileptogenic area is nevertheless a strong argument against a 

causal relationship between hypometabolism and epileptogenicity (40). Inter-ictal 

hypometabolism topography may be indeed related to the neuronal networks involved by ictal 

discharge onset and also spread pathways (41). But the origin of this hypometabolism is 

certainly multifactorial and several mechanisms have been hypothesized: neuronal loss in the 

functional deficit zone, hypometabolic macro- or microscopic lesions, decreased synaptic 

activity (diaschisis), deafferentation with reduced numbers of synapses, post-ictal metabolic 

depression (40), presence of a lesion, even if controversial by atrophy and focal volume effect 

(42,43), and breakdown of the inhibitory mechanisms at an advanced stage of the disease 

process (44). In this line, a dysfunction of neurotransmitter gamma-aminobutyric acid type A 

(GABAA) receptor has been established in human focal epilepsy (45). This dysfunction was 

modulated by glycolysis, explaining the hypometabolism induced by a decrease of inhibitory 

mechanisms, leading to facilitate epileptic discharges. Lastly, this hypometabolism is also 

influenced by the delay from the last seizure, frequency of the ictal discharge, duration of the 
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seizure, and antiepileptic therapeutics (46). Actually, clinicians have to take into account these 

factors during the analysis of inter-ictal 
18

F-FDG PET. 

Besides these PET findings, extension of hypometabolism to regions beyond the temporal 

lobe is often seen in patients with TLE (47,48), suggesting  that hypometabolism on PET scan 

shows a dysfunctional neural network wider than only the EZ (49). In this context, Chassoux 

et al. observed in 114 patients with TLE and hippocampal sclerosis, that regardless of the 

structural alterations, the topography of hypometabolism correlated strongly with the extent of 

epileptic networks when compared to electro-clinical data (50). Otherwise, authors found 

remotely hypermetabolism, predominant in non-epileptic lobe and extra-temporal areas, 

suggesting compensatory mechanisms to cognition impairment (51–55).  

 

Briefly, 
18

F-FDG PET imaging is performed after a 10 to 15 minutes resting state. Then, 
18

F-

FDG is injected and acquisitions, during about 15 minutes, start 30 to 60 minutes after 

injection, with a radiation dosimetry of approximately 2.9 mSv (56).  

Similarly to SPECT imaging and consequently to technological innovations, PET imaging 

will further improve their characteristics with the introduction of digital PET which provides 

better image quality, diagnostic confidence, and accuracy than analog PET. They support a 

spatial resolution of 4 mm and a lesion maximum SUV (Standard Uptake Value) 36% higher 

and lesion-to-blood-pool SUV ratio 59% higher than with conventional PET (57).  

We will now discuss 
18

F-FDG PET indications in temporal and extra-temporal epilepsies, its 

relation with electroencephalography and MRI findings as well as its prognosis value. 

 

2.1 18
F-FDG PET in Temporal Lobe Epilepsies (TLE) 
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Temporal lobe epilepsies (TLE) are the most common form of focal epilepsies. 
18

F-FDG PET 

has a high sensitivity for TLE with a detection range from 86 to 90% (58–61). For instance, in 

a 25 TLE patients study, Knowlton et al. showed that 
18

F-FDG PET was the most EEG 

correlated parameter with a sensitivity of detection of 87 % (59), when compared to MRI 

(hippocampal volumetry, T2 relaxometry, and proton magnetic resonance spectroscopic 

imaging). However, so called TLE does not appear to be homogeneous from an electro-

clinical point of view (5,62). They can be divided into 4 distinct subgroups: mesial (mTLE), 

lateral, temporal “plus” and bitemporal TLE (41). For instance, mTLE, the most frequent 

form of TLE (63), has proven to be one of the most medically refractory localization related 

to epilepsy syndromes (64). Then, in a study of 50 TLE patients, Chassoux et al. defined 4 

groups of electro-clinical patterns, accordingly to distinct patterns of TLE previously 

mentioned, and showed a good accordance with inter-ictal 
18

F-FDG PET hypometabolisms at 

group-level (39). Moreover, in this study, the strictly mesial temporal hypometabolism had 

the most favorable outcome. Several studies have performed simultaneous 
18

F-FDG PET 

acquisitions and EEG recordings but the benefit remains nevertheless controversial (65,66). 

Although, it has been suggested that, besides its invasiveness and its limited sampling, SEEG
 

correlates better with 
18

F-FDG PET findings than EEG (65), leading to direct comparison 

between 
18

F-FDG PET findings and SEEG (67).  In this context, authors found 

correspondence between SEEG findings and metabolic PET characterization at the group 

level; they validated also the results at individual level with a high accuracy of 71.4 % to 88.2 

% (41). As expected, the hypometabolism was not limited to the EZ defined by SEEG, 

underlying larger epileptic networks (41). More recently, authors have directly compared ictal 

high frequencies oscillations (HFO) recorded by SEEG with hypometabolism in inter-ictal 

18
F-FDG PET, and showed that temporal hypometabolic regions are more likely to present 

high frequencies oscillations (68). Consequently, the authors suggested that inter-ictal FDG-
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PET hypometabolism and ictal high frequencies oscillations (HFO) may share common 

pathophysiologic mechanisms (68). 

Because of the different electro-clinical presentations of the TLE, 
18

F-FDG PET appears as a 

very useful tool in these epilepsies. In a study of 117 patients with drug refractory epilepsy, 

18
F-FDG PET helped in surgical decision-making in 68.8% of TLE, and was particularly 

efficient in case of mesial temporal sclerosis lesion (69).  

 

2.2 
18

F-FDG PET in Extra-Temporal Lobe Epilepsies (ETE) 

 

Extra-temporal lobe epilepsies (ETE) are less frequent than TLE, and frontal lobe epilepsies 

(FLE) constitute the most common form of ETE (63). Visual assessment of 
18

F-FDG PET 

rates from 38 to 67 % according to ETE studies (60,70,71) and, similarly to TLE, 

hypometabolism  in 
18

F-FDG PET is worse in patients with structural lesions than in patients 

without one (70). In this line, it is noteworthy that 
18

F-FDG PET is of particular interest in the 

patients with epilepsies associated with focal cortical dysplasia, even in children (72–77). 

This hold true for a wide spectrum of malformations of cortical development including 

polymicrogyria whose the heterogenous epileptogenicity correlates well with the 

heterogenous pattern of hypo and isometabolism (78,79). In addition, as reported in a study of 

117 patients, ETE exhibited less great concordance with electro-clinical data (28.6%) in 

comparison to TLE (78.0%) (69). Nevertheless, in a study involving 13 children, Silva et al. 

showed a sensitivity and specificity of 
18

F-FDG PET of 92% and 62.5% respectively (80). 

This high sensitivity detection was mostly due to the fact that children with FLE also 

frequently exhibited glucose metabolic abnormalities outside the frontal lobes. In a study of 

194 patients with refractory epilepsy, involving 66 FLE and 38 others ETE, Rathore et al. 

showed that the proportion of abnormal 
18

F-FDG PET was of 52 % in FLE and 61 % in other 
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ETE, lower than in TLE (67 %). Moreover, concerning the usefulness of PET in further 

decision making, 
18

F-FDG PET data were useful in respective  38 % of FLE, 50 % of  other 

ETE and 63 % of TLE (81). The authors argued that certain ETE locations such as the mesio-

frontal, occipital and operculo-insular regions are difficult to detect with 
18

F-FDG PET. This 

relative weak sensitivity of ETE detection has led to the use of quantitative analysis in order 

to improve diagnosis confidence (82,60), although it remains debated (70).  

If ETE detection appears less sensitive than TLE with 
18

F-FDG PET, pathophysiology of 

these epilepsies are also complex with extensive network involved, including mesial temporal 

areas (82,71). In this line, 22% of patients with ETE exhibited temporal hypometabolism in a 

study by Hartl and al (83), mostly associated with temporal inter-ictal epileptic discharges 

(64% of temporal hypometabolism). Interpretation of inter-ictal FDG-PET results requires 

thus consideration of EEG results and seizure semiology since common temporal glucose 

hypometabolism in ETE patients may reflect a remote epileptic dysfunction arising from 

extra-temporal epileptogenic zones. 

 

3. 18
F-FDG PET and MRI 

 

In a significant number of cases, MRI do not reveal any epileptogenic lesion (84), even using 

7 tesla MRI (85), although about 26% of patients with refractory focal epilepsies remains 

“MRI-negative” (86). In this context of normal MRI, authors showed nevertheless a focal or 

lateralized regional hypometabolism in PET, concordant to the ictal electroclinical data in 27 

patients with various types of intractable epilepsies (41.5%) (69). Similarly, in cases of drug 

resistant TLE with normal MRI, the surgical outcome has been found to be better in case of 

temporal hypometabolism. An example of multimodality pre-operative assessment of a TLE 

in a patient with normal MRI is given in Figure 3.  
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Several studies have specifically analyzed post-surgery outcome of these patients with PET 

positive and normal MRI. They observed that patients with positive PET had similar rates of 

good outcome (Engel I = seizure-free) regardless of the presence or absence of a MRI 

detectable lesion (67,87) and close to the surgical prognosis of patients with hippocampal 

sclerosis (88). In this line, patients with positive PET, even if associated to MRI negative data, 

should be considered as potential candidates to surgery. Moreover, the MRI is often reviewed 

in the light of PET findings, with the opportunity to co-register the two complementary 

imaging modalities, as currently recommended in the pre-surgical evaluation of intractable 

epilepsy (89,90). An example is provided in Figure 2 These two modalities are indeed 

complementary rather than redundant since hypometabolism in 
18

F-FDG PET was not related 

with severity of hippocampal sclerosis nor temporal atrophy defined on MRI (39,43,91,92). 

The interest of FDG-PET/MRI coregistration was also highlighted in patients with focal 

cortical dysplasia, especially in younger patients with temporal localization who exhibit larger 

hypometabolism on 18F-FDG-PET (73,93). In a study of 23 patients operated for intractable 

focal epilepsy associated with focal cortical dysplasia and normal MRI, the use 
18

F-FDG PET 

led to the detection of the lesion in 95% of the patients (75). Then, 
18

F-FDG PET exhibited 

not only hypometabolism in 78% cases, but also led to the detection of 4 additional cases 

when using co-registration with MRI, which is efficient and routinely available. More 

recently, an initial hybrid PET-MRI experience has increased diagnostic yields for detection 

of EZ (94). Authors suggested that it could be due to the unique advantage of improved co-

registration, and simultaneous review of both structural and molecular data.  

 

4. 18
F-FDG PET and clinical outcome 
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18
F-FDG PET is a part of the systematic pre-surgical assessment of drug-resistant epilepsies. 

A study based in surgical-decision-making has shown that 31.6% patients were directly 

selected for surgery based on PET contribution (69). 
18

F-FDG PET was more helpful in 

surgical decision-making in TLE (68.8% of cases), than in ETE (23.3% of cases) (69). As 

previously discussed, clinical outcome of patients with positive PET findings and MRI 

negative is similar to those with positive MRI data (67,87). 

Moreover, the post-operative status is also influenced by PET findings. In a meta-analysis of 

46 studies, authors showed that PET hypometabolism ipsilateral to the EZ in TLE had a 

predictive value of 86% for good outcome (Engel classes I or II after surgery) (49). However, 

if the usefulness of 
18

F-FDG PET to accurate localize epileptic networks is well-established 

leading to good outome (95), the prognostic value of hypometabolism extent remains debated. 

In a 30 TLE patients study, Dupont et al. observed a better clinical outcome after surgery if 

the hypometabolism extent was limited (96). Similarly, patients with TLE and normal MRI, 

those with a good outcome had a greater proportion of total hypometabolic volume resected 

than those with a poor outcome (24.1% versus 11.8%) (97). On the opposite, in a study 

analyzing associations between PET findings and neocortical epilepsies surgery outcome, 

authors showed no significant correlations between the amount of non-resected 
18

F-FDG PET 

abnormalities and the surgical outcome (98). It is noteworthy that this last study included 

ETE, which are known to have more subsequent remote hypometabolism (83). On the whole, 

18
F-FDG PET has a good prognostic value on post-surgical outcome, especially in case with 

limited hypometabolism extent (96,97). 

 

Besides its prognostic value on post-surgical outcome, 
18

F-FDG PET also allows to explore 

cerebral networks involved in epilepsy and their link with the cognitive alterations in TLE. 

First studies with 
18

F-FDG PET have shown an association between decrease of metabolic 
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value and cognition impairment in TLE (99,100). Then, correlations have been shown 

between cognitive impairment and metabolic values of hippocampal or para-hippocampal 

areas (101,102). Otherwise, studies focusing on extra-temporal hypometabolism in TLE have 

also been conducted, showing association between: left temporal pole hypometabolism and 

memory of famous faces (103), left temporo-occipital areas hypometabolism and deficit on 

word findings (104), or prefrontal areas hypometabolism and impairment of executive 

functions (105). In a study of 15 TLE patients with hippocampal sclerosis, authors have 

observed correlations between number of correctly recognized targets in a new recognition 

memory paradigm and inter-ictal entorhinal/perirhinal cortices metabolic rate for glucose 

(55). 

In ETE, a 
18

F-FDG PET study in 9 patients with occipital lobe epilepsy has revealed verbal 

memory impairment selectively associated with left temporal lobe hypometabolism, 

supporting a link between neuropsychological dysfunction and remote hypometabolism in 

focal epilepsies (106). Therefore, in addition to prognostic value on seizure control outcome, 

18
F-FDG PET provides a prognostic value on cognition: a limited hypometabolism, 

particularly in limbic areas, being a better prognostic factor for post-operative cognitive 

functioning (101,102,55). 

 

5. Analysis of 
18

F-FDG PET imaging 

 

Visual assessment remains the gold standard for detection of hypometabolism in epilepsy, 

regards to expert interpretation and discussion with clinicians based on other available data. 

SPECT SISCOM (16) and co-registration between PET and MRI (89,90) have already been 

discussed previously, and could be particularly contributive. In some cases, quantitative 

analysis could also be helpful (107–110), especially for extra-temporal epilepsies (60,70). 
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Some studies analyzed inter-hemispheric asymmetries, such as left to right subtraction, or the 

asymmetry index, and showed improvement of preoperative evaluations for TLE. In most 

such studies, inter-hemispheric asymmetry was calculated from the mean region-of-interest 

value or the volume-of-interest (111,112) whereas other studies have applied asymmetries to 

voxel-based analysis (113). Voxel-based quantitative analysis is a valuable tool to detect 

subsequent epileptic networks by voxel-to-voxel comparison of two PET image dataset (60). 

An example of quantitative analysis is available in Figure 4. In a study of 41 patients with 

epilepsy, Van’t Klooster et al. showed that, although sensitivity of detection was similar 

between visual assessment and quantitative analysis, this last procedure detected 4 on 5 

initially visual defined negative scans (108). The authors concluded that quantitative analysis 

could be an efficient complementary tool to visual assessment. The choice of quantitative 

analysis software does not appear to really influence results while an original algorithm of 

spatial normalization (107) or a fully-automated software of quantitative analysis (110) 

exhibited similar results to the well-validated software Statistical Parametric Mapping (114). 

Some authors have proposed thresholds with liberal p-values and restrictive cluster sizes in 

order to maximize accuracy of these quantitative analyses (109).  

In addition to particularly useful co-registration to MRI previously described above (89,90), 

taking into account focal volume effect, induced by lower spatial resolution in PET, is also 

efficient. In this line, Goffin et al. showed that using reconstruction algorithm with inclusion 

of focal volume effect improved visual detection of epileptic networks on brain 
18

F-FDG PET 

images, in particular setting of focal cortical dysplasia, due to higher contrast and better 

delineation of the lesion (115). 

 

6. Novel PET imaging radiotracers for epilepsy 
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In addition to 
18

F-FDG PET imaging, novel PET radiotracers have been developed in 

epilepsy, especially in research. They need for this purpose a radiochemistry platform next-to 

the PET imaging center. 

11
C-flumazenil (FMZ) PET studies targeting GABAA-central benzodiazepine receptor 

complex (GABAAcBZR) have demonstrated reduced binding of tracer in the epileptic 

networks of patients (116,117). 
11

C-FMZ PET failed nevertheless to detect epileptic networks 

in 20% of patients with refractory TLE and normal high-quality MRI in a study performed by 

Koepp et al. (118), and its reproducibility is debated especially when using pons as a 

reference tissue (119). 

Several studies have been conducted with 2'-methoxyphenyl-(N-2'-pyridinyl)-p-fluoro-

benzamidoethyipiperazine (
18

F-MPPF) which is an antagonist of 5-HT1A receptors (120,121). 

5-HT1A receptors are decreased in patients with epilepsy compared with normal subjects 

leading to a decrease of 
18

F-MPPF uptake in epileptic networks. Therefore, this decrease is 

highly correlated to the degree of epileptogenicity of cortical areas explored by intracerebral 

EEG recordings and does not reflect only pathological changes or neuronal loss in the 

epileptic focus, by underlining epileptic network (120,121).  

Otherwise, by using a non-selective opioid receptor antagonist, 
11

C-diprenorphine (DPN), 

authors have experimented a post-ictal increase in 
11

C-DPN in the parahippocampal gyrus 

ipsilateral to the epileptic focus. Thus, this study provides further direct human in vivo 

evidence for changes in opioid receptor availability in TLE following seizures (122). 

Moreover, metabotropic glutamate receptor type 5 (mGluR5) abnormalities have been 

described in tissue resected from epilepsy patients with focal cortical dysplasia. In a recent 

study, 
11

C-ABP688, a radiotracer of mGluR5, showed in vivo evidence of reduced mGluR5 
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availability in focal cortical dysplasia, indicating focal glutamatergic alterations in 

malformations of cortical development (123).  

Neuro-inflammation has also been studied in epilepsy. In this context, 
11

C-PBR28 and 
11

C-

DPA-713, radiotracers of Translocator protein 18 kDa (TSPO), had increased uptake in both 

areas ipsilateral and contralateral to seizure networks in patients with TLE, suggesting an 

inflammatory effect in this epilepsies (124). 

Others studies involving N-methyl-d-aspartate (NMDA) receptors, which are ligand-gated 

and voltage-gated ion channels that mediate fast excitatory neurotransmission in the central 

nervous system, have been performed. In this line, increased NMDA channel activation was 

detected in patients with focal epilepsy by using 
18

F-GE-179, a ligand that selectively binds to 

the open NMDA receptor ion channel (125). 

Among all these novel radiotracers, 
11

C-alpha-methyl-L-tryptophan (AMT) is the most 

studied and validated (126–128). 
11

C-AMT is a radiolabeled tryptophan analogue to study 

synthesis of serotonin in the brain. Inter-ictal PET studies have demonstrated a focal increased 

uptake of this radiotracer in epileptogenic areas (126–128). Focal increase of cortical 
11

C-

AMT uptake is nevertheless less sensitive but more specific for the lobe of seizure onset than 

corresponding 
18

F-FDG PET hypometabolism (128). It is also often associated with 

epileptogenic cortical developmental malformations (128). Thus 
11

C-AMT can assist 

placement of intracranial electrodes even when MRI and FDG-PET fail to provide adequate 

localizing information. 

However, despite their many advantages, majority of non-FDG brain PET studies are not 

widely available and performed in limited centers only as they require well experienced staff 

with on-site radiochemistry equipment and cyclotron. Moreover, novel tracers using 



18 
 

neurotransmitter are highly influenced by medications interactions, especially in patients with 

anti-epileptic therapies (129).  

 

Conclusion 

To conclude, brain molecular imaging and especially 
18

F-FDG PET imaging, is a valuable 

tool for epilepsy imaging, widely studied and validated. 
18

F-FDG PET is thus a necessary step 

in pre-surgical evaluation in TLE but also in ETE leading to contribute to more than 30% in 

decision of surgery. Its association with others pre-surgical data such as MRI or electro-

clinical data improves its accuracy during the multi-disciplinary staff discussion. Moreover, 

18
F-FDG PET imaging provides an interesting prognostic value in clinical outcome and with 

potential cognitive impairment association. The notion of epileptic network is also well 

underlined by this functional imaging, allowing to better understand substrates of this 

pathology. Future development of quantitative analysis software, novel radiotracers and 

cameras will certainly enhance its clinical utility. 
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Figure Legends 

 

Figure 1. 

Axial slices of perfusion SPECT imaging in ictal phase (A), inter-ictal phase (B) and after 

subtraction of ictal and inter-ictal SPECT images co-registered to MRI (SISCOM, C) in a 40 

years-old man with right temporal epilepsy. A hyperperfusion is noticed in right mesial 

temporal area (white arrow in A), which is hypoperfused in inter-ictal state (white arrow in 

B). The subtraction of ictal and inter-ictal states reveals a significant differential in perfusion 

in this same area, which corresponds to right mesial temporal lobe when co-registered to MRI 

(white arrow in C). 

 

Figure 2. 

Axial slices of T1-weighted-sequence MRI (A), 
18

F-FDG PET imaging (B) and co-

registration of MRI and PET imaging (C) in a 35 years-old woman with right temporo-insular 

epilepsy. MRI was interpreted as negative (A). 
18

F-FDG PET shows a hypometabolism in 

right insulo-opercular area (white arrow in B and C). 

 

Figure 3. 

Multimodality pre-operative assessment in a patient of 39 years-old with pharmaco-resistant 

seizures. The seizures were characterized by dreamy state (“déjà-vu”), visual complex 

hallucination (object size modification), eyes staring, consciousness alteration and oral 

automatisms. The cerebral MRI was normal. The patient was operated of right temporal 
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lobectomy from the temporal pole until posterior hippocampus. The histology revealed a focal 

cortical dysplasia. The patient improved significantly after surgery (Engel Classe II after 2 

years of follow-up). Axial slices of SPECT imaging (A) showed a hypoperfusion in inter-ictal 

state (upper panel, white arrow), a hyperperfusion in ictal state (middle panel, white arrow) 

and a significant differential of perfusion after subtraction of ictal and inter-ictal state (lower 

panel, white arrow in A and 3D render volume in B) of the right temporal pole. PET imaging 

(C) showed a hypometabolism in the right temporal lobe in axial slice (upper panel, white 

arrow) and in coronal slice (lower panel, white arrow). The SEEG ictal recording (D) showed 

an EZ including (most rapid discharges): right temporal pole (TP 1-2-3), temporo-basal cortex 

(TB 2-3-4), amygdala (A1-2-3), anterior (B1-2-3) and posterior (C1-2-3) hippocampus and 

middle temporal gyrus (A13-14). In this patient was also implanted electrodes recording: 

lateral temporal cortex (TP9-10, TB9-10-11, A13-14, B11-12-13, C13-14, H14-15), frontal 

opercula (OF8-9), occipito-temporal junction (OT1-2, OT9-10) and anterior insula (OF1-2). 

 

Figure 4. 

Anatomical localization with quantitative analysis, using SPM 8 software in a 31 years-old 

man with right temporal epilepsy, after comparison to PET images of a normal local database 

(n=18). Results are projected onto 3D volume rendering (A) and sections of a normal MRI 

centered on right mesial temporal area (B) and set spatially normalized and smoothed into the 

standard SPM8 template after using an inclusive right mesial temporal mask. A 

hypometabolism is noticed in right mesial temporal lobe (p<0.05, with correction for multiple 

comparisons).  
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