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Abstract—Thanks to its graphical notation and simplicity, Unified 

Modeling Language (UML) is a de facto standard and a 

widespread language used in both industry and academia, despite 

the fact that its semantics is still informal. The Interaction 

Overview Diagram (IOD) is introduced in UML2; it allows the 

specification of the behavior in the hierarchical way. In this paper, 

we make a contribution towards a formal dynamic semantics of 

UML2. We start by formalizing the Hierarchical use of IOD. 

Afterward, we complete the mapping of IOD, Sequence Diagrams 

and Timing Diagrams into Hierarchical Colored Petri Nets 

(HCPNs) using the Timed colored Petri Nets (timed CP-net). Our 

approach helps designers to get benefits from abstraction as well as 

refinement at more than two levels of hierarchy which reduces 

verification complexity.   

 

Keywords: IOD, Hierarchical use, formal semantics, HCPNs, 

timed CP-net, verification. 

 

I. INTRODUCTION 

Nowadays, UML is the most adopted semi-formal language 

for system modeling [16]. Despite his widespread use, users do 

agree on the interpretation of only few well-known concepts, 

while precise meaning of many parts of the notation is still 

missing. The migration of UML1 to UML2 brought more 

precision. Nevertheless, latter remains informal and lacks tools 

for automatic analysis and validation. Since a major challenge 

in software development process is to advance error detection to 

early phases of the software life cycle. Many works [7],[8] dealt 

with their formalization, they tried to combine the simple and 

ease of use of UML with the reasoning and analysis capabilities 

of formal methods. 

UML2 introduced a new diagram, which is the IOD1. The 

main purpose of the IOD is to show the interaction of the 

components within the system at high level of abstraction. It is 

derived from UML2 activities that can only have interaction 

elements or interaction uses instead of invocation operations. 

Several reasons explain the need to use IOD in a hierarchical 

way. Firstly, it’s not practical to draw the behavior of very large 

system with a single diagram. Secondly, it can be seen as black 

boxes allowing the modeler to work at different abstraction 

levels and by using different refinement techniques. The goal of 

our work is to provide formalization of hierarchical use of IOD 

semantics into terms of HCPNs, where one of the branches may 

                                                           
1 http://www.uml-diagrams.org/ 

be represented by UML2 Timing Diagram (TD for short), 

UML2 Sequence Diagram (SD for short), or IOD.  

 

 

In order to formalize this hierarchical use, HCPNs appear to be 

suitable for this purpose, due to their structure. Our work is an 

extension of Tebibel’s studies [1],[2],[3] with more than two 

levels of hierarchy. So, we propose to use the timed CP-net in 

our approach, for formalizing TD. The remainder of our paper 

starts with an overview on related work focuses on formal 

verification of UML2 specifications. In Section III, we present 

the formal definition of hierarchical use of IOD. The 

hierarchical mapping of all IOD constructs into HCPNs and 

timed CP-net is presented in section IV and illustrated through a 

case study in section V. Finally, we drawn in section VI, a 

conclusion and announces our future work. 

 

II. RELATED WORK 

In literature, several works dealt with the validation of 

structural [14], as well as behavioral [3], [4], [5], [7], [11], [16] 

,[17] UML diagrams, or even both [6],[15].  

The first attempt to formalize UML2 activities was introduced 

by Störrle in [7], [8], [9], [10], where he used the colored Petri 

nets (CPN).  

In [5], the authors treat with consistency checking of UML 

behavioral diagrams by Petri nets (PN). Although, IOD plays 

key role for the description of components interactions, only 

few work deal with their formalization. In this work, we are 

particularly interested on formalization and verification of the 

hierarchical use of IOD. Indeed, this diagram despite its 

importance, we find Tebibel’s studies [1],[2],[3], Baresi and all 

studies [6] and Andrade and all studies [16],[17].  

In [6], the authors propose a formal verification of timed 

systems by using the MADES modeling notation, borrowing 

many concepts from SysML2 and MARTE3 for describing 

temporal notation. They allow checking temporal properties. 

Also in [16], [17], MARTE and SysML are used for mapping 

IOD and activities into a Time PN with energy constraints. The 

authors tried to present a formal verification of Embedded and 

Real-Time Systems. The first works proposing an approach for 

mapping IOD into HCPNs were [1], [2], [3]. We also find in 

[12], the translation of OCL invariants into CTL formulas in 

                                                           
2 Systems Modeling Language (SysML), Object Management Group, 2007 
3 http://www.omgmarte.org/ 

mailto:aymen.louati@enit.rnu.tn
mailto:chadlia.jerad@enit.rnu.tn
mailto:kamel.barkaoui@cnam.fr


                             The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue: 
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13], 
San Francisco State University, CA, U.S.A., March 2013 
Doi: 10.7321/jscse.v3.n3.31                                      e-ISSN: 2251-7545 
 

  206 

 

order to check the properties within the HCPN. Despite the 

relevance of the results, both works use IOD for modeling 

interactions between components, but not in a hierarchical way. 

That is, the interaction nodes of the main IOD refer only to SD. 

However these nodes may refer to others interaction diagrams 

such as communication diagrams, TD or even others IOD. 

This characteristic improves the expressiveness of the 

model. For filling this lack, we try to propose a new approach 

by extending Tebibel's studies for giving a formal description in 

hierarchical way at more than two levels. So, we give the rules 

and algorithms of translation basis IOD elements with an SD 

and TD models into terms of HCPNs using the timed CP-net for 

mapping TD. So, the models are consistent before and after 

conversion. 

 
 

III.  FORMAL DEFINITION OF IOD, SD AND TD 

 

A. UML2 Interaction Overview Diagrams 

We define in first the IOD. It’s a special type of UML2 

activities where nodes can refer interaction occurrences (or 

interaction use) Fig1.a or interaction elements (or interaction) 

Fig1.b. They mean respectively a reference to existing 

interaction diagrams and display a representation of existing 

interaction diagrams. IOD, SD, and TD are particular cases of 

UML2 interaction. This formalism allows a valuated control 

flow specification in hierarchical way and takes the same UML2 

activity diagram notations (initial, final, join, fork nodes etc.). 

We start by recalling the work of Tebibel and all, where they 

show the interaction between system components using only 

one IOD and a set of SD such as interaction nodes. This 

meaning that, the interaction nodes of the IOD refer only and 

exactly to SD. For this purpose, they proposed the following 

formalizations of IOD and SD. In [3], the authors propose a 

formal definition of IOD by the n-tuple as follows:  

MIOD = (n0, NF, I, B, D, E, Ed) where: 

 n0 is the initial node. 

 NF = (nf1,..,nfn) is a finite set of final nodes. 

 I = (in1,..,inn) is a finite set of inodes. 

 B = (b1,..,bn) is a finite set of join and fork nodes. 

 D = (d1,..,dn) is a finite set of decision and merge nodes. 

 E = (e1,..,en) is a finite set of edges connecting IOD nodes. 

 Ed = {n0} ∪ I ∪ B ∪ D x NF ∪ I ∪ B ∪ D  E is a 
function which connects IOD nodes by edges. 
 

 
Fig1. a. interaction use   b. interaction element 

 

Next, we define the SD. It represents a graphical model 

how brings together various information, messages, and objects 

for describing interactions involved on the sequencing of 

messages exchanged between objects and represented by life 

lines. In [3], we keep the formal definition of this diagram by 

the n-tuple as follows: 

MSD= (Lf, Msg, Beg, End, Ptx, Find, Lost, Alt, Op, Par, Loop, 
In, Out, Str) where: 

 Lf = {lf1,..,lfn} is a finite set of lifelines.  

 Msg = {msg1,..,msgn} is a finite set of exchanged 
messages between lifelines. 

 Beg = {beg1,..,begn} is a finite set of interaction points on 
a lifeline, starting messages. 

 End = {end1,..,endn} is a finite set of interaction points on 
a lifeline, ending asynchronous messages. 

 Ptx = {ptx1,..,ptxn} is a finite set of interaction points on a 
lifeline, ending synchronous messages. 

 Find = {f1,..,fn}⊂Msg is a subset of all founded messages.  

 Lost = {l1,..,ln}⊂Msg is a subset of all lost messages.  

 Alt = {alt1,..,altn} is a finite set of alternative interaction 
nodes.  

 Op = {op1,..,opn} is a finite set of optional interaction 
nodes.  

 Par = {par1,..,parn} is a finite set of parallel interaction 
nodes.  

 Loop = {loop1,..,loopn} is a finite set of loop interaction 
nodes. 

 In: Msg  Beg is a function witch returns the interaction 
point to the output of a message on a lifeline.  

 Out: Msg  End is a function witch returns the 
interaction point at the entrance of a message on a lifeline. 

Since IOD is natively hierarchical, its formalization should 

highlight its hierarchical nature. In order to set our approach 

for mapping them to HCPN, we start by formalizing the 

hierarchical use of IOD in a way similar to HCPN. So, we 

reformulate the formal description of IOD to their hierarchical 

nature. In the rest of the paper, we consider an UML model M 

composed of a set of IOD, a set of SD and set of TD all related 

hierarchically. Thus, M=MIOD MSD MTD where MIOD 

represent a finite set of IOD, MSD represents a finite set of SD, 

and MTD represents a finite set of TD. First, we formally define 

a set of hierarchical IODs by the n-tuple as follows: 

 

MIOD= (SIOD, Ni, NF, I, B, D, IODcomp, E, Ed, Ref) where: 

 SIOD = (IOD0,..,IODi) is a finite set of IOD occurrences. 

 Ni = (ni1,..,nii) is a finite set of all initial nodes. 

 NF = (nf1,..,nfi) is a finite set of all final nodes. 

 I = (in1,..,ini) is a finite set of all interaction nodes. 
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 B = (b1,..,bi) is a finite set of all join and fork nodes. 

 D = (d1,..,di) is a finite set of all decision and merge 
nodes. 

 E = (e1,..,ei) is a finite set of edges connecting IOD 
nodes. 

 IODcomp:SIODpartition(Ni ∪ NF ∪ I ∪ B ∪ D) is a 
function which associates to each IOD its initial node, final 
nodes, its subset of interaction nodes, join and fork nodes, 
and decision and merge nodes in level n, (n>0). 

 Ed ⊂ Ni ∪ I ∪ B ∪ D x NF ∪ I ∪ B ∪ D is an application 
which connects IOD nodes by edges.  

 Ref: IMIOD ∪ MTD ∪ MTD is an injective function 
which associates to each interaction nodes, the 
corresponding MIOD, MTD or MTD such as there exists 
one and only one IOD IODi such that Ref-1 (IODi) = ∅.  

 In the model M, each interaction node references a diagram. 

This can be another IOD, an SD or a TD. In other terms, each 

interaction node should be mapped to exactly an element using 

the function Ref. This function captures the hierarchical 

structure of IOD, by associating to each interaction node its 

referenced diagram. If this last is an IOD, then the function 

IODComp returns the set nodes composing it. Starting from this 

definition, we deduce that Ref is injective. Since the main IOD 

is not referenced by any node, the image and the co-domain of 

Ref are not equal. Ref is also not surjective.  

 In order to redefine the mapping function that transforms an 

UML Model M consisting of IODs, SD and TDs into a HCPN 

MHCPN, we need to define diagrams and interaction nodes 

hierarchy level. In recursive way, we define the hierarchical 

level n, n ∈ N, of an IOD by the definition 3.1:  

 

Definition 3.1: an IOD IODj is hierarchical level n, such that 

n>0, if and only if Ref-1(IODj) belongs to an IOD of 

hierarchical level n-1. The IOD IODj such that Ref-1(IODj) =Ǿ 

is called of Hierarchical level 0. 

 

We derive the hierarchical level of an interaction node, this is 

illustrates by the definition 3.2:  

 

Definition3.2: an interaction node in is of hierarchical level n 

(n∈N), if and only if, it belongs to an IOD of hierarchical level 

n. 

 

 Now, we can define the hierarchical level of SD and TD 

respectively illustrates by the definitions 3.3 and 3.4: 

 

Definition 3.3: an SD SDj is of hierarchical level n, if and only 

if, Ref-1(SDj) belongs to an IOD of hierarchical level n-1. 

Definition 3.4: a TD TDj is of hierarchical level n, if and only if, 

Ref-1(TDj) belongs to an IOD of hierarchical level n-1. 

 

B. Timing diagram (TD) 

 TD is a new formalism provides by UML. It derived from 

techniques known system engineering and interaction diagrams. 

It merges state machine and SD for showing the evolution of the 

state of an object in the time and messages that modify this 

state. The appropriate elements are as follows [18]: Life line: 

represents an individual participant in the interaction; State or 

condition: represents the state of the classifier or attribute, or 

some testable condition; Duration constraint: constrains the time 

that a lifeline can maintain a state; Time constraint: constrains 

the time when the state transition can occur; Event: represents 

the trigger of transition; Message: represents an asynchronous 

message, and a call and a reply. In our work, we used TD when 

an element of IOD branch is reason about time; we will also 

propose its translation basing a timed CP-net. In our approach, 

we propose the formal definition of TD by the n-tuple as 

follows: 

 

MTD= (LF, PT, MSG, STATE, DC, TC, Event) where: 

 LF= (lf1,..,lfn) is a finite set of lifelines. 

 PT= (pt1,..,ptn) is a finite set of interactions points 

between lifelines and asynchronous messages. 

 MSG= (msg1,..,msgn) is a finite set of asynchronous 

messages exchanged between objects. 

 STATE= (st1,..,stn) is a finite set of state objects. 

 DC= (dc1,..,dcn) is a finite set of all duration constraints 

when a lifeline can maintains a state. 

 TC= (tc1,..,tcn) is a finite set of all time where the state 

transition occur. 

 Event= (e1,..,en) is a finite set of all trigger of all 

transitions. 

 

IV.    FROM THE HIERARCHICAL USE OF IOD TO HCPNs 

USING THE TIMED CP-net 

 

In our case, the choice of HCPN is fully justified. We first 

start by introducing their formalization. Nets similar to 

modular programming, the construction of CPNs can be broken 

into smaller pieces by utilizing substitution transitions. 

Conceptually, nets with substitution transitions are nets with 

multiple layers of detail. A simplified net gives a broad 

overview of the system and by substituting transitions of this 

top-level net with sub-nets, more details could be brought into 

the model. HCPN as formalized by Jensen in [13], and 

implemented in CPN Tools, introduce a facility for building 

PN out of sub-nets. Also, it makes possible to edit, simulate 

and analyze PN models. Consequently, the idea behind HCPN 

theory is to allow the construction of a large model by using a 

number of small PNs, which are related to each other in a well-

defined way. We recall the work of [3] where HCPN is defined 

and we propose a formal definition of HCPNs called MHCPN. 

We define this by the n-tuple as follows: 

 

MHCPN= (Pg, P, T, SubTr, A, C, Pre, Post, Pl, Trs, Trsub, TrPg, 

M0) where: 
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 Pg= (pg0, pg1,.., pgi) is a finite set of pages, where pg0 is 

the prime page. 

 P= (p0,p1,..,pi )is a finite set of all places. 

 T= Ts ∪ SubTr = (t0,t1,..,ti) is a finite set of all transitions 

disjoint of P (P∩T=Ǿ) and where: 

- Ts= (ts0,ts1,..,tsi) is a set of all ordinary transitions. 

- SubTr= (subTr0, subTr1,..,subTri) is a set of all 

substitution transitions. 

 A⊂ P x T ∪ T x P is a finite set of all arcs. 

 C= (c1,..,ci) is a set of colors defining tokens. 

 Pre=P x Tpartition(C) is the precondition to the 

transition firing such that Pre (pi,tj)=(c1,c2,c3,..,ck). 

 Post=T x Ppartition(C) is the post condition to the 

transition firing such that Post (ti,pj)=(c1,c2,c3,..,ck). 

 Pl: Pgpartition (P) is a function which yields the set 

of places of a page.  

 Trs: pgpartition(Ts) is a function which yields the set 

of ordinary transitions of a page.   

 Trsub: pgpartition(Subtr) is a function which yields 

the set of substitution transitions of a page.   

 TrPg(Subtr,pg) is a function which associates a page to 

a substitution transition.   

 And M0: PC is the initial marking function, such that 

M0(pi) = Σ ck , k=(1,..,i). 

In [3], the author opted for formalizing IOD using HCPN. 

The choice is obvious, since this last supports perfectly 

hierarchical modeling. In the proposed approach, the IOD is 

mapped to a HCPN prime page and the interaction nodes to 

HCPN pages abstracted by means of substitution transitions.  

When creating a page, it is equipped with input and output 

parameters. The sub-net derived from the SD shows the end of 

the branch of hierarchical IOD and it is connected to these 

parameters. Each of these pages begins and end by transitions 

respectively called In-transition and Out-transition, readers can 

see [3] for more details. Also, we propose a formal definition of 

timed CP-net called MTCPN for transforming TD. We define this 

by the n-tuple as follows: 

 

MTCPN= (P, T, A, Σ, C, G, E, If) where: 

 P= (p0,p1,..,pi) is a finite set of places. 

 T= (t0,t1,..,ti) is a finite set of transitions such that 

(P∩T=∅). 

 A⊂ P x T ∪ T x P is a set of all direct arcs. 

 Σ is a finite set of no-empty color sets, each color set 

is timed. 

 C:P Σ is a color set function that assigns a color set 

to each place, a place p is timed if C(p) is timed. 

 G:TExpGF is a guard function that assigns a guard 

to each transition t. 

 Temp=(temp1,..,tempi) is a finite set of all time 

execution where transition occurs. 

 E:AEXP is an arc expression function that assigns 

an arc expression to each arc a that type[E(a)]=C(p), p 

is timed and connected to arc a. 

 And If:AEXP is an initialization expression to each 

place that Type[If(p)]=C(p), and p is timed. 

In order to formalize the mapping, the authors defined a 

function Ω that transforms a given IOD into a HCPN. This 

function is defined by the equation (1) as follows: 

 

Ω: {n0} ∪ Nf ∪ B ∪ D ∪ I ∪ E partition (Pg ∪ P ∪ Ts ∪ 

SubTr ∪ A ∪ C)                                                                   (1) 

 

The function Ω is no more applicable when the model of a 

system is composed of a set of hierarchical IOD and a set of 

SD. This does not mean that we have to redefine the function 

from scratch, but we should bring some modifications. In the 

following, we will present the new function Ω H that is highly 

inspired from the function Ω. 

In our approach, an IOD is not directly transformed into a 

HCPN prime page. It is only the IOD of hierarchical level 0 

that is transformed. So, all the other IODs, that are of 

hierarchical level n such that n>0, are transformed into HCPN 

pages. All the SDs and TDs of the model is transformed into 

pages of hierarchical level n. Consequently, the function takes 

into account the hierarchical level of the diagram. Formally, we 

define ΩH by the equation (2) as follows: 

 

ΩH: SIOD ∪ Ni ∪ Nf ∪ B ∪ D ∪ I ∪ E partition (Pg ∪ P ∪ Ts 

∪ SubTr ∪ A ∪ C)                                                               (2) 

 

Table I shows the transformation of the hierarchical IOD 

constructs into HCPNs. For each IOD construct, we find the 

equivalent HCPN construct expressed by an intuitive 

transformation on as well as a more formal transformation. 

The table (Table II) yields more details on the IOD edges 

mapping. Each table line shows the transformation of an edge 

set between input and output nodes. The terms Initial, 

interaction and final correspond to such nodes. Transitions 

derived from join and fork nodes or edges are fired with 

respect to pre and post conditions. The considered model is 
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composed of IODs and SDs. The sub-nets mapping the IODs 

are obtained by applying the function ΩH.  

However, the sub-nets mapping the SDs result from the 

application of the function introduced in [3] illustrated by the 

equation (3), also, the sub-nets mapping the TDs that we 

propose in our work is a function illustrated by the equation 

(4):  

 

Φ:Lf ∪ Msg ∪ Beg ∪ End ∪ Ptx ∪ Find ∪ Lost ∪ Alt ∪ Op ∪ 
Par ∪ ∪ Loop  partition (Pg ∪ P ∪ Ts ∪ SubTr ∪ A ∪ C ∪ 
Pr)                                                                                      (3) 
 

 

θ:LF ∪ MSG ∪ STATE ∪ DC ∪ TC ∪ Event  partition (Pg ∪ 
P ∪ T ∪ SubTr ∪ A ∪ Σ ∪ C ∪ G ∪ Temp ∪ E ∪ If)                (4) 

 

The function Φ is kept as it is with no changes, except the 

description of Pl, Trs and Trsub functions update with the 

additional places, transitions and substitution transitions. 

Readers may refer to [2] for further details. We propose to add 

the function θ that illustrates the rule transformation of TD 

constructs on timed CP-net. All translation rules are presented 

on table III. 

Table I.   Mapping of Hierarchical use of IOD 

Rule IOD constructs 
HCPN 

ΩH (translation rules) Intuitive translation 

1 IODn of hierarchical level 0 If IODn and level (IOD) = 0 then Create Page(pg0); prime page 

2 IODn of hierarchical level n, n>0 If IODn and level(IOD)>0 then Create Page(pgi) ∈ Pg; page 

3 
an interaction node in on level n 

(Inline Interaction) 

∀ in ∈ I in level n, Create a substitution transition subtri ∈ Subtr in pgn; 
Create a page pgi ∈ Pgn+1, ΩH(Ref(ini))=subtri; Trpg(subtri,pgi); 

Trsub(ΩH(IODcomp-1(ini))) = Trsub(ΩH(IODcomp-1(ini))) ∪ subtri; 

substitution 
transition 

4 initial node ni level n 
∀ nii ∈ Ni in level n, Create a place pi ∈ pgi; 

Pl(ΩH(IODcomp-1(nii))) = Pl(ΩH(IODcomp-1(nii))) ∪ pi; 
place 

5 final  node nf level n 
∀ nfi ∈ NF in level n, Create a place pi ∈ pgi; 

Pl(ΩH(IODcomp-1(nfi))) = Pl(ΩH(IODcomp-1(nfi))) ∪ pi; 
place 

6 join/fork node jfn 
∀ jfni ∈ B in level n, Create an ordinary transition tsi ∈ pgi; 

Tr_ord(ΩH(IODcomp-1(jfni))) = Tr_ord(ΩH(IODcomp-1(jfni))) ∪ tsi; 
transition 

7 merge/decision mdn 
∀ mdni ∈ D in level n, Create a place pi ∈ pgi; 

Pl(ΩH(IODcomp-1(mdni))) = Pl(ΩH(IODcomp-1(mdni))) ∪ pi; 
place 

8 
connection of the sub-net with 

the in-Transition 
∀ lfi ∈ Lf in level n, Create a place plf ∈ pgi; Pl(ΩH(IODcomp-

1(lfi)))=Pl(ΩH(IODcomp-1(lfi))) ∪ plf; Create an arc a = (plf,tin)∈ A; 
place + arc 

9 
connection of the sub-net with 

the out-Transition 
∀ lfi ∈ Lf in level n, Create a place plf ∈ pgi; Pl(ΩH(IODcomp-

1(mdni)))=Pl(ΩH(IODcomp-1(mdni))) ∪ plf; Create an arc ai = (tout,plf) ∈ A; 
place + arc 

10 IOD edges See Table II 

 
Table II.   Mapping of IOD edges 

Rule 
Source node of the 

transition 

Destination node 

of the transition 
ΩH (Translation rules) HCPN 

10.1 
initial or Merge or  

Decision 

Interaction or 
Join 
Fork 

∀ e= Ed(i,j) such that (i∈ Ni ∪ D) ∧ (j ∈ I ∪ B); Create an arc a = (Ω(i), Ω(j)) ∈ A; Arc 

10.2 
Initial or Merge 

Decision 

Merge or  
Decision 

Final 

∀ e=Ed(i,j) such that (i∈ Ni ∪ D) ∧ (j∈ D ∪ NF) then Create an ordinary transition 
ts ∈ T; Tr(ΩH(Ref(in))) = Pl(ΩH(Ref(in))) ∪ ts; Create an arc ai = (Ω(i),ts) ∈ A; 

Create an arc aj = (ts,Ω(j))∈ A; 

transit
ion + 
2 arcs 

10.3 
Interaction or Join 

Fork 
Merge or Decision 

Final 
∀ e=Ed(i,j) such that (i∈ I ∪ B) ∧ (j ∈ D ∪ NF); Create an arc a = (Ω(i), Ω(j)) ∈ A; Arc 

10.4 
Interaction or Join 

Fork 

Interaction or 
Join 
Fork 

∀ e=Ed(i,j) such that (i∈ I ∪ B) ∧ (j∈ I ∪ B) then create a place p ∈ P  
Pl(ΩH(Ref(in))) = Pl(ΩH(Ref(in))) ∪ p; Create an arc ai = (Ω(i), p) ∈ A; Create an 

arc aj = (p, Ω(j)) ∈ A; 

place+
2 arcs 

 

Table III shows the transformation of the TD constructs into 

timed CP-net. For each TD, we make the equivalent timed CP-

net construct expressed by an intuitive transformation on as 

well as a more formal transformation. We call functions and  

 

 

operations used in [3] to make the translation rules like 

GetMsgOut, GetMsgIn, CreateSeq, GetPointsLF, and 

MsgSynch. Also, we propose others functions for developing 

translations rules of TD constructs like Assign and GetColor. 

Readers can refer this latter reference for more details.  

 
Table III.  Mapping of TD elements 

Rule TD elements 
timed CP-net 

θ (translation rules) elements 

11 TD Fragment Given td ∈ I; Create Page(pgi)∈ Pagen; θ1: IPagen; θ1(td)=pgi; page 

12 Lf Given lfi ∈ Lf; Create Place(pi)∈ P; θ2:LfP; θ2(lf)=pi; place 

13 Pt 
Given pti ∈ Pt and lf ∈ Lf; i=1;for pti ∈ getPointsLf(lf) do createSeq(Tlfi-1,Tlf1,Plf1) end; if 

(msgSynch(getMsg(lf, pti))=true then i:=i+1; end; 

θ3:Pt(P,A,T); θ3(pti)=createSeq(Tlfi,Plfi); 

place +arc + transition 
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14 Msg 
Given m ∈ Msg; lf1,lf2 ∈ Lf and p1,p2∈P;m=getMsgOut(lf1,p1)= getMsgIn(lf2,p2); 

createSeq(θ3(p1),pm,θ3(p2)) that θ3(p1); θ3(p2) ∈ T; θ4:MsgP; θ4(m)=pm; 
place 

15 State 
Given st ∈ State; p ∈ P; Ain ∈ A; getColor(p,c) that c(p) ⊂ E; 

assign(E,Ain,p);θ5:StatePc;θ5(st)=pcolor; 
color in place + arc 

16 Dc 
Given dc ∈ Dc and t ∈ T; t= θ2(getPointsLF(dc)); x=initial time for state ; y=final time for 

state; Timestamp(t, uniform(x,y)); θ6:DcTTEMP;θ6(dc)=ttemp=constraint; 
temp in transition output 

17 Tc 
Given tc ∈ Tc and t ∈ T; t= θ2 (getPointsLF(tc)); 

Timestamp(t, uniform(x,y)); θ7:TcTG;θ7(tc)=tguard=constraint; 
guard time in transition 

18 Event 
Given e ∈ Event; t∈T; Ain∈A; Create place(p) ∈P;t= θ2(getPointsLf(e)); assign(lf,p); 

assign(E,Aout,p);θ8:Event(P,T);θ8(e)=createSeq(p,t); 
place + arc 

 

VI. ILLUSTRATED EXAMPLE 

In this section, we validate our approach through an 

example. The considered system is the Automatic Teller 

Machine (ATM). 

  

A. Case study modeling 

We describe the UML model of the system using IOD. 

Figure2 shows the class diagram of the ATM system. This 

diagram describes the static relations between the classes 

constituting the system, which are System, Client and Bank. 

 

Fig2. UML2 Class Diagram 

In order to describe the system behavior and the 

interactions between the objects, we use the IOD (fig3 shows 

these interactions). Indeed, the client starts by putting his card 

into the ATM. After introducing his Personal Identification 

Number code, the system performs the authentication. When 

it’s valid, the menu is shown. However, in the case of 

authentication failure, the system performs a new 

identification. Since the IOD in figure 3 is the main diagram, 

its hierarchical level is 0. 

In a hierarchical way, we refine the behavior of the 

interaction node Identification (Figure4) through another IOD.  

In this diagram, three interaction nodes, which are Pin Test, 

Eject Card and Welcome Message, are identified. Their 

behavior also is refined, but through SD, as illustrated in 

figure 5. For clarity reasons, the latter figure shows only the 

SD associated to the node Pin Test. 

B. Verification of HCPN based model using timed CP-net 

After applying the rules mentioned above, a HCPN model is 

obtained. The figure 6 shows page of obtained model. Using 

CPN Tools, we can check safety and liveness properties using 

the Standard ML language. Our work is based on the state 

space generation. We recall that the final references diagrams 

should be an SD or a TD. Otherwise, it’s not possible to 

generate a state space. For each given a property, a positive or 

negative answer is obtained. However, our system is 

resettable. Additional properties may be checked based on the 

work proposed in [12]. 

 

VII. CONCLUSION AND FUTURE WORK 

This work aimed at the formalization of the hierarchical use 

of IOD, in order to formally validate the models based on these 

diagrams.  For this purpose, first, we recalled previous work. 

Then, we proposed the IOD formalization in hierarchical way. 

Finally, we created the mapping function that maps a model 

constituted of IOD, SD and TD into a HCPN model using 

timed CP-net. Using CPNTools, the formal verification of 

supported properties can be performed. The obtained results 

are promising. A tool for the automatic generation of our 

approach is currently under development. As future work, we 

propose to apply our approach to an industrial system by using 

specifics properties.  
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Fig3. IOD main (level0) 

 

    Fig4. IOD level1 (Identification Interaction node) 

 

Fig5. Pin Test SD 

 

Fig6. HCPN prime page derived from IOD level 0 


