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INTRODUCTION

A 3D point cloud is a set of points in 3-dimensional Euclidean space, R 3 , where each point has a spatial position, (x, y, z), and optionally other attributes, most typically colour. Recent years have seen point clouds rapidly becoming the representation of choice for 3D objects in various application areas. This is largely due to their flexibility in representing both manifold and non-manifold geometry, and their potential for real-time processing since they do not require the coding of explicit surface topology. However, the point positions (geometry) and attributes still require compression in order to be practically usable. The research community and industry's interest in point cloud compression can be seen in numerous recent publications, many of which have been incorporated into the recent MPEG Point Cloud Compression (MPEG-PCC) standardisation activity [START_REF] Schwarz | Emerging MPEG standards for point cloud compression[END_REF]. The past decade has also seen a revival of research on light field imaging [START_REF] Ihrke | Principles of light field imaging: Briefly revisiting 25 years of research[END_REF][START_REF] Wu | Light field image processing: An overview[END_REF], leading to light field compression becoming an active area of research (e.g., [START_REF] Viola | Comparison and evaluation of light field image coding approaches[END_REF]) and standardisation activities in JPEG and MPEG [START_REF] Ebrahimi | JPEG Pleno: Toward an efficient representation of visual reality[END_REF][START_REF] Domański | Immersive visual media -MPEG-I: 360 video, virtual navigation and beyond[END_REF]. This recent popularity of both, 3D point clouds and light fields, can be attributed to the same enduring goal: to achieve digital representations of the world around us, which are ever more realistic and more versatile, but still remaining practical to use, store, and distribute. Realising the potential of both 3D point clouds and light fields towards achieving this goal, recent publications [START_REF] Krivokuća | 8i voxelized surface light field (8iVSLF) dataset[END_REF][START_REF] Sandri | Compression of plenoptic point clouds using the region-adaptive hierarchical transform[END_REF][START_REF] Sandri | Compression of plenoptic point clouds[END_REF][START_REF] Zhang | Surface light field compression using a point cloud codec[END_REF] are now considering a new direction: a point cloud representation of a light field. The plenoptic point cloud [START_REF] Sandri | Compression of plenoptic point clouds using the region-adaptive hierarchical transform[END_REF][START_REF] Sandri | Compression of plenoptic point clouds[END_REF] is a natural extension of a 3D point cloud to a Surface Light Field (SLF) [START_REF] Miller | Lazy decompression of surface light fields for precomputed global illumination[END_REF]. Such a representation is very promising for applications that require both, the versatility and convenience of a point cloud, and the richness of visual information provided by a light field. The work in [START_REF] Zhang | Surface light field compression using a point cloud codec[END_REF] also proposes a SLF on a point cloud. As shown in [START_REF] Sandri | Compression of plenoptic point clouds using the region-adaptive hierarchical transform[END_REF][START_REF] Sandri | Compression of plenoptic point clouds[END_REF][START_REF] Zhang | Surface light field compression using a point cloud codec[END_REF], these representations are amenable to efficient compression, partly because existing image and point cloud coding techniques can be extended to them fairly easily. In [START_REF] Sandri | Compression of plenoptic point clouds using the region-adaptive hierarchical transform[END_REF][START_REF] Sandri | Compression of plenoptic point clouds[END_REF], four extensions of the Region-Adaptive Hierarchical Transform (RAHT) method [START_REF] De Queiroz | Compression of 3d point clouds using a region-adaptive hierarchical transform[END_REF][START_REF] Sandri | Comments on 'Compression of 3D Point Clouds Using a Region-Adaptive Hierarchical Transform[END_REF] (which is part of the emerging MPEG-PCC standard for attribute coding [START_REF] Schwarz | Emerging MPEG standards for point cloud compression[END_REF]) are introduced to compress the plenoptic colour vectors. In [START_REF] Zhang | Surface light field compression using a point cloud codec[END_REF], light field images are mapped to a point cloud to obtain a SLF, then the points' "view maps" are encoded using a B-Spline wavelet basis and compressed spatially using existing point cloud codecs.

Our focus in the current paper is the compression of the multiview colour vectors in plenoptic point clouds [START_REF] Sandri | Compression of plenoptic point clouds using the region-adaptive hierarchical transform[END_REF][START_REF] Sandri | Compression of plenoptic point clouds[END_REF], assuming a lossless geometry. We wish to improve upon the rate-distortion (R-D) performance shown for the best-performing RAHT extension in [START_REF] Sandri | Compression of plenoptic point clouds using the region-adaptive hierarchical transform[END_REF][START_REF] Sandri | Compression of plenoptic point clouds[END_REF], RAHT-KLT. To the best of our knowledge, currently there exist no other compression methods for plenoptic colour vectors that take into account both the correlations across the camera viewpoints and the spatial correlations between the 3D points. [START_REF] Zhang | Surface light field compression using a point cloud codec[END_REF] uses existing point cloud codecs (e.g., RAHT) after the B-Spline wavelets, while [START_REF] Miller | Lazy decompression of surface light fields for precomputed global illumination[END_REF][START_REF] Wood | Surface light fields for 3d photography[END_REF][START_REF] Chen | Light field mapping: Efficient representation and hardware rendering of surface light fields[END_REF] propose techniques for compressing the SLF "colour maps" but without any spatial compression. We have identified two main areas for improvement in RAHT-KLT: [START_REF] Schwarz | Emerging MPEG standards for point cloud compression[END_REF] The computation of covariance matrices for the KLT requires averaging the colours across all the input points, even if these colours are very different; [START_REF] Ihrke | Principles of light field imaging: Briefly revisiting 25 years of research[END_REF] There is no specific identification, or handling, of regions of higher specularity, which are the most problematic for compression. Therefore, in this paper, we propose the following new contributions: 1. The idea that a plenoptic point cloud should first be subdivided into clusters based on similar colour values. We demonstrate a simple way to do this clustering using k-means. 2. The idea that each cluster should be further separated into specular and diffuse components, which are encoded separately by RAHT-KLT for each cluster. We propose a way to do this separation using Robust Principal Component Analysis (RPCA). 3. We demonstrate that the above contributions result in better R-D performance than when applying RAHT-KLT on the entire plenoptic point cloud as in [START_REF] Sandri | Compression of plenoptic point clouds using the region-adaptive hierarchical transform[END_REF][START_REF] Sandri | Compression of plenoptic point clouds[END_REF]. 4. We show results for RAHT-KLT on the 12-bit geometry 8iVSLF point clouds (recently contributed to MPEG as the first plenoptic point cloud dataset [START_REF] Krivokuća | 8i voxelized surface light field (8iVSLF) dataset[END_REF]) for the first time. (In [START_REF] Sandri | Compression of plenoptic point clouds using the region-adaptive hierarchical transform[END_REF][START_REF] Sandri | Compression of plenoptic point clouds[END_REF], lowerresolution versions of 8iVSLF were used.)

PLENOPTIC POINT CLOUDS AND RAHT-KLT

In 3D point clouds, colour is usually represented as one (R, G, B) triplet per point. However, for realistic representations of 3D objects that contain specular surfaces, where the reflected light differs depending on the viewing angle, a single colour per point is insufficient. The plenoptic point cloud [START_REF] Sandri | Compression of plenoptic point clouds using the region-adaptive hierarchical transform[END_REF][START_REF] Sandri | Compression of plenoptic point clouds[END_REF] overcomes this, as it is essentially a point cloud representation of the plenoptic function [START_REF] Adelson | The plenoptic function and the elements of early vision[END_REF]:

P (x, y, z, θ, φ), (1) 
where P is the radiance of light observed from every possible viewing position (x, y, z), with every viewing angle (θ, φ), where θ is the azimuth and φ the elevation. Since the (x, y, z) points are defined directly on the surface of a 3D object, the plenoptic point cloud is equivalent to a SLF [START_REF] Miller | Lazy decompression of surface light fields for precomputed global illumination[END_REF]. The SLF can be regarded as a function f (w|p), such that for a point p on the surface, f (w|p) represents the (R, G, B) value of a light ray starting at p and emanating outwards in direction w. We thus end up with a "view map", or "colour map", for each surface point p, which describes the colour of p as seen from different viewpoints. The SLF, and therefore the plenoptic point cloud, can thus be considered generalisations of the lenslet light field representation, to a 2D manifold embedded in 3D [START_REF] Zhang | Surface light field compression using a point cloud codec[END_REF].

In the current paper, we consider a sampled version of the plenoptic point cloud, as in [START_REF] Sandri | Compression of plenoptic point clouds using the region-adaptive hierarchical transform[END_REF][START_REF] Sandri | Compression of plenoptic point clouds[END_REF]. That is, for each surface point pi in a finite set of points {pi|i ∈ [1, Np]} in R 3 , there is a finite number of viewpoints, Nc, equal to the number of camera viewpoints used to capture the 3D object. Therefore, for a point pi with spatial coordinates (xi, yi, zi), the sampled plenoptic point cloud representation in RGB colour space is:

pi = [xi, yi, zi, R 1 i , G 1 i , B 1 i , . . . , R Nc i , G Nc i , B Nc i ], (2) 
where [R 1 i , . . . , B Nc i ] is the plenoptic or multi-view colour vector. In [START_REF] Sandri | Compression of plenoptic point clouds using the region-adaptive hierarchical transform[END_REF][START_REF] Sandri | Compression of plenoptic point clouds[END_REF], four extensions of the point cloud attribute coding method, RAHT [START_REF] De Queiroz | Compression of 3d point clouds using a region-adaptive hierarchical transform[END_REF][START_REF] Sandri | Comments on 'Compression of 3D Point Clouds Using a Region-Adaptive Hierarchical Transform[END_REF], were proposed to compress the plenoptic colour vectors. The best-performing extension, RAHT-KLT, begins by computing an Nc × Nc covariance matrix Γ = {Γ(i, j), 1 ≤ i, j ≤ Nc} for each colour channel C (Y, U, V channels were used in [START_REF] Sandri | Compression of plenoptic point clouds using the region-adaptive hierarchical transform[END_REF][START_REF] Sandri | Compression of plenoptic point clouds[END_REF]), where

Γ(i, j) = 1 Np -1 Np n=1 (Ci(n) -µ i C )(Cj(n) -µ j C ), (3) 
and

µ i C = 1 Np Np n=1 Ci(n). (4) 
Then, the eigenvectors of each Γ are computed through a Singular Value Decomposition (SVD) and are used to perform a Karhunen-Loève Transform (KLT) on each colour vector c

(n) = [C1(n), C2(n), ..., CN c (n)]
T for each point n in the point cloud, for each colour channel C. The Np × 3 matrix of KLT-transformed vectors for each of the Nc viewpoints is then encoded with RAHT.

PROPOSED PRE-PROCESSING TO RAHT-KLT

(3) and ( 4) indicate that the computation of covariance matrices in RAHT-KLT requires averaging the colours across all Np points in a plenoptic point cloud. However, in practice, the distribution of colours across these points is likely to be quite wide, resulting in relatively high standard deviations for their averages. Therefore, the associated KLT vectors will not fit the input data as well as they could.

For these reasons, we propose that instead of applying RAHT-KLT on the entire plenoptic point cloud as in [START_REF] Sandri | Compression of plenoptic point clouds using the region-adaptive hierarchical transform[END_REF][START_REF] Sandri | Compression of plenoptic point clouds[END_REF], this point cloud should first be clustered into sub-clouds based on similar colour values, then each sub-cloud encoded separately with RAHT-KLT. The encoding and decoding could then be performed in parallel across the clusters.

Clustering based on similar colour values

Our idea for point cloud clustering is not limited to any particular clustering method. For the work in this paper, we use the wellknown k-means as an example, with a squared Euclidean distance measure, k-means++ [START_REF] Arthur | K-means++: The advantages of careful seeding[END_REF] to choose the initial seeds, and a stopping criterion of 100 iterations. The value of k is chosen heuristically, to correspond roughly to the number of different colours in the input point cloud. Our input matrix to k-means has Np rows, or "observations". For the columns, we rely on the assumption that in practice, most plenoptic point clouds are likely to represent mostly Lambertian [START_REF]Lambertian reflectance[END_REF] or near-Lambertian surfaces. Therefore, we should be able to obtain a reasonable approximation of each point's colour from the average of its colours across the Nc viewpoints. So our input matrix to k-means has 3 columns, each representing the average colour in one of the 3 colour channels. To decide which colour space to use, we tested RAHT-KLT on the plenoptic point clouds (without clustering) from the 8iVSLF static dataset [START_REF] Krivokuća | 8i voxelized surface light field (8iVSLF) dataset[END_REF], in the RGB, YUV, and HSV colour spaces. Since our goal is to improve the R-D results of RAHT-KLT, the choice of colour space depends on which space RAHT-KLT works best in. Our hypothesis was that the best colour space would be the one that has the lowest average standard deviation in colour across the Np input points (computed as explained in Table 1's caption). Table 1 shows these standard deviations, which all have the same units, as the colour values in each colour space were scaled to be in [0, 255]. An R-D plot for Thaidancer coded with RAHT-KLT in different colour spaces is shown in Fig. 1 and is representative of the results for all the 8iVSLF static point clouds. Fig. 1 and Table 1 support our hypothesis: RAHT-KLT achieves the best R-D performance in YUV space, where the average colour standard deviation across the Np input points is the lowest, and the worst performance in HSV, where this standard deviation is the highest. These observations also confirm that the performance of RAHT-KLT suffers if the colour variability across the input points is high, which motivates the need for prior clustering. Fig. 2 shows three example clusters for Thaidancer. We see that meaningful colour separations are produced, even when the k-means seeds are chosen semi-randomly. Moreover, the average standard deviation across the points in each cluster (see Fig. 2's caption) is lower than the corresponding standard deviation for the entire point cloud in the same colour space (Table 1). Section 4 will show that these smaller standard deviations lead to better R-D performance for RAHT-KLT.

Separation of specular and diffuse components

The R-D performance of RAHT-KLT suffers if the input point cloud contains highly specular regions, but the identification of such specular regions was left for future work in [START_REF] Sandri | Compression of plenoptic point clouds using the region-adaptive hierarchical transform[END_REF][START_REF] Sandri | Compression of plenoptic point clouds[END_REF]. Here we demonstrate that Robust Principal Component Analysis (RPCA) [START_REF] Candès | Robust principal component analysis?[END_REF] , where n (1) = max (n1, n2) [START_REF] Candès | Robust principal component analysis?[END_REF]. To solve (5), we use the Augmented Lagrangian Multiplier (ALM) method with the Alternating Direction Method of Multipliers (ADMM), similarly to [START_REF] Candès | Robust principal component analysis?[END_REF]. The ALM method operates on the augmented Lagrangian,

(L, S; Y) = ||L|| * + λ||S||1 + 1 τ < Y, M -L -S > + µ 2 ||M -L -S|| 2 F , (6) 
where ||.||F is the Frobenius norm, •, • is the trace inner product, Y is a matrix of Lagrangian multipliers, and τ = 1/µ. We use µ = n1n2/4||M||1, as in [START_REF] Candès | Robust principal component analysis?[END_REF]. The ADMM iteratively solves a sub-problem for each matrix, L, S, Y, as described in Algorithm 1 in [START_REF] Candès | Robust principal component analysis?[END_REF]. As in [START_REF] Candès | Robust principal component analysis?[END_REF], our stopping criterion is ||M-L-S||F ≤ δ||M||F , with δ = 10 -7 . We apply RPCA separately on each point cloud cluster proposed in Section 3.1. For a cluster with N pclust points (N pclust Np), the M input to RPCA is the N pclust × Nc colour matrix for each colour channel (R, G, B) separately. We found that better RAHT-KLT R-D results are achieved when RPCA is applied in RGB than in YUV colour space. Our motivation for using RPCA is the assumption that a plenoptic colour matrix should be able to be decomposed into a low-rank matrix L that describes the diffuse points, where the colours do not vary (much) across the Nc viewpoints, and a sparse matrix S (with rank = Nc) that contains nonzero values where the corresponding points' colours are not fully described by L. We thus assume that S will allow us to detect the locations of the specular points. RPCA has been applied previously for specular/diffuse separation in 2D images (e.g., [START_REF] Guo | Single image highlight removal with a sparse and low-rank reflection model[END_REF]), but to the best of our knowledge, never before in plenoptic point clouds.

Experimentally, we have found the above assumptions to be true: we are indeed able to obtain a low-rank matrix L and a sparse matrix S by applying RPCA on our point cloud clusters. As expected, rank(L) is higher and the sparsity of S (% of 0 values) is lower for clusters that contain more specular components, e.g., note the ranks of L and sparsities of S for the clusters in Fig. 2. Since Clusters 2 and 5 contain regions with more specular highlights (see the full point cloud in [START_REF] Krivokuća | 8i voxelized surface light field (8iVSLF) dataset[END_REF]), their S sparsities are lower and L ranks higher than Cluster 3, which contains more diffuse regions. In order to separate the specular points from the diffuse, we need to rely on threshold values to decide what constitutes a significant enough error in S for the corresponding point to be considered "specular". For the work in this paper, this threshold is the upper quartile (75th percentile) of the sorted sums of absolute values of S. These sums are computed by summing the absolute values of the elements across the Nc columns for each row of S. Rows with sums above the threshold represent the "specular" points. We compute separate S thresholds for the R, G, and B colour channels, then collect the specular points selected from each to form the final set of specular points for the cluster. The remaining points are said to be "diffuse". Fig. 3 shows some examples of specular regions identified in this way, in Cluster 2 of Thaidancer (from Fig. 2). We see that meaningful segmentations are produced, as the chosen specular points have noticeably varying colours from different viewpoints. Section 4 will show the compression benefits of doing such a separation before applying RAHT-KLT.

EXPERIMENTAL RESULTS AND DISCUSSION

We present a representative selection of our R-D results for the 8iVSLF data (Table 1), when RAHT-KLT is applied on the proposed clusters from Section 3. We assume a lossless geometry, but that the decoder knows which points belong to which cluster, so that the correct colours can be assigned to the points. In practice, this could be achieved by using the same clusters for colour and geometry coding. This would not require sending any extra signalling bits, except for the negligible cost of a flag indicating the start of a new cluster in the bitstream. This would also make the entire encoding and decoding processes parallelisable. The bitrates presented here, however, comprise only the colour bits: the RLGR-encoded RAHT coefficients and the covariance data, as in [START_REF] Sandri | Compression of plenoptic point clouds using the region-adaptive hierarchical transform[END_REF][START_REF] Sandri | Compression of plenoptic point clouds[END_REF]. The covariance data includes Nc(Nc + 1)/2 elements (32 bits each) per Y/U/V channel, per sub-cloud. The total bitrates for RAHT-KLT applied on subclouds are the sums of colour bits across all the sub-clouds, divided by Np and Nc. The PSNR values also account for all the sub-clouds. The same PSNR computation and RGB→YUV conversion is used as in [START_REF] Sandri | Compression of plenoptic point clouds using the region-adaptive hierarchical transform[END_REF][START_REF] Sandri | Compression of plenoptic point clouds[END_REF]. The R-D curves are obtained by exponentially varying the RAHT coefficients' quantization stepsize from 1.5 to 300.

Fig. 4 demonstrates that applying RAHT-KLT separately on point cloud clusters containing similar colour values indeed produces better R-D results than when applying RAHT-KLT on the entire plenoptic point cloud at once. When these point clouds contain highly specular regions (e.g., Thaidancer), Fig. 4 shows that it is further beneficial to separate each cluster into specular and diffuse sub-clouds, then encode each separately with RAHT-KLT. However, Fig. 4 also shows that when the input point cloud does not contain highly specular regions (e.g., all the 8iVSLF point clouds except Thaidancer), there are no obvious additional R-D benefits of specular/diffuse separation on top of the prior clustering. In fact, we see that for longdress and redandblack, applying RAHT-KLT separately on specular and diffuse components sometimes has a slightly worse performance than when RAHT-KLT is applied on the same clusters without specular/diffuse separation. This small difference is partly due to the overhead of transmitting twice as much covariance data in the specular/diffuse case, but without much quality gain. Unfortunately, we currently only have this limited plenoptic point cloud dataset to test our ideas on. Even in Thaidancer, the specular regions are very few, so the R-D improvement of specular/diffuse separation on top of the prior clustering is rather small. In any case, all of our results indicate that the prior clustering by colour has a noticeable positive impact on the R-D performance of RAHT-KLT.

CONCLUSION

In this paper, we showed that the R-D performance of the RAHT-KLT coder for plenoptic point clouds [START_REF] Sandri | Compression of plenoptic point clouds using the region-adaptive hierarchical transform[END_REF][START_REF] Sandri | Compression of plenoptic point clouds[END_REF] suffers if the colour variation across the input points is high. We demonstrated that better R-D results can be achieved if the point cloud is first subdivided into clusters based on similar colour values (e.g., by using k-means) and RAHT-KLT is applied on each cluster separately. We also proposed a method to separate the specular and diffuse points in each cluster, by using RPCA, and showed that for point clouds containing highly specular regions, applying RAHT-KLT on the specular and diffuse sub-clouds separately further improves the R-D results.
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Fig. 1 :

 1 Fig.1: RAHT-KLT applied on an entire plenoptic point cloud, using different colour spaces for the input plenoptic colour matrix.

  [START_REF] Krivokuća | 8i voxelized surface light field (8iVSLF) dataset[END_REF], with average colour standard deviations (S. D.) in different colour spaces. Standard deviations are computed across all Np points, per camera viewpoint, per colour channel, then the resulting Nc standard deviations in each colour channel are averaged, and finally the average across the 3 colour channels is computed. Lowest S. D. values for each point cloud are shown in bold.

Fig. 2 :

 2 Fig. 2: 3 out of k = 8 clusters obtained from k-means applied on average Y, U, V values. Average YUV standard deviations for each cluster, computed similarly to Table 1 but using only the points in each cluster instead of Np, (left to right): 11.55, 11.81, 7.35. Average (over R, G, and B components) ranks of L (left to right): 6, 2, 6. Average sparsities (% 0 values) of S (left to right): 31.73, 58.72, 26.99.

Fig. 3 :

 3 Fig. 3: Specular components extracted from Thaidancer Cluster 2 (from Fig. 2), shown for camera viewpoints 1, 2, and 7 (left to right). ular components. RPCA decomposes a data matrix M ∈ R n 1 ×n 2 into a low-rank approximation matrix L0 and a sparse error matrix S0, such that M can be recovered as M = L0 + S0. The inverse problem, of recovering L0 and S0 from M, can be formulated as a Principal Component Pursuit (PCP) optimisation problem: min L,S∈R n 1 ×n 2 ||L|| * + λ||S||1 subject to L + S = M,(5)where ||.|| * is the nuclear norm, ||.||1 is the 1 norm (sum of all absolute values), and λ = 1/ √ n (1) , where n (1) = max (n1, n2)[START_REF] Candès | Robust principal component analysis?[END_REF]. To solve (5), we use the Augmented Lagrangian Multiplier (ALM) method with the Alternating Direction Method of Multipliers (ADMM), similarly to[START_REF] Candès | Robust principal component analysis?[END_REF]. The ALM method operates on the augmented Lagrangian,

Fig. 4 :

 4 Fig. 4: Representative selection of R-D results for the 8iVSLF static dataset. S. and D. stand for specular and diffuse, respectively.

Table 1 :

 1 can be used on our proposed clusters, to successfully separate diffuse and spec-Dataset Name No. of Input Points (Np) No. of Camera Viewpoints (Nc) RGB S. D. YUV S. D. HSV S. D. 8iVSLF static point clouds

	Thaidancer viewdep vox12	3,130,215	13	37.59	23.30	56.70
	redandblack viewdep vox12	2,770,567	12	32.77	19.49	72.08
	longdress viewdep vox12	3,096,122	12	40.09	23.16	56.04
	soldier viewdep vox12	4,001,754	13	28.33	11.21	45.62
	boxer viewdep vox12	3,493,085	13	33.95	14.69	38.06
	loot viewdep vox12	3,017,285	13	33.86	15.00	35.70