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Abstract

Hearing loss is known to impact brain function. The aim of this study was to characterize
cerebral metabolic Positron Emission Tomography (PET) changes in elderly patients fulfilling
criteria for cochlear implant and investigate the impact of hearing loss on functional
connectivity. Statistical Parametric Mapping-T-scores-maps comparisons of 8F-FDG-PET of
27 elderly patients fulfilling criteria for cochlear implant for hearing loss (best-aided speech
intelligibility lower or equal to 50%) and 27 matched healthy subjects (p<0.005, corrected for
volume extent) were performed. Metabolic connectivity was evaluated through interregional
correlation analysis. Patients were found to have decreased metabolism within the right
associative auditory cortex, while increased metabolism was found in prefrontal areas, pre-
and post-central areas, the cingulum and the left inferior parietal gyrus. The right associative
auditory cortex was integrated into a network of increased metabolic connectivity that
included pre- and post-central areas, the cingulum, the right inferior parietal gyrus, as well as
the striatum on both sides. Metabolic values of the right associative auditory cortex and left
inferior parietal gyrus were positively correlated with performance on neuropsychological test
scores. These findings provide further insight into the reorganization of the connectome
through sensory loss and compensatory mechanisms in elderly patients with severe hearing

loss.

Key-words: cochlear implant; connectivity; deafness; elderly; '8F-FDG-PET
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1. Introduction

Hearing loss affects 40 to 50% of adults over the age of 65 and 83% of adults over the age of
70 (Cruickshanks et al., 1998). It is the third most prevalent chronic medical condition
amongst elderly patients after arthritis and hypertension (Lethbridge-Cejku et al., 2004).
Downstream consequences of reduced hearing include negative effects on perceptual effort
for encoding of what has been heard (McCoy et al., 2005; Cousins et al., 2014) and increased
resource demand for comprehension of sentences with complex syntax (Wingtfield et al.,
2006). This can lead to decreased performance on standardized cognitive tests (Lin et al.,
2011a) and might explain an association with dementia (Gates et al., 2011; Lin et al., 2011b).
Hearing loss, cognitive impairment and dementia can be thus intertwined, especially in
elderly patients, with aging being a major risk factor for neurodegenerative disorders.
However, the functional mechanisms that lead to cognitive dysfunction in these patients are
poorly understood. Over the past decades, there has been extensive evidence for cortical
reorganization following hearing loss in studies involving both experimental animals and
humans (Irvine and Rajan, 1996; Rajan et al., 1993; Kang et al., 2003; Lee et al., 2003).
Mechanisms of reorganization involve cross-modal plasticity, where deprivation in one
sensory modality (e.g. the auditory modality in hearing loss) results in the recruitment of
cortical resources of the deprived modality by intact sensory modalities (e.g. visual or
somatosensory systems), as described in congenital but also post-lingual deatness (see (Glick
and Sharma, 2017) for review). Moreover, in the auditory system, in addition to ascending
auditory pathways that carry information on sound from the cochlea to auditory cortices,
descending pathways from higher auditory centers project back towards the periphery. These
“top-down mechanisms” are thought to play a compensatory role after peripheral

deafferentation through descending projection systems, but how these networks are modulated



178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236

precisely remains unknown (see (Lesicko and Llano, 2017) for review). Kral et al. recently
conceptualized congenital auditory-loss like a “connectome disease” because of distal effects
from the sensory system onto higher order neurocognitive functions (Kral et al., 2016), the
connectome being defined as a map of neural connections in the brain (Sporns et al., 2005).
Referring to hearing loss as a connectome disease is an opportunity to examine hypotheses
concerning the effects of hearing loss on brain regions not directly involved in audition per se
on the large-scale neural network scale, and also to identify potential targets for

rehabilitation.”

Cochlear implant (CI) is the only effective therapeutic method for patients suffering from
profound sensorineural hearing loss (Ramos-Macias et al., 2016). Hearing loss has a
significant impact on patients' social life, daily activities, and self-esteem (Ramos-Macias et
al., 2016). In patients over the age of 65, a comprehensive neurocognitive assessment is
required before surgery in order to rule out a neurodegenerative condition, which could
interfere with the ability of patients to adapt to CI (see guidelines provided by the French

National Authority for Health or Haute Autorité de Santé, HAS, France, HAS santé, 2012).

18F-Fluro-deoxy-glucose is a widely used biomarker of synaptic activity that can indicate the
topography of neurodegeneration using Positron Emission Tomography (**F-FDG PET)
(Didic et al., 2015; Koric et al., 2016; Titov et al., 2015; Varrone et al., 2012). 8F-FDG-PET
also provides an opportunity to study functional synaptic changes in severely deaf patients,
not only before, but also after CI, without magnetic limitations or contraindications
(Strelnikov et al., 2015). However, only two pilot studies, in small sets of adults with hearing
loss, have so far assessed cerebral metabolism using PET (Deggouj et al., 1995; Lee et al.,

2003).

Beyond the identification of metabolic dysfunction within individual brain regions, the

analysis of functional connectivity leads to a better understanding of neural plasticity on the
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network scale. Hence, PET can be used to study metabolic connectivity by Inter-Regional
Correlation Analysis (IRCA) (Lee et al., 2008), these resting-state networks being closely
related to those derived from fMRI studies (Di et al., 2012; Savio et al., 2017; Yakushev et al.,
2013). Although the spatial resolution of PET is worse than that of fMRI, PET targets glucose
consumption, which reflects synaptic activity, and is therefore particularly well suited to
assess neural plasticity. Furthermore, glucose consumption has the advantage of preceding the
BOLD (Blood Oxygen Level Dependent) signal and can therefore detect early changes in
neuronal function (Magistretti and Pellerin, 1999). The assessment of functional connectivity
using '8F-FDG PET could thus characterize changes of the connectome in patients with
impaired hearing at the large neural network scale. Thus, the metabolic connectome studied
here refers to the same concept as functional connectome or functional connectivity. To our
knowledge, there is currently no PET study on metabolic connectivity in adults with late-

onset hearing loss.

The aim of this study was to characterize cerebral metabolic PET changes in elderly patients
fulfilling criteria of CI for hearing loss and investigate neural plasticity through the

assessment of functional connectivity.
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2. Materials and Methods

2.1 Subjects

Thirty-two adults with post-lingual hearing loss were referred from August 2013 to July 2016
to “La Timone™ University Hospital at Marseille to perform a neurocognitive assessment
before cochlear implantation (CI) in order to rule out a neurodegenerative condition. These
patients fulfilled the criterion for CI as defined in France, i.e. speech perception below 50% at
60 dB without lip-reading (HAS santé, 2012). Neurocognitive assessment involved the Mini-
Mental State Examination (MMSE) (Folstein et al., 1975) and the Frontal Assessment Battery
(FAB) (Dubois et al., 2000). Brain MRI and '8F-FDG-PET were also performed in these
patients. Sufficient and detailed explanations for the procedure, risk, and purpose or benefit of
the study were given to the patients by clinicians. All patients participated with informed
written consent in accordance with the Declaration of Helsinki (number of international

review board of local ethical committee: 00003888).

Five patients were excluded from further analysis because of neurological or psychiatric co-
morbidity. One patient was reported to have suffered from epilepsy since his childhood, and
from concussion that caused a focal fronto-temporal lesion with right hemiplegia at the age of
46. The second patient had suffered from three consecutive strokes with residual right
hemiplegia. The third patient was suffering from psychosis since the age of 23 and was under
antipsychotic medication. Two additional patients were excluded because of a left temporal

arachnoid cyst detected on CT-scan, which could interfere with the PET analysis.

Healthy subjects from a local normal '8F-FDG PET database, matched to patients for age,
gender, and level of education (Clinical Trials Ref: NCT00987090), were also included.
These controls were free of neurological and psychiatric disease with a normal brain MRI.

None of these control subjects had a medical history of hearing loss or complained about their
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365 2.2 8F-FDG PET Acquisition and Analysis

366

367 ., . . .

368 BF-FDG PET was performed under the same conditions for all patients and healthy subjects,
369

370 using an integrated PET/CT camera (Discovery ST, GE Healthcare, Waukesha, WI) with an
371

372 axial resolution of 6.2 mm allowing 47 contiguous transverse sections of the brain of 3.27 mm
373

374 thickness. '8F-FDG (150 MBq) was injected intravenously while the subjects were awake, at
375
376
377
378
379
380
381
382 . . ..
383 attenuation using a CT transmission scan.

384

385

386 Whole-brain statistical analysis was performed at voxel-level using SPMS software

387

388 (Wellcome Department of Cognitive Neurology, University College, London, UK) to

389

390 compare patients with hearing loss and controls using ANOVA (Analysis of Variance). PET
391

392 images were spatially normalized onto an adaptive template derived from PET images of
393
394
395
396
397
398 . . . .
399 ratio. To build the adaptive template, the PET scans of the 27 control subjects were

400
401 normalized to the standard PET template, using the algorithm provided with SPM. Then, the

402

403 template was built by averaging these normalized images and subsequently applying a

404

405 smoothing Gaussian filter (FWHM = 8 x 8 x 8 mm) (Gispert et al., 2003). The dimensions of
406

407 the resulting voxels were 2 x 2 x 2 mm. Between groups SPM (T) maps were obtained at a
408

409 threshold (voxel-level significance) of p<0.005, uncorrected at voxel-level, but with a

410

411

412 7
413

hearing. Approval from an ethics committee was obtained and all subjects signed informed

resting state, with eyes closed in a quiet environment. Image acquisition started 30 min after
injection and ended 15 min later. Images were reconstructed using the ordered subsets

expectation maximization algorithm with 5 iterations and 32 subsets, and corrected for

controls. The images were then smoothed with a Gaussian filter (8§ mm full-width at half-

maximum) to blur individual variations in gyral anatomy and to increase the signal-to-noise
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correction for cluster volume, using expected voxels per cluster provided by SPM, to avoid
type II errors, as recommended (Lieberman and Cunningham, 2009), with age, gender and
level of education as nuisance covariates. An additional analysis with small volume correction
(SVC) was applied within the most significant voxel of the left auditory area. Proportional
scaling was applied, giving the same global value to each PET acquisition, to correct for
individual variations in global cerebral metabolism. The anatomical localization of the most
significant voxels was then identified using the MNI (Montreal National Institute) atlas. Mean
values of Cerebral Metabolic Rate of Glucose (CMRGIc) were extracted at the individual
level for each significant cluster. To evaluate metabolic connectivity from the previously
identified metabolic cluster in the intergroup comparison, IRCA was performed according to
the procedure validated by Lee et al. (Lee et al., 2008). Briefly, mean values of CMRGlIc were
used as interacted covariates for the comparison between connectivity in patients and controls.
Nuisance covariates and threshold were the same as previously detailed for groups SPM (T)

maps Comparisons.

A Region of Interest (ROI) analysis of the left associative auditory cortex was also performed
by extracting CMRGlc of cluster identified after analysis by small volume correction.
Moreover, an asymmetry index was calculated ((left auditory CMRGlc-right auditory

CMRGlIc)/(left auditory CMRGle+right auditory CMRGlc).

2.3 Statistical analysis

Quantitative variables (age, level of education, deaftness duration, MMSE and FAB scores)
are expressed as means =+ standard deviations, and categorical variables (gender) as
percentages. T-tests were performed for mean comparison between two quantitative variables

with normal distribution and Chi-square tests for comparison between two categorical
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variables. Spearman coefficients were used to determine correlations between CMRGlc of
identified areas and test scores. A p<0.05 was determined as significant. Statistical analysis on

SPM is mentioned above.
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3. Results

3.1 Patients and controls

Of the twenty-seven patients with post-lingual hearing loss who only used spoken language,
as well as lip-reading, included into the present analysis (mean age 72.9+5.8 years, 15
women, AFPA educational score, 4.2+1.2; French assessment of educational level,

https://www.afpa.fr), the duration of a speech perception score at 50% or below with hearing

aids at 60 dB and without lip-reading was 7.0+3.1 years. The duration of hearing aid use was
18+11 years. The etiology of hearing loss was most frequently unknown (52%) (Table 1).
Twenty-seven healthy subjects were matched to patients for age (72.3+7.6 years), gender (15
women), and level of education (AFPA educational score: 3.7+1.2; p > 0.17). Cognitive
performance of patients on the MMSE (Folstein et al., 1975) and the FAB (Dubois et al.,

2000) was below that of healthy subjects (p<0.05; Table 2).

3.2 Metabolic PET findings

In comparison to healthy controls, patients showed decreased metabolism within the
right superior temporal gyrus (BA21 and 22), part of the associative auditory cortex (p<0.005,
uncorrected, k>213; Figure 1). For the left associative auditory cortex, no supra-threshold
cluster was initially found when a p-value of 0.005 corrected for the cluster volume was applied.
However, an additional analysis with SVC (sphere of 4160 mm3, which is an equivalent volume
of the cluster found in right area with center coordinates at -52; -22; 0, i.e. the most significant
voxel of the left auditory area) secondarily identified a significant cluster after SVC for this

same voxel threshold (p-cluster = 0.037, FWE-corrected).

10
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Patients were also found to have increased metabolism in bilateral superior, middle, medial
and precentral frontal gyri (BA4, 6, 8 and 9), the cingulum (BA24, 31 and 32), bilateral
postcentral parietal gyri (BA2, 3 and 7) and the left inferior parietal gyrus (BA40) (p<0.005,
uncorrected, k>213; Figure 2). Detailed coordinates for these findings are available in Table
3. Individual analysis of the PET-scans showed that none of the patients had a typical profile

of neurodegenerative disease.

Mean values of CMRGlc of previously identified areas were extracted for each individual
patient. No association was found between duration of deafness and metabolism of any of
these areas, including the right superior temporal gyrus (p>0.20). However, metabolism of
both the right superior temporal and left inferior parietal gyri was positively correlated with
performance on cognitive tests. In detail, decreased metabolism of the right superior temporal
gyrus was correlated with lower MMSE and FAB scores (respective correlation coefficients
0f 0.48 and 0.54, p<0.05). Concerning regions with increased metabolism in comparison to
healthy subjects, increased metabolism of the left inferior parietal gyrus was positively

correlated with better performance on the FAB (correlation coefficients of 0.51, p<0.05).

Otherwise, decreased metabolism of the left associative auditory cortex was correlated with
lower performance on FAB (correlation coefficient of 0.70, p=0.01). Moreover, right
prevalent asymmetry was associated with better performance on MMSE score (correlation

coefficient of -0.50, p=0.02).

In a second step, we studied metabolic connectivity of the right temporal gyrus (BA21 and
22), part of the associative auditory cortex, which was found to be the only area with
decreased metabolism. Figure 3 illustrates the direct comparison of right BA21-22

connectivity between patients with hearing loss and controls. Patients showed increased

11
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connectivity of this region with the right superior and middle temporal gyri (BA21, 22 and
42), right precentral frontal and postcentral parietal gyri (BA4, 6 and 3), right inferior parietal
gyrus (BA40), the cingulum (BA23, 24 and 32), as well as with the right and the left striatum
(P<0.005, uncorrected, k>136). Detailed coordinates of all these findings are available in

Table 3. No reduced connectivity was observed in patients in comparison to controls.

4. Discussion

The main finding of the present study in elderly patients with severe to profound hearing loss
is that decreased metabolism within the right associative auditory cortex (BA21-22) is
combined with increased metabolism in prefrontal, pre- and post-central areas, the cingulum
as well as the left inferior parietal gyrus and integrated within a network of increased
metabolic connectivity that includes pre- and post-central areas, the cingulum, the right
inferior parietal gyrus, as well as the striatum on both sides. Moreover, metabolism of the
right superior temporal and left inferior parietal gyri was positively correlated with
performance on cognitive tests. Decreased metabolism was also found for the left associative
auditory cortex after SVC. These findings contribute to the identification of neural plasticity

and changes of functional connectivity in elderly patients with severe hearing loss.

4.1 Decreased cerebral metabolism in elderly patients with hearing loss: a specific metabolic

pattern?

Decreased metabolism within the right associative auditory cortex is in line with previous '3F-

FDG PET pilot studies in two adults with late-onset hearing loss (one man aged 61 and one

12
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woman aged 47) (Deggouyj et al., 1995) and in 9 late-onset deaf younger adults with severe
hearing loss, without cognitive impairment (mean age : 44.5+£9.5 years) (Lee et al., 2003).
However, unlike the findings of the present study, Lee et al. reported an additional decrease of
cerebral glucose metabolism in superior temporal cortices of both hemispheres, as well as the
anterior cingulate gyri and in the right parahippocampal gyrus, with a similar or more
restricted level of significance then that used in the present study, but with a slightly different
target population (Lee et al., 2003). A decrease of glucose metabolism in the right superior
temporal gyrus might be expected due to the role of this region in the evaluation of sentence
and context processing (Vigneau et al., 2011). Indeed, right hemispheric activity allows one to
move beyond the literal meaning of a word, a task necessary to appropriately interpret an

utterance in its context (Lindell, 2006).

The relationship between cognitive dysfunction and hearing loss remains incompletely
understood. An association of hearing loss with lower MMSE scores was reported in a study
that included more than 300 participants (>55 years old) (Lin et al., 2011a). Here, we found
that right prevalent asymmetry was associated with better performance on the MMSE, with a
positive correlation of metabolism in the right associative auditory cortex with performance
on neuropsychological tasks (MMSE and FAB). Indeed, a PET study involving healthy
controls showed higher metabolism in the right associative auditory cortex in comparison to
the left (Geven et al., 2014). A right prevalent asymmetry within the associative auditory
cortex might therefore be associated with the auditory status of healthy subjects and thus a
better MMSE. This association with neuropsychological tests was also found after SVC for
the left associative auditory cortex with FAB. Although poor verbal communication
associated with hearing loss may confound cognitive testing (Gordon-Salant, 2005), the
patients in the present study clearly gave the impression of having understood the instructions

that they were given (including the repetition of the sentence of the MMSE where they failed

13
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because of difficulty hearing given the complexity of the sentence). While a relationship
between metabolism within the left associative auditory cortex with performance on language
based cognitive scores could have been expected, as auditory comprehension is likely to
impact speech processing of the left hemisphere, the present finding of an association with
metabolism in the right auditory cortex could be related to a compensatory involvement of the

right hemisphere (Lazard et al., 2014).

Finally, the pattern of hypometabolism in elderly patients with hearing loss is also distinct
from that usually found in common cortical neurodegenerative diseases (Mosconi et al.,
2008). Although the possibility that sensory deprivation directly triggers a neurodegenerative
cascade cannot be formally ruled out, a more likely explanation is that hearing loss may
cause cognitive decline through social isolation or cognitive load, or a combination of these
mechanisms (Strawbridge et al., 2000; Lin et al., 2011a; Amieva et al., 2015). Hence,
cognitive load induced by hearing loss is thought to reduce resources being available for other
cognitive tasks as suggested by the “resource capacity model” (Kahneman, 1973) and thereby
affect cognitive function as previously reported in patients with impaired hearing (Lin et al.,
2011a). In this context, compensatory resource-allocation for sensory deprivation through
reorganization of cerebral networks may be critical but not sufficient to maintain cognitive

function.

4.2 Increased cerebral metabolism and changes of connectivity in elderly patients with

hearing loss: towards functional reorganization?

A network of areas with increased metabolism and changes of connectivity was found in
patients in comparison to controls. This is likely to result from a compensatory effect, as

increased metabolism in the left inferior parietal gyrus was correlated with better performance

14
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on the FAB. Plastic changes in the cerebral cortex have been largely demonstrated in animal
studies (Irvine and Rajan, 1996; Rajan et al., 1993; Cakir et al., 2015; Suh et al., 2016). In the
auditory system, experience-dependent alterations in receptive field properties were
investigated by partial destruction of the cochlea, leading to reorganization within the primary
auditory cortex (Irvine and Rajan, 1996; Rajan et al., 1993). There is also evidence for
somatosensory cross-modal plasticity in post-lingually deaf adults (Doucet et al., 2006;
Sandmann et al., 2012). In this line, Kang et al. reported changes in functional PET
connectivity with the auditory cortex in 91 deaf children and 20 young adults (Kang et al.,
2003). Functional connectivity was mostly loco-regional, involving the temporal cortex and
was more increased in deaf children than in deaf or normal hearing adults (Kang et al., 2003).
In addition, distant activations from the primary auditory cortex were observed in adults with
hearing loss, involving the left inferior frontal gyrus, in a rhyme-task activation fMRI study
(MacSweeney et al., 2009). In this study, the authors showed a greater activation in the deaf
and dyslexic groups than in the hearing non-dyslexic group across a large portion of the left

inferior frontal gyrus, suggestive of compensatory effects.

In the present study, increased metabolic changes and increased connectivity with the auditory
cortex were mainly found in prefrontal areas, the cingulum and striatum bilaterally, regions
involved in executive and limbic functions (Hanlon et al., 2013; Roxo et al., 2011),
reinforcing the hypothesis of plasticity. This is in line with an fMRI task activation study that
showed increased activation of frontal cortices during degraded listening situations in adults
with or without hearing loss (Peelle et al., 2011), suggesting that frontal cortices improve
sensory perception via top-down modulatory control. Indeed, in the case of hearing-loss,
frontal areas are probably recruited because of their implication in selective attention (Peelle
et al., 2011), as observed in visual deprivation (Frezzotti et al., 2014). The findings are also

coherent with increased activation in frontal cortical areas observed using auditory evoked
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potentials in early stages of adult hearing loss (combined with decreased activation in
temporal cortex) thought to be related to changes in cortical resource allocation (Campbell
and Sharma, 2013). Taken together, the present findings therefore provide additional support
that hearing loss does result in a change of the connectome, the connectome being defined as
a network map of effective synaptic connections and neural projections and higher order
neurocognitive functions that can access the auditory cortex via top-down interactions (Kral et

al., 2016).

4.3 Compensation: both cross-modal plasticity and top-down modulatory control?

It is noteworthy that the finding of increased metabolism within inferior parietal gyri could be
related to compensation through proprioceptive processing, suggesting cross-modal
recruitment (Gick and Derrick, 2009). Moreover, pre- and post-central areas, regions of the
sensitive-motor cortex, were also found to have increased metabolism or increased
connectivity with associative auditory cortex, such as pre- and post-central gyri (BA2, 3,4, 6
and 7). In this case, cross-modal recruitment by the somatosensory system may be related to:
1) the close proximity of auditory and somatosensory cortices (Allman et al., 2009), ii) the
overlap of the auditory and somatosensory pathways sub-cortically (Dehmel et al., 2008), iii)
increased reliance on vibrotactile inputs known to play a role in auditory speech perception
and production (Gick and Derrick, 2009), or iv) increased reliance on lip-reading, and on a
parieto-premotor “mirror system” involved in both the production and observation of mouth-
related actions (Buccino et al., 2004, 2001). In this line, a cross-modal model with visual
function has also been described previously in deaf patients (Strelnikov et al., 2011; Barone et
al., 2016). Such cross-modal influence is observed in speech and in non-speech situations,

such as face-voice interactions, which are crucial to social interaction. The clear visual impact
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is supported by a strengthening of the connectivity that occurs specifically during deafness

between the face and voice cortical areas (Barone et al., 2016).

Moreover, the recruitment of a cortico-subcortical network involving the striatum, as found in
the present study, could contribute to improve auditory processing through top-down
mechanisms. This could be related to mechanisms of temporal expectancies and predictive
coding, implicating that higher-order representations influence lower-order representations by
generating predictions about sensory input through the recruitment of subcortico-cortical
networks (Kotz and Schwartze, 2010). This is thought to explain the fact that when something
is expected to happen, the reaction is more effective to the event, thought to be mediated
through the beneficial effects of temporal expectancies on phonetic verbal processing (Cason

and Schon, 2012).

4.4 Limitations of the present study

The present study has several limitations. Although the pattern of decreased metabolism
differed from that of patients with neurodegenerative diseases, we cannot rule out that
metabolic changes on PET related to neurodegenerative disorders in some patients might have
influenced these findings. A more precise assessment of neurocognitive function should be
performed in these patients and correlated with PET findings. Secondly, in order to increase
sensitivity, a threshold of p<0.005 corrected for cluster volume was chosen for statistical
significance in SPM, leading to exposing to type I error. However, this threshold has been
widely used in quantitative analysis studies, including the previously described PET
examination of glucose metabolism in deaf adults (Lee et al., 2003). Finally, a post-CI-
evaluation is needed to assess functional reorganization after cochlear implantation, in order

to address the potential reversibility of compensatory mechanisms. In this line, the selection
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1594

1595

123? Table 1: Patient data with gender, age at time of assessment, educational level, duration
1223 of speech perception scores <50% at 60 dB with hearing aids in years, experience with

128? hearing aids in years and etiology of hearing loss.

1602

1603

1604

1605 Speech perception

1606 Educational score <50% at 60 Use of

16Patients Gender Age level dB with hearing  Hearing aids  Etiology of Hearing Loss (HL)
1608 (in years) aids (in years)

1609 (in years)

121? 1 F 75 11 10 27 unknown
1612 2 M 75 18 7 10 unknown
1613 3 F 76 0 7 12 unknown
1614 4 M 79 5 7 17 unknown
1615 5 F 60 11 6 19 genetic

1616 6 M 73 14 10 19 unknown
1617 7 F 72 5 4 7 unknown
16718 ¢ M 66 9 8 26 unknown
1619 .

1620 9 M 75 5 6 10 right cholesteatoma and left
1621 sudden HL
1622 10 F 67 9 9 27 unknown
1623 11 F 76 5 1 1 labyrinthitis
1624 12 F 73 12 7 12 unknown
1625 13 F 69 9 0.6 0 bacterial meningitis
123? 14 F 67 5 10 27 otosclerosis
1628 15 F 82 9 6 12 . unknown .
1629 16 M 76 17 7 26 progressive HL complicated by
1630 sudden HL
1631 17 F 64 11 9 40 genetic HLL
1632 18 M 83 12 11 43 unknown
1633 19 M 66 2 9 15 unknown
1634 7 F 71 5 12 41 otosclerosis
1232 21 M 77 11 12 27 unknown
1637 22 F 70 3 4 3 unknown right HL and left
1638 otosclerosis
1639 23 M 73 12 7 12 unknown
1640 24 F 76 9 4 8 otosclerosis
1641 25 M 69 5 7 19 Meniere’s disease
1642 26 F 84 5 1 1 sudden HL
1643 77 M 73 12 7 20 sudden HL
1644

1645

1646

1647

1648

1649

1650

1651 28
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Table 2. Characteristics of patients and healthy subjects

Patients Healthy Subjects p-value
n=27 n=27

Age, years 72.9 (SD=5.8) 72.3 (SD=17.6) 0.75
Gender: female 15 (56%)* 15 (56%)* 1
Level of Education (AFPA score) 4.2 (SD=1.2) 3.7 (SD=1.2) 0.17
Duration of deafness, years 7.0 (SD=4.1) - -
Psychometric assessment

MMSE (/30) 26.3 (SD=3.1) 28.9 (SD=1.1) 0.01*

FAB (/18) 16.3 (SD=1.6) 17.3 (SD=1.1) 0.04*

*: Percentage of categorical variables;, MMSE: Mini Mental State Examination; FAB. Frontal

Assessment Battery.
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Table 3. 18F-FDG-PET findings in patients with hearing loss in comparison with
controls (Anatomical locations, spatial extents of significant Clusters, MNI coordinates,
maximal z-Scores and height threshold of peak-voxel)
Peak Coordinates
z—
Cluster X Z score Value
Dimension y of P
Peak
Decreased metabolism in patients with hearing loss
in comparison to controls
Right superior temporal gyrus (BA 21 and 22) 322 58 -12 -2 3.36 <0.001
Increased metabolism in patients with hearing loss
in comparison to controls
Left superior, middle, medial and precentral 1934 -14 -10 74 3.89 <0.001
frontal gyri and cingulum (BA 4, 6, 9, 24, 31
and 32)
Right superior, middle, medial and precentral 2306 12 -12 60 3.77 <0.001
frontal gyri, postcentral parietal gyrus and
cingulum (BA 3, 4, 6, 8,31 and 32)
Left postcentral and inferior parietal gyri (BA 370 -36 -38 42 3.23 <0.001
2, 7 and 40)
Increased connectivity with BA 21-22R
in patients with hearing loss in comparison to
controls
Anterior cingulate (BA 24 and 32) 330 -14 20 28 3.84 <0.001
Right superior and middle temporal gyri (BA 343 48 -38 6 3.67 <0.001
21,22 and 42)
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Right inferior parietal gyrus (BA 40) 235 42 -40 44 342 <0.001
Posterior cingulate (BA 23) 145 -6 -22 34 3.36 <0.001
Right striatum 180 24 16 12 3.35 <0.001
Left striatum 210 -20 18 8 3.28 <0.001
Right precentral frontal and postcentral 313 60 -4 12 3.17 <0.001
parietal gyri (BA 3, 4 and 6)
BA: Brodmann’s Area.
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Figure legends

Figure 1. Anatomical localization of areas of decreased of metabolism in patients with

hearing loss in comparison to controls

Anatomical localization of areas of decreased of metabolism in patients with hearing loss
(p<0.005, uncorrected, k>213), in comparison to controls, projected onto sections of a
standard SPM8 MRI template. In comparison to controls, patients with hearing loss showed
decreased metabolism in the right superior temporal gyrus (BA21 and 22). MRI: Magnetic

Resonance Imaging; BA: Brodmann’s Area.

Figure 2. Anatomical localization of areas of increased of metabolism in patients with

hearing loss in comparison to controls

Anatomical localization of areas of increased of metabolism in patients with hearing loss
(p<0.005, uncorrected, k>213), in comparison to controls, projected onto sections of a
standard SPM8 MRI template. In comparison to controls, patients with hearing loss showed
increased metabolism in bilateral superior, middle, medial and pre-central frontal gyri, the
cingulum, bilateral post-central parietal gyri, and the left inferior parietal gyrus. BA:

Brodmann’s Area.

Figure 3. Anatomical localization of areas of increased right BA 21-22 connectivity in

patients with hearing loss in comparison to controls

Anatomical localization of areas of increased right BA21-22 connectivity in patients with
hearing loss (p<0.005, uncorrected, k>136) in comparison to controls projected onto 3D

volume rendering (A) and standard SPM8 MRI template centered on the left caudate (B).
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Patients with hearing loss showed increased connectivity of BA21-22 on the right with the
right superior and middle temporal gyri, the right precentral frontal and postcentral parietal
gyri, the right inferior parietal gyrus, the cingulum, and the right and the left striatum. MRI:

Magnetic Resonance Imaging; BA: Brodmann’s Area.
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