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Multi-level Feature Representation of FDG-PET
Brain Images for Diagnosing Alzheimer’s Disease

Xiaoxi Pan, Mouloud Adel†, Caroline Fossati, Thierry Gaidon and Eric Guedj,
for Alzheimer’s Disease Neuroimaging Initiative∗

Abstract—Using a single imaging modality to diagnose
Alzheimer’s Disease (AD) or Mild Cognitive Impairment (MCI)
is a challenging task. FluoroDeoxyGlucose Positron Emission
Tomography (FDG-PET) is an important and effective modality
used for that purpose. In this paper, we develop a novel method by
using single modality (FDG-PET) but multi-level feature, which
considers both region properties and connectivities between
regions to classify AD or MCI from Normal Control (NC). First,
three levels of features are extracted: statistical, connectivity
and graph-based features. Then the connectivity features are
decomposed into 3 different sets of features according to a
proposed similarity-driven ranking method, which can not only
reduce the feature dimension but also increase the classifier’s
diversity. Last, after feeding the 3 levels of features to different
classifiers, a new classifier selection strategy, maximum Mean
squared Error (mMsE), is developed to select a pair of classifiers
with high diversity. In order to do the majority voting, a
decision-making scheme, a nested cross validation technique is
applied to choose another classifier according to the accuracy.
Experiments on Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database show that the proposed method outperforms
most FDG-PET-based classification algorithms, especially for
classifying progressive MCI (pMCI) from stable MCI (sMCI).

Index Terms—Multi-level feature representation, Ensemble
classification, FDG-PET, Alzheimer’s Disease

I. INTRODUCTION

Alzheimer’s Disease (AD) is a dominant neurodegenerative
brain disease and the main cause of dementia in elderly people
worldwide. It is expected that 115 million people will be
affected by this disease in 2050 [1]. The National Institute on
Aging and Alzheimer’s Association (NIA-AA) criteria distin-
guish 3 clinical stages: asymptomatic preclinical phase (pre-
clinical stage of AD), amnestic Mild Cognitive Impairment
(MCI) phase due to AD, and AD dementia phase [2–4].
These criteria introduce the utility of different biomarkers
of the pathophysiological process to weight the diagnostic

Xiaoxi Pan, Caroline Fossati and Thierry Gaidon are with Ecole Centrale de
Marseille and Institut Fresnel UMR 7249, Marseille, France. Mouloud Adel
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probability of the disease [2, 5]. One of them is FDG-PET,
which is effective in diagnosing AD [6]. It can reveal patho-
physiological changes before irreversible anatomical changes
and provide useful information about the cerebral glucose
metabolic rate [7].

Machine learning techniques offer an automatic and ob-
jective classification framework for high-dimensional data
processing and can learn complex patterns of changes across
various imaging modalities [8]. Computer-Aided Diagnosis
(CAD) based on machine learning approaches is a useful
method for doctors, and can bring a quantitative evaluation to
better detect brain diseases. Therefore, developing a method
that can be used to distinguish AD and MCI from Normal
Control (NC) automatically is important yet challenging.

In recent papers [8, 9], multi-modality-based algorithms,
specifically combining MRI and FDG-PET, are the most com-
monly used methods, since different modalities can provide
complementary information [10, 11]. Shi et al [12] devised a
coupled feature representation based on MRI and FDG-PET
to diagnose AD and MCI. Liu el al [13] developed a method
under deep learning architecture which used a zero-masking
strategy for data fusion to extract complementary information
from MRI and FDG-PET. There has been a growing interest
in using FDG-PET as a single modality to diagnose AD
and MCI as well. These FDG-PET-based methods can be
classified into 2 main categories according to the type of
used features: 1) voxel-based methods, which used voxels as
features [14, 15]; 2) atlas-based methods, which segmented
a subject into different regions and the region information
was then used as features [16–18]. But they take only region
properties into consideration without connectivities between
regions. In fact, a human brain is a complex system and
multiple regions interact with each other [19, 20]. Therefore,
connectivities between regions are important in AD and MCI
diagnosis and cannot be ignored.

In this study, we investigate the multi-level feature rep-
resentation for FDG-PET data to diagnose AD and MCI.
The major contributions can be summarized as three folds:
1) the multi-level feature representation considers not only
region properties (1st-Level), but also the connectivity between
any pair of regions (2nd-Level) and an overall connectivity
between one region and the other regions (3rd-Level); 2) a
similarity-driven ranking method is proposed to rank regions
from highly affected to slightly affected by the disease, which
can decompose the 2nd-level feature, thereby reducing the
feature dimension and increasing the classifier’s diversity to
a certain degree; 3) a classifier selection strategy, maximum
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Mean squared Error (mMsE), is proposed to choose a pair of
classifiers with high diversity to enhance the ensemble effect,
especially for the case that sub-classifiers do not perform well.

The remaining of the paper is organized as follows. Section
II describes the novel multi-level representation method for
diagnosing AD and MCI. Section III reports and analyzes the
experimental results. Finally, a conclusion of this work is given
in Section IV.

II. METHODS

The proposed multi-level feature representation method is
described from 3 aspects in details, including feature extrac-
tion, feature selection and ensemble classification, as shown in
Fig. 1. First, after segmenting each subject into 116 Regions
of Interest (ROIs) according to an Automated Anatomical
Labeling (AAL) atlas [21], 3 levels of features are extracted,
specifically, the 1st-Level feature, which comprises ROI’s
mean intensity and standard deviation. The 2nd-Level feature,
the similarity-based connectivity between any pair of ROIs,
is decomposed into 3 sets according to a proposed similarity-
driven ranking method. The 3rd-Level feature is composed
of graph-based features. Next, Least Absolute Shrinkage and
Selection Operator (LASSO) [22] is applied to do the feature
selection for each set of features, respectively. Then different
classifiers are trained using different sets of features. Final
prediction is obtained through an ensemble classifier decided
by a proposed maximum Mean squared Error (mMsE) strategy
and a nested cross validation technique.

A. Dataset

Data used in the preparation of this article were obtained
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (adni.loni.usc.edu). The ADNI was launched in 2003
as a public-private partnership, led by Principal Investigator
Michael W. Weiner, MD. The primary goal of ADNI has been
to test whether serial MRI, PET, other biological markers, and
clinical and neuropsychological assessment can be combined
to measure the progression of MCI and early AD.

ADNI provides different imaging modalities, such as struc-
tural MRI, functional MRI, Diffusion Tensor Imaging (DTI)
and PET, for researchers to develop methods for early de-
tection of AD. In this study, we focus on using FDG-PET
data to diagnose AD and MCI. After having acquired original

data, there are usually 3 steps in data processing: spatial
normalization, smoothing and intensity normalization. In the
existing literatures, most researchers do these procedures in-
dependently. In fact, besides those original data, ADNI also
provides processed data. There are 2 kinds of FDG-PET data
images, pre-processed data and post-processed data. Specifi-
cally, for the pre-processed data, there are 4 different groups
[23], including 1) Co-registered Dynamic; 2) Co-registered,
Averaged; 3) Co-reg, Avg, Standardized Image and Voxel Size;
4) Co-reg, Avg, Std Img and Vox Siz, Uniform Resolution.
The post-processed data was processed on the basis of group
4) data mentioned above and then spatially normalized to MNI
template using SPM [24] with 2 × 2 × 2 mm voxel size and
79 × 95 × 69 matrix dimension. The intensity normalization
is done by using the global mean value. It should be noted
that the reason why we use the post-processed data is to avoid
the impact of pre-treatments as far as possible and pay more
attention to the influence of features and classification methods
on results. Therefore, 272 post-processed baseline FDG-PET
data were obtained from ADNI, including 94 subjects with
AD, 88 subjects with MCI and 90 subjects under NC. MCI
subjects were clinically further subdivided into 44 progressive
MCI (pMCI), who progressed to AD in 24 months, and 44
stable MCI (sMCI), who did not progress to AD. Demographic
and clinical information of subjects are provided in Table I.

B. Feature Extraction

Before extracting features, each subject is segmented into
116 ROIs using AAL atlas. Many methods in the existing
literatures used mean gray level intensities of some ROIs as
features [16, 18, 25]. However, only ROI’s information is not
enough. Therefore, in this paper, we explore to expand the
feature pool computed on FDG-PET data.

1) 1st-Level Feature: Since each ROI’s mean intensity
and standard deviation can reflect the FDG uptake and its
corresponding distribution, the 1st-Level feature for the n-th
sample can be represented as:

rmn = [rmn1, r
m
n2, · · · , rmnp] (1)

rsn = [rsn1, r
s
n2, · · · , rsnp] (2)

where rmn and rsn are the mean intensity and standard devia-
tion, respectively, and p is the number of ROIs, here p = 116.

Fig. 1. The framework of the proposed method.
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TABLE I
DEMOGRAPHIC AND CLINICAL INFORMATION OF THE SUBJECTS.

Characteristic AD NC MCI* pMCI sMCI
Number of subjects 94 90 88 44 44

Female/male 38/56 34/56 32/56 14/30 18/26
Age(Mean ± SD) 75.83 ± 7.37 76.08 ± 5.01 76.71 ± 6.63 75.86 ± 7.37 77.56 ± 5.75

MMSE(Mean ± SD) 23.46 ± 2.14 28.97 ± 1.15 26.92 ± 1.62 26.77 ± 1.78 27.07 ± 1.45

* including 44 pMCI and 44 sMCI that are described in the last 2 columns

2) 2nd-Level Feature: The 2nd-Level feature is the
similarity-based connectivity between ROIs. Hereafter, con-
nectivity is used to refer to similarity-based connectivity. First,
the 1st-Level feature is used to represent each ROI, and the
i-th ROI is represented by:

xi = [rmi , r
s
i ] (3)

then the connectivity between any two ROIs is computed
through:

wij =

{
e−‖xi−xj‖2 i 6= j,
0 i = j.

(4)

where wij is the connectivity of the i-th ROI and the j-th ROI,
and the higher the value of wij , the more similar the two ROIs.
It should be noted that before computing wij through (4), each
type of the 1st-Level feature is normalized over ROIs. The
2nd-Level feature of any subject is:

Wr =



0 wr12 · · · wr1j · · · wr1p

wr21 0 · · · wr2j · · · wr2p

...
...

. . .
...

...
wri1 wri2 · · · 0 · · · wrip

...
...

...
. . .

...
wrp,1 wrp2 · · · wrpj · · · 0


(5)

where Wr is a symmetric matrix.
The 2nd-Level feature is composed of connectivities be-

tween all the 116 ROIs, totally 6670 dimensions (116 ×
(116−1)/2, only considering the values on the upper triangle).
Clearly, it is not an optimal dimension for the subsequent
classification. Therefore, Wr is further decomposed into 3
subsets of features according to a proposed similarity-driven
ranking method.

Similar to the way of computing connectivities between
ROIs, we can obtain the similarity coefficients between sub-
jects for a specific ROI:

wuv =

{
e−‖xu−xv‖2 u 6= v,
0 u = v.

(6)

where u, v stands for the u-th and v-th subjects.
For any ROI, a symmetric matrix for subjects, Ws, is

obtained from:

Ws =



0 ws12 · · · ws1v · · · ws1N

ws21 0 · · · ws2v · · · ws2N

...
...

. . .
...

...
wsu1 wsu2 · · · 0 · · · wsuN

...
...

...
. . .

...
wsN1 wsN2 · · · wsNv · · · 0


(7)

The dimension of Ws is determined by the number of sub-
jects, N , in a group (AD, NC, MCI, pMCI and sMCI). For
example, there are 94 subjects in AD group, so N = 94, then
the dimension of Ws is 94 × 94. Each subject is segmented
into 116 ROIs, thus there are 116 matrices like Ws.

If taking NC subjects (including training and testing sam-
ples) as a reference, in one hand, for a ROI which is not af-
fected by AD, the similarity coefficients between AD subjects
are supposed to be close to those of NC subjects. In the other
hand, for a ROI affected by AD, the similarity coefficients of
AD subjects are different from NC group. In order to quantify
the difference, we first make a statistic on the upper triangle
values of Ws to get the frequency distribution histogram
of those values. Then the cumulative probability curve of
similarity coefficients can be obtained, as shown in Fig. 2,
where (a), (b) and (c) stand for region Angular L, region
Hippocampus L and region Cerebelum 10 R, respectively.
It can be seen that there is a clear difference between the
AD and NC groups in Fig. 2(a), and for the other two
ROIs, the difference decreases gradually. It implies that among
the experimental subjects, region Cerebelum 10 R is almost
unaffected by AD, while region Angular L has a great chance
of getting influenced, therefore region Angular L is ranked
before region Cerebelum 10 R, and region Hippocampus L
is placed between them. The difference between curves is
computed through the difference of area under curve, which
is denoted ∆S. The larger the ∆S, the greater the impact
generated by AD for a ROI. At last, all the ROIs can be ranked
according to ∆S from high to low. It should be noted that we
highly recommend using a balance number of subjects in 2
groups for the comparison and the more the better.

(a) (b) (c)

Fig. 2. Statistics of the similarity coefficients between subjects for a
certain ROI. (a) ROI: Angular L. (b) ROI: Hippocampus L. (c) ROI: Cere-
belum 10 R

After ranking all the ROIs, the similarity matrix Wr is re-
calculated according to the new order of ROIs. Then Wr is
divided into 4 equal parts, as shown in Fig. 3(a), where the
red part stands for the sets which are highly influenced by
AD, denoted Wh, while the blue part stands for ROIs with
less impact of AD, denoted Wl, and the green part represents
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the connectivities between highly influenced ROIs and slightly
influenced ROIs, which is denoted Wm. Since Wr is symmet-
ric, only upper triangular matrix is taken into consideration,
like in Fig. 3(b). Therefore, the 2nd-Level feature Wr is
divided into 3 sets, and after converting them to vectors, the
2nd-Level feature for the n-th sample is represented as:

wh
n = [wh

n1, w
h
n2, · · · , wh

nph ] (8)

wm
n = [wm

n1, w
m
n2, · · · , wh

npm ] (9)

wl
n = [wl

n1, w
l
n2, · · · , wl

npl ] (10)

where ph, pm and pl are the dimension of each subset of
features. ph and pl are the same (red and blue parts in
Fig. 3(b)), both equal to 1653 (58×(58−1)/2), and pm (green
part) is 3364 (58 × 58). Apparently, compared to 6670 (red,
blue and green parts), the dimension is decreased by about
50%–75%.

(a) (b)

Fig. 3. Instance of the division for a similarity matrix.

3) 3rd-Level Feature: The 3rd-Level feature is extracted
from a graph point of view, which stands for an overall
connectivity between a ROI and the other ROIs. Generally,
a graph G = (V,E) consists of a finite set V of vertices
and a finite set of edges E ⊆ V × V . A vertex in a graph
is equivalent to a ROI in a brain. Therefore, the connectivity
between the i-th ROI and the j-th ROI, wij , can be viewed
as the weight of an edge which connects the i-th vertex and
the j-th vertex. In this paper, we analyze the undirected graph,
which means wij = wji. Then a subject can be represented by
a graph, as shown in Fig. 4 which represents a subject from
ADNI database.

Fig. 4. Instance of the brain connectivity network from the axial view [26].

After constructing a graph for a subject, several graph
measures can be computed, such as degree, strength, clustering
coefficient, betweenness centrality [27]. According to [19, 28],
the metrics strength and clustering coefficient are effective in
discriminating AD, therefore the 3rd-Level feature is repre-
sented by these two graph measures. Specifically,
strength: the sum of a vertex’s neighboring link weights [27].

si =

p∑
j=1

wij (11)

where si is the strength of a vertex or a ROI.

clustering coefficient: the geometric mean of all triangles
associated with each vertex [27].

c =
diag((Wr·

1
3 )3)

d(d− 1)
(12)

where diag(·) is a operator which takes the diagonal values
from a matrix, c is a clustering coefficient vector, and d is a
degree vector in which the element di is,

di =

p∑
j=1

aij (13)

where aij is the connection status between the i-th vertex and
the j-th vertex: aij = 0 when wij = 0, otherwise aij = 1.

Thus, the 3rd-Level feature consists of 2 sets of features,
and each of them for the n-th sample is represented as:

gs
n = [sn1, sn2, · · · , snp] (14)

gc
n = cn (15)

These features exhibit different ranges of values. Thus a
procedure of feature normalization is necessary by z-score
prior to classification:

znm =
fnm − µm

δm
(16)

where fnm is the value of the m-th feature of the n-th
sample, and f ∈ {rm, rs, wh, wm, wl, gs, gc}, µm and δm are
the mean value and standard deviation of the m-th feature,
respectively. Most of fnm values can be transformed to the
range [−1, 1] through (16), while out-of-range values are
clamped to either −1 or 1.

C. Feature Selection

In this paper, there are 3 levels of features. For the 1st-
Level and 3rd-Level features, the dimension is 116 for each
type of feature. For the 3 subsets of features in 2nd-Level, the
dimension is 1653 (wh), 3364 (wm), 1653 (wl), respectively.
Therefore, it is necessary to select representative features to
reduce the feature dimension. A good strategy of feature reduc-
tion or selection is to remove irrelevant, redundant and noisy
features and meanwhile improve classification performances.
Least Absolute Shrinkage and Selection Operator (LASSO)
is one of the popular techniques for dimension reduction and
feature selection. It uses l1 regularization to get a sparsity
solution, thereby achieving the goal of feature selection. In
this paper, feature selection is accomplished by using LASSO.

D. Ensemble Classification

The support vector machine (SVM) classifier is a popular
and effective method in distinguishing subjects with AD or
MCI from NC. In this study, 3 levels of features, which
then are decomposed into 7 types of features, are fed into
7 linear SVMs to train 7 individual models, respectively. The
motivation of training in this way is to ensure a model focus
on one type of feature of the data. The margin parameter C of
all the SVMs is fixed to 1 for a fair comparison, like [29, 30].

The effectiveness of an ensemble classifier depends on the
number of individual classifiers and the diversity between
them. The more the number of classifiers and the higher
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the diversity, the more effective the ensemble classifier is.
However, if the sub-classifier doesn’t perform well (the ac-
curacy is usually between 50% and 60%), the increase of the
number of classifiers cannot improve the ensemble classifier’s
performance, because as the number of classifiers increases,
the possibility that misclassified results accounted for the
majority also increases. Thus, in order to enhance the ensemble
effect and meanwhile, avoid misclassified results taken up
the majority, a strategy of selecting models, maximum Mean
square Error (mMsE), is proposed. Let yi and yj denote the
output labels of SVMi and SVMj , respectively, then the Mean
Square Error (MSE) between yi and yj is computed through,

M(i, j) =
1

K
‖yi − yj‖2 (17)

where K is the number of the testing samples and each
element in yi belongs to {−1, 1}. The higher the MSE, the
greater the diversity between the outputs of classifiers. Then
a pair of classifiers with high diversity can be achieved by
finding the maximum MSE,

(i, j) = arg max
i,j

M(i, j) (18)

In addition, another classifier, yk, is determined through nested
cross validation on the training set and the one with the highest
accuracy is selected. Last, the final decision is made through
a majority voting of the 3 selected classifiers’ outputs:

Y = sgn(yi + yj + yk) (19)

where sgn(·) is a sign function. Even though the number
of classifiers for decision making decreases, the classifiers
with high diversity and high accuracy are kept. Therefore, the
strategy can enhance the ensemble effect, especially in the case
where all the classifiers do not have a good performance, since
it can avoid misclassified results accounted for the majority.

III. EXPERIMENTS AND RESULTS

A. Experimental Setup

Experiments are conducted on 3 different kinds of classi-
fications, including 1) AD vs. NC, 2) MCI vs. NC and 3)
pMCI vs. sMCI. In order to evaluate the performance of the
proposed method, 4 different metrics, classification accuracy
(ACC), sensitivity (SEN), specificity (SPE), and area under
curve (AUC) are used. The higher the values are, the better the
corresponding method is. Specifically, ACC is the proportion
of samples that are properly predicted. SEN implies the pro-
portion of correctly classified AD or MCI samples. SPE means
the proportion of NC samples that are correctly classified. Be-
cause of a limited number of samples, we use a 10-fold cross
validation technique to assess the performance, and repeat 10
times to reduce the possible bias. The parameter in LASSO,
λ, is decided by nested cross validation on the training dataset
within the range {10−5, 10−4, ..., 10−1} for the 1st-Level and
3rd-Level features, and {10−9, 10−8, ..., 10−1} for the 2nd-
Level feature. The parameter is chosen separately, which can
help reduce the computation cost in a great extent. It should be
noted that all the results shown in following parts are obtained
after LASSO. The whole procedure is shown in Algorithm 1.

Algorithm 1 Workflow of the proposed method.
1: Dividing the dataset into 10 parts, one of them is used as

testing data and the remaining parts are for training;
2: Extracting 7 types of features for the training and testing

data, respectively;
3: Selecting features by LASSO for each type of features;
4: Training different models using different types of features

on training data;
5: Using the proposed mMsE method and the nested cross

validation technique to choose 3 models;
6: Applying the 3 models on testing data and then the eval-

uation metrics (ACC, SEN, SPE, AUC) can be computed;
7: Returning to step 1, choosing another part as the testing

data till all the 10 parts are used for testing;
8: Repeating step 1 to step 7 ten times, then computing the

average value of each metric.

B. Single-type Feature Representation Evaluation

The 3 levels of features are decomposed to 7 different types
of features, and the performance of each type of feature is
shown in Table II, Table III and Table IV for AD vs. NC,
MCI vs. NC and pMCI vs. sMCI, respectively. It can be seen
that the 1st-Level feature (either the mean intensity or the
standard deviation) outperforms the other 2 levels of features
for all the 3 kinds of classifications. Even though it doesn’t
give the best result in classifying AD from NC, the difference
from the best one (wm) is small in terms of ACC and AUC,
about 1.39% and 0.04%, respectively. Furthermore, the SPE of
the feature standard deviation (belongs to 1st-Level feature) is
the highest. The graph metric, strength, which belongs to the
3rd-Level feature is inferior among all the types of features in
AD diagnosis and MCI diagnosis.

TABLE II
PERFORMANCE OF DIFFERENT TYPE OF FEATURE FOR AD VS. NC(%)

Method Feature ACC SEN SPE AUC
1st-Level Mean intensity 85.13 86.61 83.97 93.39
1st-Level Standard deviation 85.49 84.98 86.24 93.84
2nd-Level Connectivity wh 85.05 86.24 84.56 93.01
2nd-Level Connectivity wm 86.88 88.82 85.17 93.88
2nd-Level Connectivity wl 83.98 84.31 83.37 91.37
3rd-Level Strength 80.77 80.29 81.50 88.63
3rd-Level Clustering coefficient 83.89 84.03 84.26 92.05

TABLE III
PERFORMANCE OF DIFFERENT TYPE OF FEATURE FOR MCI VS. NC(%)

Method Feature ACC SEN SPE AUC
1st-Level Mean intensity 73.55 75.01 72.87 81.36
1st-Level Standard deviation 78.19 78.31 78.69 86.67
2nd-Level Connectivity wh 72.78 70.63 74.35 83.19
2nd-Level Connectivity wm 74.67 76.06 73.65 83.27
2nd-Level Connectivity wl 74.89 77.01 72.68 78.94
3rd-Level Strength 71.12 70.62 72.01 80.07
3rd-Level Clustering coefficient 72.31 74.73 70.26 80.36

C. Feature Concatenation Evaluation

In this part, the evaluation for different levels of features
are given. Different types of features within the same level
are concatenated to a long vector and the results are shown
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TABLE IV
PERFORMANCE OF DIFFERENT TYPE OF FEATURE FOR PMCI VS. SMCI(%)

Method Feature ACC SEN SPE AUC
1st-Level Mean intensity 59.85 61.14 60.88 62.40
1st-Level Standard deviation 53.57 55.63 52.50 53.47
2nd-Level Connectivity wh 52.01 55.04 51.27 55.82
2nd-Level Connectivity wm 57.26 55.03 59.95 60.88
2nd-Level Connectivity wl 56.35 55.65 56.00 58.64
3rd-Level Strength 53.76 57.35 52.08 56.76
3rd-Level Clustering coefficient 56.28 60.57 53.69 61.84

in Table V to Table VII (the first 3 lines). As can be seen,
among all the 3 levels of features, the 1st-Level feature is
still superior to other features in three tasks. In addition,
it can be seen from Table II and Table V (AD diagnosis)
that concatenation of two types of 1st-Level features can
improve the performance of AD classification, and increase
by about 2.38% (ACC), 1.56% (SEN), 1.85% (SPE), 1.75%
(AUC). Concatenation of 2nd-Level features also has some
improvements, but concatenation of 3rd-Level features has an
inverse effect and all the four metrics are lower than the results
obtained using the optimal sub-feature (clustering coefficient)
in 3rd-Level. In MCI diagnosis, only concatenation of 2nd-
Level features improves the classification effectiveness. But in
classifying pMCI from sMCI, concatenation of sub-features
within the same level cannot improve the performance. In
addition, the performances of concatenating all the 3 levels of
features are also shown in Table V to Table VII (the last line).
It can be seen that there is a significant improvement only
for AD diagnosis, and for MCI diagnosis, the improvement
is small. For pMCI vs. sMCI, concatenation of 3 levels of
features fails to improve the performance. It is because that
those added features may be effective, or may be redundant.
Therefore, the strategy of concatenating features is not an
effective method to improve the classification performance for
the all 3 tasks.

TABLE V
PERFORMANCE OF DIFFERENT LEVEL OF FEATURE FOR AD VS. NC(%)

Method ACC SEN SPE AUC
1st-Level 87.87 88.17 88.09 95.59
2nd-Level 87.11 86.37 87.80 94.30
3rd-Level 82.49 82.77 82.93 91.41

1st & 2nd & 3rd 89.09 89.60 88.49 95.38

TABLE VI
PERFORMANCE OF DIFFERENT LEVEL OF FEATURE FOR MCI VS. NC(%)

Method ACC SEN SPE AUC
1st-Level 77.14 75.04 79.71 84.30
2nd-Level 76.42 75.29 78.66 83.76
3rd-Level 71.92 73.35 71.51 80.43

1st & 2nd & 3rd 77.39 76.19 78.23 83.42

D. Effectiveness of the Similarity-driven Ranking Method
The similarity-driven ranking method can not only reduce

the 2nd-Level feature’s dimension, but also improve the clas-
sifier’s diversity. Here, Kappa index [29] is applied to measure
the diversity and a small value indicates a high diversity, which
is computed through:

Ka(i, j) =
p1 − p2
1− p2

(20)

TABLE VII
PERFORMANCE OF DIFFERENT LEVEL OF FEATURE FOR PMCI VS.

SMCI(%)

Method ACC SEN SPE AUC
1st-Level 58.26 60.25 59.48 64.42
2nd-Level 55.17 54.87 57.07 58.14
3rd-Level 55.81 57.62 57.41 54.85

1st & 2nd & 3rd 53.38 52.91 56.42 57.46

where p1 denotes the observed agreement of yi and yj, and
p2 stands for the chance agreement. Figure 5 shows the
effectiveness the proposed ranking method on the improve-
ment of classifier’s diversity, where ’2nd’ denotes the original
2nd-Level feature, ’2nd-h’, ’2nd-m’ and ’2nd-l’ denote the
decomposed 3 subsets of features and ’1st-m’, ’1st-s’, ’3rd-
c’ and ’3rd-s’ denote the mean intensity, standard deviation
(1st-Level feature), clustering coefficient and strength (3rd-
Level feature), respectively. As can be seen, the decomposed
features can achieve a higher diversity (a smaller value) than
the original 2nd-Level feature for all the 3 tasks, especially
for classification of pMCI. The higher diversity benefited from
the similarity-driven ranking method can ensure the ensemble
classifier has a good performance.

(a) (b) (c)

Fig. 5. Performance evaluation of the similarity-driven ranking method. (a)
AD vs. NC. (b) MCI vs. NC. (c) pMCI vs. sMCI.

E. Ensemble Classification Evaluation

The increase of the number of classifiers and their diversities
can improve the performance of the ensemble classifier in
theory. Obviously, the maximum number of classifiers (7
classifiers) is fixed in this paper. If the sub-classifiers do not
perform well and all of them are used to do the final decision
through majority voting, there will be a high probability
that misclassified results accounted for the majority. In order
to avoid this situation and enhance the ensemble effect, a
strategy of selecting models with high diversity is proposed.
In this experiment, we compare majority voting using outputs
from all the 7 SVMs (noted as 7-Majority Voting) with the
proposed method which using 3 selected SVMs’ decisions
(noted as 3-Majority Voting), and the results are shown in
Fig. 6. It can be seen that the proposed method outperforms
the 7-Majority Voting, specifically, it improves by 1.42%
(ACC), 2.20% (SEN), 2.00% (SPE), and 0.03% (AUC) in
AD diagnosis and 1.42% (ACC), 3.22% (SEN), 0.67% (SPE),
−0.55% (AUC) in MCI diagnosis. For pMCI vs. sMCI, the
proposed method increases by 6.64% (ACC), 6.44% (SEN),
4.71% (SPE), and 1.93% (AUC). Clearly, the proposed method
shows an effective improvement for classifying pMCI from
sMCI. It is because that a single type of feature in the
classification of pMCI does not perform well, and the highest
accuracy is only 59.85% (Table IV). The probability that
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misclassified results dominate the majority voting will be high,
if considering all the 7 classifiers’ outputs. And another reason
is that the improvement of performance in classifying pMCI
from sMCI benefits from the increase of diversity brought by
the decomposition of 2nd-Level feature.

(a) (b) (c)

Fig. 6. Performance evaluation of the ensemble classification. (a) AD vs. NC.
(b) MCI vs. NC. (c) pMCI vs. sMCI.

F. Comparison with the State-of-the-art Methods

We also compare the classification performance of the
proposed method with the state-of-the-art methods, including
Hinrichs’s method [14], Gray’s method [16], Li’s method [17],
Padilla’s method [31], which are designed on FDG-PET data
and use classical machine learning techniques. The results are
shown in Table VIII to Table X. It can be seen that our method
outperforms the other methods regarding MCI diagnosis and
classifying pMCI from sMCI. For AD vs. NC, the proposed
method is superior to the compared method in terms of ACC
and SEN. The difference with the best result in respect of
SPE is 2.22%, and for AUC, it is 1.02%. But our method is
inferior to Lu’s method [32], which uses deep neural network
and reports outstanding results in AD diagnosis and pMCI
diagnosis, 93.85% (ACC) and 82.51% (ACC), respectively.

TABLE VIII
PERFORMANCE COMPARISON FOR AD VS. NC(%)

Method Subjects ACC SEN SPE AUC
Hinrichs et al.[14] 89AD+94NC 84 84 82 87.16

Gray et al.[16] 50AD+54NC 88.4 83.2 93.6 −−
Li et al.[17] 25AD+30NC 89.1 92 86 97

Padilla et al.[29] 53AD+52NC 86.59 87.50 85.36 −−
Our method 94AD+90NC 91.90 92.78 91.38 95.98

TABLE IX
PERFORMANCE COMPARISON FOR MCI VS. NC(%)

Method Subjects ACC SEN SPE AUC
Gray et al.[16] 53pMCI+54NC 81.3 79.8 82.9 −−

Li et al.[17] 29MCI+30 NC 63.2 65 62 72
Our method 88MCI+90NC 83.18 84.20 82.83 88.93

TABLE X
PERFORMANCE COMPARISON FOR PMCI VS. SMCI (%)

Method Subjects ACC SEN SPE AUC
Gray et al.[16] 53pMCI+64sMCI 63.1 52.2 73.2 −−

Our method 44pMCI+44sMCI 72.33 73.27 73.11 71.66

IV. CONCLUSION

AD and MCI diagnoses under FDG-PET single modality
are challenging. In this paper, a novel ensemble method which
uses multi-level features is proposed to address the problem.
First, 3 levels of features that represent properties of ROIs and
their connectivities are extracted gradually. Then a proposed
similarity-driven ranking method is applied to decompose the
2nd-Level feature to 3 different sets of features, which reduces

the feature dimension to a great extent and increases the
classifier’s diversity. Next, different models are trained by
using different types of features. In order to enhance the
ensemble effect, a pair of models with high diversity are
selected through the proposed mMsE method and another
model with high accuracy is chosen by nested cross validation.
The final decision is made through the majority voting of
the 3 selected models’ outputs. According to experiments on
the public dataset (ADNI), the proposed method can improve
the performance of AD and MCI diagnoses and especially
classifying pMCI from sMCI when compared with those
state-of-the-art methods developed by using classical machine
learning techniques, but our approach does not outperform the
deep learning based methods, which will be included in our
future work.
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