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COLOUR COMPRESSION OF PLENOPTIC POINT CLOUDS USING RAHT-KLT WITH
PRIOR COLOUR CLUSTERING AND SPECULAR/DIFFUSE COMPONENT SEPARATION

Maja Krivokuca and Christine Guillemot

INRIA, Rennes, France

ABSTRACT

The recently introduced plenoptic point cloud representation mar-
ries a 3D point cloud with a light field. Instead of each point be-
ing associated with a single colour value, there can be multiple val-
ues to represent the colour at that point as perceived from differ-
ent viewpoints. This representation was introduced together with a
compression technique for the multi-view colour vectors, which is
an extension of the RAHT method for point cloud attribute coding.
In the current paper, we demonstrate that the best-proposed RAHT
extension, RAHT-KLT, can be improved by performing a prior sub-
division of the plenoptic point cloud into clusters based on similar
colour values, followed by a separation of each cluster into specu-
lar and diffuse components, and coding each component separately
with RAHT-KLT. Our proposed improvements are shown to achieve
better rate-distortion results than the original RAHT-KLT method.

Index Terms— Point clouds, light fields, colour coding, RAHT

1. INTRODUCTION

A 3D point cloud is a set of points in 3-dimensional Euclidean space,
R3, where each point has a spatial position, (z,v, z), and option-
ally other artributes, most typically colour. Recent years have seen
point clouds rapidly becoming the representation of choice for 3D
objects in various application areas. This is largely due to their
flexibility in representing both manifold and non-manifold geom-
etry, and their potential for real-time processing since they do not
require the coding of explicit surface topology. However, the point
positions (geometry) and attributes still require compression in or-
der to be practically usable. The research community and industry’s
interest in point cloud compression can be seen in numerous recent
publications, many of which have been incorporated into the recent
MPEG Point Cloud Compression (MPEG-PCC) standardisation ac-
tivity [1]. The past decade has also seen a revival of research on
light field imaging [2, 3], leading to light field compression becom-
ing an active area of research (e.g., [4]) and standardisation activities
in JPEG and MPEG [5, 6]. This recent popularity of both, 3D point
clouds and light fields, can be attributed to the same enduring goal:
to achieve digital representations of the world around us, which are
ever more realistic and more versatile, but still remaining practical
to use, store, and distribute. Realising the potential of both 3D point
clouds and light fields towards achieving this goal, recent publica-
tions [7, 8, 9, 10] are now considering a new direction: a point cloud
representation of a light field. The plenoptic point cloud [8, 9] is a
natural extension of a 3D point cloud to a Surface Light Field (SLF)
[11]. Such a representation is very promising for applications that re-
quire both, the versatility and convenience of a point cloud, and the
richness of visual information provided by a light field. The work in
[10] also proposes a SLF on a point cloud. As shown in [8, 9, 10],
these representations are amenable to efficient compression, partly

because existing image and point cloud coding techniques can be ex-

tended to them fairly easily. In [8, 9], four extensions of the Region-

Adaptive Hierarchical Transform (RAHT) method [12, 13] (which is

part of the emerging MPEG-PCC standard for attribute coding [1])

are introduced to compress the plenoptic colour vectors. In [10],

light field images are mapped to a point cloud to obtain a SLF, then

the points’ “view maps” are encoded using a B-Spline wavelet basis
and compressed spatially using existing point cloud codecs.

Our focus in the current paper is the compression of the multi-
view colour vectors in plenoptic point clouds [8, 9], assuming a
lossless geometry. We wish to improve upon the rate-distortion (R-
D) performance shown for the best-performing RAHT extension in
[8, 9], RAHT-KLT. To the best of our knowledge, currently there ex-
ist no other compression methods for plenoptic colour vectors that
take into account both the correlations across the camera viewpoints
and the spatial correlations between the 3D points. [10] uses existing
point cloud codecs (e.g., RAHT) after the B-Spline wavelets, while
[11, 14, 15] propose techniques for compressing the SLF “colour
maps” but without any spatial compression. We have identified two
main areas for improvement in RAHT-KLT: (1) The computation
of covariance matrices for the KLT requires averaging the colours
across all the input points, even if these colours are very different; (2)
There is no specific identification, or handling, of regions of higher
specularity, which are the most problematic for compression. There-
fore, in this paper, we propose the following new contributions:

1. The idea that a plenoptic point cloud should first be subdivided
into clusters based on similar colour values. We demonstrate a
simple way to do this clustering using k-means.

2. The idea that each cluster should be further separated into spec-
ular and diffuse components, which are encoded separately by
RAHT-KLT for each cluster. We propose a way to do this sepa-
ration using Robust Principal Component Analysis (RPCA).

3. We demonstrate that the above contributions result in better R-
D performance than when applying RAHT-KLT on the entire
plenoptic point cloud as in [8, 9].

4. We show results for RAHT-KLT on the 12-bit geometry 8iVSLF
point clouds (recently contributed to MPEG as the first plenop-
tic point cloud dataset [7]) for the first time. (In [8, 9], lower-
resolution versions of 8iVSLF were used.)

2. PLENOPTIC POINT CLOUDS AND RAHT-KLT

In 3D point clouds, colour is usually represented as one (R, G, B)
triplet per point. However, for realistic representations of 3D ob-
jects that contain specular surfaces, where the reflected light differs
depending on the viewing angle, a single colour per point is insuffi-
cient. The plenoptic point cloud [8, 9] overcomes this, as it is essen-
tially a point cloud representation of the plenoptic function [16]:

P(x7 y7 Z’ 07 ¢)7 (1)



where P is the radiance of light observed from every possible view-
ing position (x, y, ), with every viewing angle (6, ¢), where 0 is the
azimuth and ¢ the elevation. Since the (z,y, z) points are defined
directly on the surface of a 3D object, the plenoptic point cloud is
equivalent to a SLF [11]. The SLF can be regarded as a function
f(w|p), such that for a point p on the surface, f(w|p) represents
the (R, G, B) value of a light ray starting at p and emanating out-
wards in direction w. We thus end up with a “view map”, or “colour
map”, for each surface point p, which describes the colour of p as
seen from different viewpoints. The SLF, and therefore the plenop-
tic point cloud, can thus be considered generalisations of the lenslet
light field representation, to a 2D manifold embedded in 3D [10].

In the current paper, we consider a sampled version of the
plenoptic point cloud, as in [8, 9]. That is, for each surface point
p; in a finite set of points {p;|i € [1,N,]} in R?, there is a finite
number of viewpoints, N., equal to the number of camera view-
points used to capture the 3D object. Therefore, for a point p; with
spatial coordinates (z;,y;, 2;), the sampled plenoptic point cloud
representation in RGB colour space is:
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where [Rzl, ey BiN ¢] is the plenoptic or multi-view colour vector.
In [8, 9], four extensions of the point cloud attribute coding method,
RAHT [12, 13], were proposed to compress the plenoptic colour vec-
tors. The best-performing extension, RAHT-KLT, begins by comput-
ing an N, X N, covariance matrix I' = {I'(¢, j),1 < ¢,j < N.} for
each colour channel C (Y, U, V channels were used in [8, 9]), where
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Then, the eigenvectors of each I' are computed through a Sin-
gular Value Decomposition (SVD) and are used to perform a
Karhunen-Loeve Transform (KLT) on each colour vector ¢(n) =
[C1(n),Ca(n), ..., Cn, (n)]* for each point n in the point cloud,
for each colour channel C. The N, x 3 matrix of KLT-transformed
vectors for each of the V. viewpoints is then encoded with RAHT.

3. PROPOSED PRE-PROCESSING TO RAHT-KLT

(3) and (4) indicate that the computation of covariance matrices in
RAHT-KLT requires averaging the colours across all N, points in
a plenoptic point cloud. However, in practice, the distribution of
colours across these points is likely to be quite wide, resulting in rel-
atively high standard deviations for their averages. Therefore, the as-
sociated KLT vectors will not fit the input data as well as they could.
For these reasons, we propose that instead of applying RAHT-KLT
on the entire plenoptic point cloud as in [8, 9], this point cloud should
first be clustered into sub-clouds based on similar colour values, then
each sub-cloud encoded separately with RAHT-KLT. The encoding
and decoding could then be performed in parallel across the clusters.

3.1. Clustering based on similar colour values

Our idea for point cloud clustering is not limited to any particular
clustering method. For the work in this paper, we use the well-
known k-means as an example, with a squared Euclidean distance
measure, k-means++ [17] to choose the initial seeds, and a stopping
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Fig. 1: RAHT-KLT applied on an entire plenoptic point cloud, using
different colour spaces for the input plenoptic colour matrix.

criterion of 100 iterations. The value of £ is chosen heuristically, to
correspond roughly to the number of different colours in the input
point cloud. Our input matrix to k-means has N, rows, or “observa-
tions”. For the columns, we rely on the assumption that in practice,
most plenoptic point clouds are likely to represent mostly Lamber-
tian [18] or near-Lambertian surfaces. Therefore, we should be able
to obtain a reasonable approximation of each point’s colour from the
average of its colours across the N. viewpoints. So our input matrix
to k-means has 3 columns, each representing the average colour in
one of the 3 colour channels. To decide which colour space to use,
we tested RAHT-KLT on the plenoptic point clouds (without clus-
tering) from the 8iVSLF static dataset [7], in the RGB, YUV, and
HSV colour spaces. Since our goal is to improve the R-D results
of RAHT-KLT, the choice of colour space depends on which space
RAHT-KLT works best in. Our hypothesis was that the best colour
space would be the one that has the lowest average standard devia-
tion in colour across the IV}, input points (computed as explained in
Table 1’s caption). Table 1 shows these standard deviations, which
all have the same units, as the colour values in each colour space
were scaled to be in [0, 255]. An R-D plot for Thaidancer coded
with RAHT-KLT in different colour spaces is shown in Fig. 1 and is
representative of the results for all the 8iVSLF static point clouds.
Fig. 1 and Table 1 support our hypothesis: RAHT-KLT achieves
the best R-D performance in YUV space, where the average colour
standard deviation across the N, input points is the lowest, and the
worst performance in HSV, where this standard deviation is the high-
est. These observations also confirm that the performance of RAHT-
KLT suffers if the colour variability across the input points is high,
which motivates the need for prior clustering. Fig. 2 shows three
example clusters for Thaidancer. We see that meaningful colour
separations are produced, even when the k-means seeds are chosen
semi-randomly. Moreover, the average standard deviation across the
points in each cluster (see Fig. 2’s caption) is lower than the corre-
sponding standard deviation for the entire point cloud in the same
colour space (Table 1). Section 4 will show that these smaller stan-
dard deviations lead to better R-D performance for RAHT-KLT.

3.2. Separation of specular and diffuse components

The R-D performance of RAHT-KLT suffers if the input point cloud
contains highly specular regions, but the identification of such spec-
ular regions was left for future work in [8, 9]. Here we demonstrate
that Robust Principal Component Analysis (RPCA) [19] can be used
on our proposed clusters, to successfully separate diffuse and spec-



Dataset Name No. of Input Points (V) | No. of Camera Viewpoints (N.) | RGBS.D. | YUV S.D. | HSV S.D.
Thaidancer _viewdep vox12 3,130,215 13 37.59 23.30 56.70
redandblack_viewdep -vox12 2,770,567 12 32.77 19.49 72.08

longdress_viewdep_vox12 3,096,122 12 40.09 23.16 56.04
soldier_viewdep_vox12 4,001,754 13 28.33 11.21 45.62
boxer_viewdep_vox12 3,493,085 13 33.95 14.69 38.06
loot viewdep vox12 3,017,285 13 33.86 15.00 35.70

Table 1: 8iVSLF static point clouds [7], with average colour standard deviations (S. D.) in different colour spaces. Standard deviations are
computed across all NV, points, per camera viewpoint, per colour channel, then the resulting N. standard deviations in each colour channel
are averaged, and finally the average across the 3 colour channels is computed. Lowest S. D. values for each point cloud are shown in bold.

k-means Colour Cluster 2 for Thaidancer
(displayed in RGB, using average R, G, B values across Nc viewpoints)
Ak 2000 - =

2000 s ~ T o
000 PG
1800 . 1800
1600 [ 1600 |- .
1400 P - 1400

1200 [ 1200
>

1000 - 1000 -

#j“ 600 -

ALY L ®
M
%4 e o
200 b PRI Y é}s.. 200 F

800

600 -

400 -

k-means Colour Cluster 3 for Thaidancer
(displayed in RGB, using average R, G, B values across Nc viewpoints)

k-means Colour Cluster 5 for Thaidancer
(displayed in RGB, using average R, G, B values across Nc viewpoints)
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Fig. 2: 3 out of k = 8 clusters obtained from k-means applied on average Y, U, V values. Average YUV standard deviations for each cluster,
computed similarly to Table 1 but using only the points in each cluster instead of IV}, (left to right): 11.55, 11.81, 7.35. Average (over R, G,
and B components) ranks of L (left to right): 6, 2, 6. Average sparsities (% 0 values) of S (left to right): 31.73, 58.72, 26.99.
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Fig. 3: Specular components extracted from Thaidancer Cluster 2 (from Fig. 2), shown for camera viewpoints 1, 2, and 7 (left to right).

ular components. RPCA decomposes a data matrix M € R *"2
into a low-rank approximation matrix Lo and a sparse error matrix
So, such that M can be recovered as M = Lo + So. The inverse
problem, of recovering Lo and So from M, can be formulated as a
Principal Component Pursuit (PCP) optimisation problem:

min  ||L|[« + A||S]|1 subjectto L+S =M, (5)

L,SER™1Xn2

where ||.||« is the nuclear norm, ||.||1 is the ¢1 norm (sum of all
absolute values), and A = 1/,/n(1), where n1) = max (n1,n2)
[19]. To solve (5), we use the Augmented Lagrangian Multiplier
(ALM) method with the Alternating Direction Method of Multipli-
ers (ADMM), similarly to [19]. The ALM method operates on the
augmented Lagrangian,

1
UL S;Y) = [[L|L + AIS[h + ~ <Y, M-L-S8>
Q)
+5IIM — L - S|f3,

where ||.||r is the Frobenius norm, (-, -) is the trace inner product,
Y is a matrix of Lagrangian multipliers, and 7 = 1/u. We use
1 = ninz/4||M]||1, as in [19]. The ADMM iteratively solves a
sub-problem for each matrix, L, S, Y, as described in Algorithm 1 in
[19]. Asin [19], our stopping criterion is || M—L—S||r < §||M]||F,
with § = 10™7. We apply RPCA separately on each point cloud
cluster proposed in Section 3.1. For a cluster with Npcus¢ points
(Npeiust < Np), the M input to RPCA is the Npciyst X N, colour
matrix for each colour channel (R, G, B) separately. We found that

better RAHT-KLT R-D results are achieved when RPCA is applied
in RGB than in YUV colour space. Our motivation for using RPCA
is the assumption that a plenoptic colour matrix should be able to
be decomposed into a low-rank matrix L that describes the diffuse
points, where the colours do not vary (much) across the N, view-
points, and a sparse matrix S (with rank = N.) that contains non-
zero values where the corresponding points’ colours are not fully
described by L. We thus assume that S will allow us to detect the
locations of the specular points. RPCA has been applied previously
for specular/diffuse separation in 2D images (e.g., [20]), but to the
best of our knowledge, never before in plenoptic point clouds.
Experimentally, we have found the above assumptions to be true:
we are indeed able to obtain a low-rank matrix L and a sparse ma-
trix S by applying RPCA on our point cloud clusters. As expected,
rank(L) is higher and the sparsity of S (% of 0 values) is lower for
clusters that contain more specular components, e.g., note the ranks
of L and sparsities of S for the clusters in Fig. 2. Since Clusters
2 and 5 contain regions with more specular highlights (see the full
point cloud in [7]), their S sparsities are lower and L ranks higher
than Cluster 3, which contains more diffuse regions. In order to sepa-
rate the specular points from the diffuse, we need to rely on threshold
values to decide what constitutes a significant enough error in S for
the corresponding point to be considered “specular”. For the work in
this paper, this threshold is the upper quartile (75th percentile) of the
sorted sums of absolute values of S. These sums are computed by
summing the absolute values of the elements across the N, columns
for each row of S. Rows with sums above the threshold represent the



“specular” points. We compute separate S thresholds for the R, G,
and B colour channels, then collect the specular points selected from
each to form the final set of specular points for the cluster. The re-
maining points are said to be “diffuse”. Fig. 3 shows some examples
of specular regions identified in this way, in Cluster 2 of Thaidancer
(from Fig. 2). We see that meaningful segmentations are produced,
as the chosen specular points have noticeably varying colours from
different viewpoints. Section 4 will show the compression benefits
of doing such a separation before applying RAHT-KLT.

4. EXPERIMENTAL RESULTS AND DISCUSSION

We present a representative selection of our R-D results for the
8iVSLF data (Table 1), when RAHT-KLT is applied on the proposed
clusters from Section 3. We assume a lossless geometry, but that
the decoder knows which points belong to which cluster, so that the
correct colours can be assigned to the points. In practice, this could
be achieved by using the same clusters for colour and geometry
coding. This would not require sending any extra signalling bits,
except for the negligible cost of a flag indicating the start of a new
cluster in the bitstream. This would also make the entire encoding
and decoding processes parallelisable. The bitrates presented here,
however, comprise only the colour bits: the RLGR-encoded RAHT
coefficients and the covariance data, as in [8, 9]. The covariance data
includes N.(N. 4 1)/2 elements (32 bits each) per Y/U/V channel,
per sub-cloud. The total bitrates for RAHT-KLT applied on sub-
clouds are the sums of colour bits across all the sub-clouds, divided
by N, and N.. The PSNR values also account for all the sub-clouds.
The same PSNR computation and RGB—YUV conversion is used
as in [8, 9]. The R-D curves are obtained by exponentially varying
the RAHT coefficients’ quantization stepsize from 1.5 to 300.

Fig. 4 demonstrates that applying RAHT-KLT separately on
point cloud clusters containing similar colour values indeed pro-
duces better R-D results than when applying RAHT-KLT on the
entire plenoptic point cloud at once. When these point clouds con-
tain highly specular regions (e.g., Thaidancer), Fig. 4 shows that
it is further beneficial to separate each cluster into specular and
diffuse sub-clouds, then encode each separately with RAHT-KLT.
However, Fig. 4 also shows that when the input point cloud does not
contain highly specular regions (e.g., all the 8iVSLF point clouds
except Thaidancer), there are no obvious additional R-D benefits of
specular/diffuse separation on top of the prior clustering. In fact, we
see that for longdress and redandblack, applying RAHT-KLT sepa-
rately on specular and diffuse components sometimes has a slightly
worse performance than when RAHT-KLT is applied on the same
clusters without specular/diffuse separation. This small difference is
partly due to the overhead of transmitting twice as much covariance
data in the specular/diffuse case, but without much quality gain.
Unfortunately, we currently only have this limited plenoptic point
cloud dataset to test our ideas on. Even in Thaidancer, the specular
regions are very few, so the R-D improvement of specular/diffuse
separation on top of the prior clustering is rather small. In any case,
all of our results indicate that the prior clustering by colour has a
noticeable positive impact on the R-D performance of RAHT-KLT.

5. CONCLUSION

In this paper, we showed that the R-D performance of the RAHT-
KLT coder for plenoptic point clouds [8, 9] suffers if the colour vari-
ation across the input points is high. We demonstrated that better
R-D results can be achieved if the point cloud is first subdivided into
clusters based on similar colour values (e.g., by using k-means) and
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Fig. 4: Representative selection of R-D results for the 8iVSLF static
dataset. S. and D. stand for specular and diffuse, respectively.

RAHT-KLT is applied on each cluster separately. We also proposed
a method to separate the specular and diffuse points in each cluster,
by using RPCA, and showed that for point clouds containing highly
specular regions, applying RAHT-KLT on the specular and diffuse
sub-clouds separately further improves the R-D results.
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