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ABSTRACT
We present a simple variational approach for reconstructing
color light fields (LFs) in the compressed sensing (CS) frame-
work with very low sampling ratio, using both coded masks
and color filter arrays (CFAs). A coded mask is placed in
front of the camera sensor to optically modulate incoming
rays, while a CFA is assumed to be implemented at the sensor
level to compress color information. Hence, the LF coded
projections, operated by a combination of the coded mask
and the CFA, measure incomplete color samples with a three-
times-lower sampling ratio than reference methods that assume
full color (channel-by-channel) acquisition. We then derive
adaptive algorithms to directly reconstruct the light field from
raw sensor measurements by minimizing a convex energy com-
posed of two terms. The first one is the data fidelity term which
takes into account the use of CFAs in the imaging model, and
the second one is a regularization term which favors the sparse
representation of light fields in a specific transform domain.
Experimental results show that the proposed approach pro-
duces a better reconstruction both in terms of visual quality
and quantitative performance when compared to reference
reconstruction methods that implicitly assume prior color in-
terpolation of coded projections.

Index Terms— light field, compressed sensing, demosaic-
ing, variational algorithm

1. INTRODUCTION

A light field can be seen as a sampling of the plenoptic function
which describes the radiance of light rays emitted by the scene
along any direction, at any times and for every wavelength
[1]. LFs are commonly represented as 4D functions with
spatial and angular coordinates [2, 3], and can be regarded as
collections of 2D images taken from different viewpoints. A
number of acquisition devices have been developed to capture
4D LF. Existing devices range from bulky systems (such as
single cameras mounted on moving gantries [2] or camera
arrays [4, 5]) to handheld camera architectures -e.g. plenoptic
1.0 and 2.0 cameras using lenslet arrays to spatially multiplex
angular (viewpoint) information [6, 7, 8]. It is a very effective
way to acquire multiple views; however, it also induces some
trade-off between the spatial and angular resolution of the
captured LFs and reduces the spatial resolution by order of
magnitude compared to a raw sensor image.
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To overcome this limitation, mask-based camera models
have emerged as alternative solutions to lenslet-based models.
In [9], Veeraraghavan et al. use an attenuation mask with
sum-of-sinusoid (SoS) patterns located between the camera
aperture and the sensor to encode the angular spectrum of the
4D LFs into the spatial spectrum of 2D sensor images. The LF
reconstruction is then performed in frequency domain using
the Fourier slice theorem. A similar SoS-based approach is
proposed in [10], in which the authors introduce a dual-mask
design: one mask is mounted on the aperture, while the second
one is placed before the sensor to improve the spatial resolution
of the reconstructed LFs when compared to [9].

Over the past years, random coded masks have been con-
sidered in CS-based designs [11]. One of the first CS camera
models for LF acquisition is reported in [12] which uses a
monochrome mask placed at the aperture for optical mod-
ulation purposes. The acquisition scheme is also equipped
with a reconstruction algorithm based on the total variation
(TV) of angular images. Similarly, the authors of [13] pro-
posed to place a (monochrome) mask at a small distance from
the sensor to get better incoherent measurements, and used
sparse representations on overcomplete dictionaries to recon-
struct the original LFs. This dictionary-based approach is
further extended in [14] using random color masks instead
of monochrome ones. Recently, several learning-based LF
reconstruction methods have been introduced [15, 16] for both
monochrome and color masks. They provide in general bet-
ter results with lower processing time compared to existing
dictionary-based approaches [13, 14], at the cost of long train-
ing time and expensive computational resources.

In this work, we focus on the reconstruction of LFs from
2D coded projections which are induced by random masks,
while accounting for the presence of a CFA (e.g. the well-
known RGB Bayer pattern) within the 2D sensor. This kind of
sensors is indeed commonly implemented in standard con-
sumer cameras as those used in hardware experiments in
[12, 13], implying that captured images are not full color
but only incomplete color samples. The authors of [12]-[15]
however reconstruct original LFs from full color images. This
is possible only if the captured color-sampled image has first
been demosaiced, e.g. using gradient corrected color interpola-
tion [17], or if each color channel is acquired separately. While
the first method may have severe impacts on the reconstruc-
tion quality due to color interpolation errors, the second one
requires camera modifications (the sensor and/or the optical
setup in this case) which are sometimes not feasible.

To tackle this problem, we adapt the imaging equation in



[12]-[16] by taking into account the use of CFAs in the image
formation model. The sensing matrix can therefore be seen as
the product of two matrices: one matrix represents the coded
mask while the second matrix represents the implemented
CFA. We show that this requires very little changes of the
reconstruction algorithms since only the sensing operator is
modified when compared to a full color acquisition scheme.
Moreover, we introduce a new LF prior by extending the fa-
mous TV regularization [18] for 4D color data, and propose a
proximal-splitting-based algorithm for LF reconstruction using
this TV-based prior. The proposed algorithm hence performs
at the same time full color restoration of the light ray mea-
surements (i.e. some form of demosaicing) and LF viewpoint
reconstruction.

2. LIGHT FIELD ACQUISITION

We adopt the two-plane parameterization [2, 3] for the in-
camera light field L(x,u, λ) which describes the intensity
in the wavelength λ along a ray passing through the points
x = (x, y) and u = (u, v) located on the sensor and aperture
planes respectively. Let D denote the distance between these
two planes. For simplicity, we also assume that L is zero
outside the physical bounds of the sensor Ω ⊂ R2 and the
aperture Θ ⊂ R2. If we insert a mask M(ξ, λ) at a small
distance d from the sensor and when the camera architecture
allows color-by-color acquisition, the imaging equation for a
pixel x ∈ Ω, in a wavelength λ, can be written as [13, 14]:

Iλ(x) =

∫
Θ

M(ξx,u,d, λ) L(x,u, λ) du , (1)

where ξx,u,d = u + D−d
D (x − u). Each image Iλ can be

seen as a compressed version of the set of angular images
{L(·,u, λ)}u∈Θ. In discrete form, assuming that n = nxny
is the number of sensor pixels and ν = νuνv is the number of
views, we denote by Lc

j ∈ Rn (with c ∈ C = {R,G,B}) the
color channel corresponding to λc of the j-th angular image
(with j = l1 + νu(l2 − 1), for 1 ≤ l1 ≤ νu and 1 ≤ l2 ≤ νv).
The column vector L ∈ R3nν which represents the discrete
version of L can be arranged in the following way:

L =
[

(LR)> (LG)> (LB)>
]>

, (2)

where (·)> denotes the matrix transpose operator and each
Lc = [(Lc

1)> (Lc
2)> . . . (Lc

ν)>]> ∈ Rnν is a color channel
of L corresponding to the wavelength λc. Using this vectoriza-
tion, the discrete form of the color-by-color acquisition scheme
(Eq. 1) can be expressed as a matrix-vector multiplication as
follows:IR

IG

IB


︸ ︷︷ ︸

I

=

MR 0 0
0 MG 0
0 0 MB


︸ ︷︷ ︸

M

LR

LG

LB


︸ ︷︷ ︸

L

, (3)

where each sub-matrix M c = [M c
1 M c

2 . . . M c
ν ] and

each M c
j ∈ Rn×n is a sparse matrix containing the coeffi-

cients of the coded mask M on its diagonal.
To improve the compression rate, Nabati et al. proposed

to compress color information by using monochrome sensors

(a) Acquisition scheme using coded mask and CFA

(b) Original LF (c) Incomplete-color coded projection

(d) Full RGB coded projection (e) Color interpolation of (c) using [17]
Fig. 1: Mask-based compressed acquisition of LFs. (c) Incomplete color coded
projection (compression rate: 1/(3×5×5)). (d) Full RGB (color-by-color) acquisition
(compression rate: 1/(5×5)). (e) Color interpolation (demosaicing) of incomplete-
color coded projection looks slightly blurred compared to the true (full RBG) version.

(without any CFA) as [16]:

Ī =
∑
c∈C

Ic =
[
MR MG MB

]︸ ︷︷ ︸
M

L , (4)

which consists in squeezingM by removing all its zero sub-
matrices, implying that the captured image Ī is simply the
sum of the three channels of I . For the LF reconstruction task,
the authors of [16] have considered a fully connected network
(FCN) which does not only estimate the viewpoint parallax but
also re-color the scene from gray-scale acquisitions. Despite
promising results, the re-colorization may fail in some cases
and only work for random RGBW patterns as used in [16].

Let us now consider the acquisition with color sensors (i.e.
sensors with overlaid CFA patterns) instead of monochrome
sensors. Accordingly, the corresponding imaging equation is
expressed as:

I =
∑
c∈C

F cIc =
[
FRMR FGMG FBMB

]︸ ︷︷ ︸
Φ

L , (5)

where each F c ∈ Rn×n is a diagonal matrix whose diagonal
contains values in [0, 1] representing the CFA pattern. Note
that one can also factorize the resulting sensing matrix Φ as:

Φ = FM =

FR

FG

FB

>MR 0 0
0 MG 0
0 0 MB

 . (6)



We remark that I is nothing else than a sampled-color version
of I . Also, it is easy to check that the images I and Ī have
the same dimensions, and thus the two acquisition schemes
(Eq. 4) and (Eq. 5) achieve the same compression rate. But
unlike (Eq. 4) which does not preserve color information, the
proposed acquisition scheme (Eq. 5) allows to retrieve the sam-
pled color component of each pixel of I using the predefined
CFA pattern. In our opinion, this allows to design simpler
algorithms for color LF reconstruction. On the down-side,
the use of CFAs also reduces the amount of incoming lights
received by the sensor due to color filtering effect, implying
lower light-transmission rate. However, this approach repre-
sents a cheap and efficient way to capture color LFs while
having three-time-higher compression rate compared with full
RGB (color-by-color) acquisitions.

3. RECONSTRUCTION ALGORITHMS
3.1. Dictionary-based approach

The CS theory [11] relies on the assumption that the sig-
nal is sparse (or compressible) in some transform domains
like wavelets, DCT, or even dictionaries learned from large
datasets. In the context of compressive LF acquisition us-
ing coded masks, the original LF can be restored by solv-
ing a basis pursuit denoising [19] (BPDN) problem given
an overcomplete dictionary as in [13, 14]. Let us denote by
D =

[
D1 D2 . . . Dnd

]
∈ R3nν×nd the given dictionary

(where each Dk ∈ R3nν is a color 4D LF atom), and by
α = [α1 α2 . . . αnd ]> a sparse vector such that Dα approxi-
mates L (Dα ' L). The LF reconstruction problem amounts
therefore to minimize the following convex energy:

ED(α) =
1

2
‖ΦDα − I‖22 + η ‖α‖1 , (7)

which can be efficiently solved by many existing algorithms
(e.g. OMP [20], LARS [21], ISTA [22] etc.) with a small
modification compared to [13, 14] (by considering Φ = FM
instead of Φ = M ). In practice, due to the large size of
LFs, dictionary-based reconstruction is performed on small
patches obtained by dividing LFs over the spatial domain while
including all angular and color dimensions. Reconstructed
patches are then aggregated to compute the full-size LFs by
averaging pixels on overlapped regions.

3.2. Proposed TV-based algorithm

TV is commonly used to regularize epipolar plane images
(EPIs) for LF denoising, super-resolution or depth estimation
[23, 24]. To our knowledge, there is no published work that
considers the 4D spatio-angular gradient of color LF data as
an extension of TV. Let us define the spatio-angular gradient
operator applied to the LF L at the (discrete) spatio-angular
coordinates p ∈ P = J1, nxK× J1, nyK× J1, νuK× J1, νvK as
the following Jacobian matrix:

(∇L)p =


(∂xLR)p (∂xLG)p (∂xLB)p
(∂yLR)p (∂yLG)p (∂yLB)p
(∂uLR)p (∂uLG)p (∂uLB)p
(∂vLR)p (∂vLG)p (∂vLB)p

 , (8)

where ∂dir denotes the directional derivative with respect to
dir ∈ O = {x, y, u, v}. For simplicity, we use forward differ-

ence to implement ∂dir, but other implementations of ∂dir can
be envisaged. The TV semi-norm of L is then defined as the
mixed L1-Frobenius norm as follows:

TV(L) = ‖∇L‖1,F :=
∑
p∈P

√∑
c∈C

∑
dir∈O

(∂dirLc)2
p . (9)

Considering this regularizer, we seek a solution of the
following minimization problem:

min
L∈R3nν

1

2
‖ΦL− I‖22 + µTV(L) . (10)

A possible choice to solve (Eq. 10) is the proximal gradient
method (also known as forward-backward splitting method [25,
22]) that requires computing proxTV (the proximity operator
of TV). It is however not easy to implement proxTV in the
case of high dimensional signals like color 4D LFs. Here, we
consider instead the full-splitting approach [26] which allows
to design an iterative algorithm using only “simple” operations
as follows:

Choose the parameters γ, τ > 0 and the initial estimates
L(0) ∈ R3nν ,K(0) ∈ R3nν×4×3. Then iterate, for ` ≥ 0

L̃(`+1) = Φ∗(ΦL(`) − I) +∇∗K(`) , (11)

L(`+1) = L(`) − γL̃(`+1) , (12)

K̃(`+1) = ∇
(
2L(`+1) −L(`)

)
, (13)

K(`+1) = proxτ(µ‖·‖1,F)∗
(
K(`) + τK̃(`+1)

)
, (14)

where γ, τ are proximal parameters,K(`) is auxiliary variable,
Φ∗ (resp. ∇∗) denotes the adjoint operator of Φ (resp. ∇) and
proxτ(µ‖·‖1,F)∗ is defined as:(

proxτ(µ‖·‖1,F)∗ [K]
)c,dir

p
=

Kc,dir
p

max
(
1,
‖Kp‖F
µ

) , (15)

for every Kp = {Kc,dir
p }c∈C,dir∈O ∈ R4×3. In practice, we

usually use random initialization for L(0) and set K(0) = 0.
According to [26], the sequence L(`) converges to the solution
of (Eq. 10) if γ( 1

2‖Φ
∗Φ‖ + τ‖∇∗∇‖) < 1. In contrast to

dictionary-based approaches, the proposed algorithm is able
to perform the reconstruction of full-size LFs while avoiding
to divide them into small patches. It allows to obtain recon-
structed LFs with homogeneous regions (i.e. without block
artifacts that may happen when aggregating small patches as
in [14]).

4. EXPERIMENTAL RESULTS
We evaluate the proposed reconstruction algorithm on syn-
thetic LFs from the MIT Media Lab archive [13]. These LFs
contain 5× 5 views rendered from different scenes with vari-
ous aperture sizes (from 20 to 50 mm) and each angular image
has 840 × 593 pixels. The acquisition is performed using
random color masks of [14] where the mask pixel values are
drawn following a uniform distribution on [0, 1]. We assume
that the CFA is the Bayer RGB pattern and no noise is added.
An example of acquisitions is illustrated in Fig. 1c showing
a coded projection composed of red, green and blue pixels.
Its demosaiced version is shown in Fig. 1e which is visually
similar to the captured image obtained by a color-by-color
acquisition scheme (see Fig. 1d). However, it tends to over-



(a) Original LF (b) Dictionary-based reconstruction from Fig.1(c) (c) Dictionary-based reconstruction from Fig.1(e)

(PNSR = 26.29) (PNSR = 16.70)

(d) Bottom right view of (a) (e) TV-based reconstruction from Fig. 1(c) (f) TV-based reconstruction from Fig. 1(e)

(PNSR = 26.28) (PNSR = 25.30)
Fig. 2: Reconstruction results. TV-based reconstruction produces better visual quality than dictionary-based approach for both acquisition scenarios, i.e. incomplete-color coded
projection (sub-figures (b) and (e), scenario (ii) in Table 1) and using pre-demosaicing (sub-figures (c) and (f), scenario (iii) in Table 1). Reconstruction obtained from demosaiced
coded projection are noisy mainly due to color interpolation errors.

TV Dictionary

Light field (i) (ii) (iii) (i)

dragon 26.83 26.28 25.30 26.32
dice 22.70 22.53 21.89 22.76
fish 21.95 21.65 21.27 21.83
messerschmitt 27.08 26.82 26.33 26.73

Table 1: PSNR obtained with the proposed TV-based algorithm on three acquisition
scenarios: (i) color-by-color acquisition (Eq. 3); (ii) sampled-color acquisition (Eq. 5);
(iii) sampled-color acquisition with pre-demosaicing [17], and with dictionary-based
methods [13, 14] on full RBG (color-by-color) acquisition.

smooth color transition and thus fails to recover high frequency
color information.

Here, we focus on single-shot reconstruction (i.e. from one
coded projection). Reconstruction algorithms are applied on
three acquisition scenarios: (i) color-by-color acquisition (Eq.
3); (ii) sampled-color acquisition (Eq. 5); and (iii) sampled-
color acquisition followed by demosaicing [17]. Note that
the first scenario (considered in [12]-[15]) is not appropriate
for standard consumer cameras due to major modifications of
the camera architecture (e.g. using prisms to separate light
colors and using monochrome sensor to capture each color
component) and its compression ratio is three-time-higher
than the second one. The third scenario, that assumes a first
demosaicing of captured incomplete-color samples, introduces
interpolation errors as depicted in Fig. 1e and can bias the
reconstruction results. We compare our algorithm with state-
of-the-art (SOTA) dictionary-based method [13, 14]. For the
latter, we use an overcomplete dictionary with atoms of size
9×9×5×5×3 = 6075 pixels (4D color patch) as in [14].
The dictionary is trained using the K-SVD toolbox [27]. The
sparse code is then computed using LARS algorithm [21] and
the LF is reconstructed by merging all patches with averaged
overlapping pixels.

Fig. 2 shows reconstruction results obtained with the TV-
based and dictionary-based algorithms. We can see that they

manage to recover the LF parallax. However, the dictionary-
based approach often suffers from noisy reconstruction of
patches containing object boundaries (see Fig. 2b and 2c),
while the proposed TV-based method tends to produce results,
with sharper edges and smooth homogeneous regions (see
Fig. 2e and 2f), which are visually more pleasant. For the two
approaches, direct reconstruction from raw sensor measure-
ments (i.e. (ii) incomplete-color coded projections without
prior color demosaicing) yields better results (visual quality
and PSNR) when compared to reconstruction results from de-
mosaiced data (i.e. acquisition scenario (iii) pre-demosaicing
the captured color samples before LF reconstruction). Table 1
reports the best PSNR values obtained by the proposed algo-
rithm with three acquisition scenarios compared to the results
of SOTA method [13, 14] on color-by-color acquisition (i).
Despite higher compression rate, the duo of sampled-color
acquisition scheme (ii) and TV-based reconstruction produces
PSNR scores which are comparable, or even better than sce-
nario (i) combined with SOTA dictionary-based reconstruction.
In terms of processing time, the reconstruction of a 9×9×5×5×3
patch for 10000 iterations takes only 4.5 seconds in average
with our algorithm, while the used implementation of SOTA
algorithms needs more than 7.5 seconds for the same setting.

5. CONCLUSION

We have presented a TV-based algorithm for LF reconstruc-
tion from compressed acquisition measurements using coded
masks and CFAs. Our approach produces competitive results,
both in terms of visual quality and PSNR performance, with
higher compression rate and lower processing time, when
compared to state-of-the-art dictionary-based approaches for
mask-based LF cameras. Moreover, the proposed TV regu-
larizer can be utilized in LF processing applications such as
denoising, impainting or super-resolution.
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