
HAL Id: hal-02479419
https://hal.science/hal-02479419v1

Submitted on 31 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formalization and Verification of Hierarchical Use of
Interaction Overview Diagrams Using Timing Diagrams

Aymen Louati, Chadlia Jerad, Kamel Barkaoui

To cite this version:
Aymen Louati, Chadlia Jerad, Kamel Barkaoui. Formalization and Verification of Hierarchical Use
of Interaction Overview Diagrams Using Timing Diagrams. International Journal of Soft Computing
and Software Engineering, 2013, 3 (3), pp.205-211. �10.7321/jscse.v3.n3.31�. �hal-02479419�

https://hal.science/hal-02479419v1
https://hal.archives-ouvertes.fr

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],
San Francisco State University, CA, U.S.A., March 2013
Doi: 10.7321/jscse.v3.n3.31 e-ISSN: 2251-7545

 205

Formalization and Verification of Hierarchical Use of

Interaction Overview Diagrams Using Timing

Diagrams

 Aymen Louati1,3
1LR-SITI, ENIT, Université Tunis

El Manar, BP 37, Tunis, Tunisie

aymen.louati@enit.rnu.tn

Chadlia Jerad2

2OASIS, ENIT, Université Tunis

El Manar, BP 37, Tunis, Tunisie

chadlia.jerad@gmail.com

Kamel Barkaoui3

3CEDRIC–CNAM, 292, Rue

Saint-Martin, Paris, France

kamel.barkaoui@cnam.fr

Abstract—Thanks to its graphical notation and simplicity, Unified

Modeling Language (UML) is a de facto standard and a

widespread language used in both industry and academia, despite

the fact that its semantics is still informal. The Interaction

Overview Diagram (IOD) is introduced in UML2; it allows the

specification of the behavior in the hierarchical way. In this paper,

we make a contribution towards a formal dynamic semantics of

UML2. We start by formalizing the Hierarchical use of IOD.

Afterward, we complete the mapping of IOD, Sequence Diagrams

and Timing Diagrams into Hierarchical Colored Petri Nets

(HCPNs) using the Timed colored Petri Nets (timed CP-net). Our

approach helps designers to get benefits from abstraction as well as

refinement at more than two levels of hierarchy which reduces

verification complexity.

Keywords: IOD, Hierarchical use, formal semantics, HCPNs,

timed CP-net, verification.

I. INTRODUCTION

Nowadays, UML is the most adopted semi-formal language

for system modeling [16]. Despite his widespread use, users do

agree on the interpretation of only few well-known concepts,

while precise meaning of many parts of the notation is still

missing. The migration of UML1 to UML2 brought more

precision. Nevertheless, latter remains informal and lacks tools

for automatic analysis and validation. Since a major challenge

in software development process is to advance error detection to

early phases of the software life cycle. Many works [7],[8] dealt

with their formalization, they tried to combine the simple and

ease of use of UML with the reasoning and analysis capabilities

of formal methods.

UML2 introduced a new diagram, which is the IOD1. The

main purpose of the IOD is to show the interaction of the

components within the system at high level of abstraction. It is

derived from UML2 activities that can only have interaction

elements or interaction uses instead of invocation operations.

Several reasons explain the need to use IOD in a hierarchical

way. Firstly, it’s not practical to draw the behavior of very large

system with a single diagram. Secondly, it can be seen as black

boxes allowing the modeler to work at different abstraction

levels and by using different refinement techniques. The goal of

our work is to provide formalization of hierarchical use of IOD

semantics into terms of HCPNs, where one of the branches may

1 http://www.uml-diagrams.org/

be represented by UML2 Timing Diagram (TD for short),

UML2 Sequence Diagram (SD for short), or IOD.

In order to formalize this hierarchical use, HCPNs appear to be

suitable for this purpose, due to their structure. Our work is an

extension of Tebibel’s studies [1],[2],[3] with more than two

levels of hierarchy. So, we propose to use the timed CP-net in

our approach, for formalizing TD. The remainder of our paper

starts with an overview on related work focuses on formal

verification of UML2 specifications. In Section III, we present

the formal definition of hierarchical use of IOD. The

hierarchical mapping of all IOD constructs into HCPNs and

timed CP-net is presented in section IV and illustrated through a

case study in section V. Finally, we drawn in section VI, a

conclusion and announces our future work.

II. RELATED WORK

In literature, several works dealt with the validation of

structural [14], as well as behavioral [3], [4], [5], [7], [11], [16]

,[17] UML diagrams, or even both [6],[15].

The first attempt to formalize UML2 activities was introduced

by Störrle in [7], [8], [9], [10], where he used the colored Petri

nets (CPN).

In [5], the authors treat with consistency checking of UML

behavioral diagrams by Petri nets (PN). Although, IOD plays

key role for the description of components interactions, only

few work deal with their formalization. In this work, we are

particularly interested on formalization and verification of the

hierarchical use of IOD. Indeed, this diagram despite its

importance, we find Tebibel’s studies [1],[2],[3], Baresi and all

studies [6] and Andrade and all studies [16],[17].

In [6], the authors propose a formal verification of timed

systems by using the MADES modeling notation, borrowing

many concepts from SysML2 and MARTE3 for describing

temporal notation. They allow checking temporal properties.

Also in [16], [17], MARTE and SysML are used for mapping

IOD and activities into a Time PN with energy constraints. The

authors tried to present a formal verification of Embedded and

Real-Time Systems. The first works proposing an approach for

mapping IOD into HCPNs were [1], [2], [3]. We also find in

[12], the translation of OCL invariants into CTL formulas in

2 Systems Modeling Language (SysML), Object Management Group, 2007
3 http://www.omgmarte.org/

mailto:aymen.louati@enit.rnu.tn
mailto:chadlia.jerad@enit.rnu.tn
mailto:kamel.barkaoui@cnam.fr

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],
San Francisco State University, CA, U.S.A., March 2013
Doi: 10.7321/jscse.v3.n3.31 e-ISSN: 2251-7545

 206

order to check the properties within the HCPN. Despite the

relevance of the results, both works use IOD for modeling

interactions between components, but not in a hierarchical way.

That is, the interaction nodes of the main IOD refer only to SD.

However these nodes may refer to others interaction diagrams

such as communication diagrams, TD or even others IOD.

This characteristic improves the expressiveness of the

model. For filling this lack, we try to propose a new approach

by extending Tebibel's studies for giving a formal description in

hierarchical way at more than two levels. So, we give the rules

and algorithms of translation basis IOD elements with an SD

and TD models into terms of HCPNs using the timed CP-net for

mapping TD. So, the models are consistent before and after

conversion.

III. FORMAL DEFINITION OF IOD, SD AND TD

A. UML2 Interaction Overview Diagrams

We define in first the IOD. It’s a special type of UML2

activities where nodes can refer interaction occurrences (or

interaction use) Fig1.a or interaction elements (or interaction)

Fig1.b. They mean respectively a reference to existing

interaction diagrams and display a representation of existing

interaction diagrams. IOD, SD, and TD are particular cases of

UML2 interaction. This formalism allows a valuated control

flow specification in hierarchical way and takes the same UML2

activity diagram notations (initial, final, join, fork nodes etc.).

We start by recalling the work of Tebibel and all, where they

show the interaction between system components using only

one IOD and a set of SD such as interaction nodes. This

meaning that, the interaction nodes of the IOD refer only and

exactly to SD. For this purpose, they proposed the following

formalizations of IOD and SD. In [3], the authors propose a

formal definition of IOD by the n-tuple as follows:

MIOD = (n0, NF, I, B, D, E, Ed) where:

 n0 is the initial node.

 NF = (nf1,..,nfn) is a finite set of final nodes.

 I = (in1,..,inn) is a finite set of inodes.

 B = (b1,..,bn) is a finite set of join and fork nodes.

 D = (d1,..,dn) is a finite set of decision and merge nodes.

 E = (e1,..,en) is a finite set of edges connecting IOD nodes.

 Ed = {n0} ∪ I ∪ B ∪ D x NF ∪ I ∪ B ∪ D E is a
function which connects IOD nodes by edges.

Fig1. a. interaction use b. interaction element

Next, we define the SD. It represents a graphical model

how brings together various information, messages, and objects

for describing interactions involved on the sequencing of

messages exchanged between objects and represented by life

lines. In [3], we keep the formal definition of this diagram by

the n-tuple as follows:

MSD= (Lf, Msg, Beg, End, Ptx, Find, Lost, Alt, Op, Par, Loop,
In, Out, Str) where:

 Lf = {lf1,..,lfn} is a finite set of lifelines.

 Msg = {msg1,..,msgn} is a finite set of exchanged
messages between lifelines.

 Beg = {beg1,..,begn} is a finite set of interaction points on
a lifeline, starting messages.

 End = {end1,..,endn} is a finite set of interaction points on
a lifeline, ending asynchronous messages.

 Ptx = {ptx1,..,ptxn} is a finite set of interaction points on a
lifeline, ending synchronous messages.

 Find = {f1,..,fn}⊂Msg is a subset of all founded messages.

 Lost = {l1,..,ln}⊂Msg is a subset of all lost messages.

 Alt = {alt1,..,altn} is a finite set of alternative interaction
nodes.

 Op = {op1,..,opn} is a finite set of optional interaction
nodes.

 Par = {par1,..,parn} is a finite set of parallel interaction
nodes.

 Loop = {loop1,..,loopn} is a finite set of loop interaction
nodes.

 In: Msg Beg is a function witch returns the interaction
point to the output of a message on a lifeline.

 Out: Msg End is a function witch returns the
interaction point at the entrance of a message on a lifeline.

Since IOD is natively hierarchical, its formalization should

highlight its hierarchical nature. In order to set our approach

for mapping them to HCPN, we start by formalizing the

hierarchical use of IOD in a way similar to HCPN. So, we

reformulate the formal description of IOD to their hierarchical

nature. In the rest of the paper, we consider an UML model M

composed of a set of IOD, a set of SD and set of TD all related

hierarchically. Thus, M=MIOD MSD MTD where MIOD

represent a finite set of IOD, MSD represents a finite set of SD,

and MTD represents a finite set of TD. First, we formally define

a set of hierarchical IODs by the n-tuple as follows:

MIOD= (SIOD, Ni, NF, I, B, D, IODcomp, E, Ed, Ref) where:

 SIOD = (IOD0,..,IODi) is a finite set of IOD occurrences.

 Ni = (ni1,..,nii) is a finite set of all initial nodes.

 NF = (nf1,..,nfi) is a finite set of all final nodes.

 I = (in1,..,ini) is a finite set of all interaction nodes.

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],
San Francisco State University, CA, U.S.A., March 2013
Doi: 10.7321/jscse.v3.n3.31 e-ISSN: 2251-7545

 207

 B = (b1,..,bi) is a finite set of all join and fork nodes.

 D = (d1,..,di) is a finite set of all decision and merge
nodes.

 E = (e1,..,ei) is a finite set of edges connecting IOD
nodes.

 IODcomp:SIODpartition(Ni ∪ NF ∪ I ∪ B ∪ D) is a
function which associates to each IOD its initial node, final
nodes, its subset of interaction nodes, join and fork nodes,
and decision and merge nodes in level n, (n>0).

 Ed ⊂ Ni ∪ I ∪ B ∪ D x NF ∪ I ∪ B ∪ D is an application
which connects IOD nodes by edges.

 Ref: IMIOD ∪ MTD ∪ MTD is an injective function
which associates to each interaction nodes, the
corresponding MIOD, MTD or MTD such as there exists
one and only one IOD IODi such that Ref-1 (IODi) = ∅.

 In the model M, each interaction node references a diagram.

This can be another IOD, an SD or a TD. In other terms, each

interaction node should be mapped to exactly an element using

the function Ref. This function captures the hierarchical

structure of IOD, by associating to each interaction node its

referenced diagram. If this last is an IOD, then the function

IODComp returns the set nodes composing it. Starting from this

definition, we deduce that Ref is injective. Since the main IOD

is not referenced by any node, the image and the co-domain of

Ref are not equal. Ref is also not surjective.

 In order to redefine the mapping function that transforms an

UML Model M consisting of IODs, SD and TDs into a HCPN

MHCPN, we need to define diagrams and interaction nodes

hierarchy level. In recursive way, we define the hierarchical

level n, n ∈ N, of an IOD by the definition 3.1:

Definition 3.1: an IOD IODj is hierarchical level n, such that

n>0, if and only if Ref-1(IODj) belongs to an IOD of

hierarchical level n-1. The IOD IODj such that Ref-1(IODj) =Ǿ

is called of Hierarchical level 0.

We derive the hierarchical level of an interaction node, this is

illustrates by the definition 3.2:

Definition3.2: an interaction node in is of hierarchical level n

(n∈N), if and only if, it belongs to an IOD of hierarchical level

n.

 Now, we can define the hierarchical level of SD and TD

respectively illustrates by the definitions 3.3 and 3.4:

Definition 3.3: an SD SDj is of hierarchical level n, if and only

if, Ref-1(SDj) belongs to an IOD of hierarchical level n-1.

Definition 3.4: a TD TDj is of hierarchical level n, if and only if,

Ref-1(TDj) belongs to an IOD of hierarchical level n-1.

B. Timing diagram (TD)

 TD is a new formalism provides by UML. It derived from

techniques known system engineering and interaction diagrams.

It merges state machine and SD for showing the evolution of the

state of an object in the time and messages that modify this

state. The appropriate elements are as follows [18]: Life line:

represents an individual participant in the interaction; State or

condition: represents the state of the classifier or attribute, or

some testable condition; Duration constraint: constrains the time

that a lifeline can maintain a state; Time constraint: constrains

the time when the state transition can occur; Event: represents

the trigger of transition; Message: represents an asynchronous

message, and a call and a reply. In our work, we used TD when

an element of IOD branch is reason about time; we will also

propose its translation basing a timed CP-net. In our approach,

we propose the formal definition of TD by the n-tuple as

follows:

MTD= (LF, PT, MSG, STATE, DC, TC, Event) where:

 LF= (lf1,..,lfn) is a finite set of lifelines.

 PT= (pt1,..,ptn) is a finite set of interactions points

between lifelines and asynchronous messages.

 MSG= (msg1,..,msgn) is a finite set of asynchronous

messages exchanged between objects.

 STATE= (st1,..,stn) is a finite set of state objects.

 DC= (dc1,..,dcn) is a finite set of all duration constraints

when a lifeline can maintains a state.

 TC= (tc1,..,tcn) is a finite set of all time where the state

transition occur.

 Event= (e1,..,en) is a finite set of all trigger of all

transitions.

IV. FROM THE HIERARCHICAL USE OF IOD TO HCPNs

USING THE TIMED CP-net

In our case, the choice of HCPN is fully justified. We first

start by introducing their formalization. Nets similar to

modular programming, the construction of CPNs can be broken

into smaller pieces by utilizing substitution transitions.

Conceptually, nets with substitution transitions are nets with

multiple layers of detail. A simplified net gives a broad

overview of the system and by substituting transitions of this

top-level net with sub-nets, more details could be brought into

the model. HCPN as formalized by Jensen in [13], and

implemented in CPN Tools, introduce a facility for building

PN out of sub-nets. Also, it makes possible to edit, simulate

and analyze PN models. Consequently, the idea behind HCPN

theory is to allow the construction of a large model by using a

number of small PNs, which are related to each other in a well-

defined way. We recall the work of [3] where HCPN is defined

and we propose a formal definition of HCPNs called MHCPN.

We define this by the n-tuple as follows:

MHCPN= (Pg, P, T, SubTr, A, C, Pre, Post, Pl, Trs, Trsub, TrPg,

M0) where:

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],
San Francisco State University, CA, U.S.A., March 2013
Doi: 10.7321/jscse.v3.n3.31 e-ISSN: 2251-7545

 208

 Pg= (pg0, pg1,.., pgi) is a finite set of pages, where pg0 is

the prime page.

 P= (p0,p1,..,pi)is a finite set of all places.

 T= Ts ∪ SubTr = (t0,t1,..,ti) is a finite set of all transitions

disjoint of P (P∩T=Ǿ) and where:

- Ts= (ts0,ts1,..,tsi) is a set of all ordinary transitions.

- SubTr= (subTr0, subTr1,..,subTri) is a set of all

substitution transitions.

 A⊂ P x T ∪ T x P is a finite set of all arcs.

 C= (c1,..,ci) is a set of colors defining tokens.

 Pre=P x Tpartition(C) is the precondition to the

transition firing such that Pre (pi,tj)=(c1,c2,c3,..,ck).

 Post=T x Ppartition(C) is the post condition to the

transition firing such that Post (ti,pj)=(c1,c2,c3,..,ck).

 Pl: Pgpartition (P) is a function which yields the set

of places of a page.

 Trs: pgpartition(Ts) is a function which yields the set

of ordinary transitions of a page.

 Trsub: pgpartition(Subtr) is a function which yields

the set of substitution transitions of a page.

 TrPg(Subtr,pg) is a function which associates a page to

a substitution transition.

 And M0: PC is the initial marking function, such that

M0(pi) = Σ ck , k=(1,..,i).

In [3], the author opted for formalizing IOD using HCPN.

The choice is obvious, since this last supports perfectly

hierarchical modeling. In the proposed approach, the IOD is

mapped to a HCPN prime page and the interaction nodes to

HCPN pages abstracted by means of substitution transitions.

When creating a page, it is equipped with input and output

parameters. The sub-net derived from the SD shows the end of

the branch of hierarchical IOD and it is connected to these

parameters. Each of these pages begins and end by transitions

respectively called In-transition and Out-transition, readers can

see [3] for more details. Also, we propose a formal definition of

timed CP-net called MTCPN for transforming TD. We define this

by the n-tuple as follows:

MTCPN= (P, T, A, Σ, C, G, E, If) where:

 P= (p0,p1,..,pi) is a finite set of places.

 T= (t0,t1,..,ti) is a finite set of transitions such that

(P∩T=∅).

 A⊂ P x T ∪ T x P is a set of all direct arcs.

 Σ is a finite set of no-empty color sets, each color set

is timed.

 C:P Σ is a color set function that assigns a color set

to each place, a place p is timed if C(p) is timed.

 G:TExpGF is a guard function that assigns a guard

to each transition t.

 Temp=(temp1,..,tempi) is a finite set of all time

execution where transition occurs.

 E:AEXP is an arc expression function that assigns

an arc expression to each arc a that type[E(a)]=C(p), p

is timed and connected to arc a.

 And If:AEXP is an initialization expression to each

place that Type[If(p)]=C(p), and p is timed.

In order to formalize the mapping, the authors defined a

function Ω that transforms a given IOD into a HCPN. This

function is defined by the equation (1) as follows:

Ω: {n0} ∪ Nf ∪ B ∪ D ∪ I ∪ E partition (Pg ∪ P ∪ Ts ∪

SubTr ∪ A ∪ C) (1)

The function Ω is no more applicable when the model of a

system is composed of a set of hierarchical IOD and a set of

SD. This does not mean that we have to redefine the function

from scratch, but we should bring some modifications. In the

following, we will present the new function Ω H that is highly

inspired from the function Ω.

In our approach, an IOD is not directly transformed into a

HCPN prime page. It is only the IOD of hierarchical level 0

that is transformed. So, all the other IODs, that are of

hierarchical level n such that n>0, are transformed into HCPN

pages. All the SDs and TDs of the model is transformed into

pages of hierarchical level n. Consequently, the function takes

into account the hierarchical level of the diagram. Formally, we

define ΩH by the equation (2) as follows:

ΩH: SIOD ∪ Ni ∪ Nf ∪ B ∪ D ∪ I ∪ E partition (Pg ∪ P ∪ Ts

∪ SubTr ∪ A ∪ C) (2)

Table I shows the transformation of the hierarchical IOD

constructs into HCPNs. For each IOD construct, we find the

equivalent HCPN construct expressed by an intuitive

transformation on as well as a more formal transformation.

The table (Table II) yields more details on the IOD edges

mapping. Each table line shows the transformation of an edge

set between input and output nodes. The terms Initial,

interaction and final correspond to such nodes. Transitions

derived from join and fork nodes or edges are fired with

respect to pre and post conditions. The considered model is

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],
San Francisco State University, CA, U.S.A., March 2013
Doi: 10.7321/jscse.v3.n3.31 e-ISSN: 2251-7545

 209

composed of IODs and SDs. The sub-nets mapping the IODs

are obtained by applying the function ΩH.

However, the sub-nets mapping the SDs result from the

application of the function introduced in [3] illustrated by the

equation (3), also, the sub-nets mapping the TDs that we

propose in our work is a function illustrated by the equation

(4):

Φ:Lf ∪ Msg ∪ Beg ∪ End ∪ Ptx ∪ Find ∪ Lost ∪ Alt ∪ Op ∪
Par ∪ ∪ Loop partition (Pg ∪ P ∪ Ts ∪ SubTr ∪ A ∪ C ∪
Pr) (3)

θ:LF ∪ MSG ∪ STATE ∪ DC ∪ TC ∪ Event partition (Pg ∪
P ∪ T ∪ SubTr ∪ A ∪ Σ ∪ C ∪ G ∪ Temp ∪ E ∪ If) (4)

The function Φ is kept as it is with no changes, except the

description of Pl, Trs and Trsub functions update with the

additional places, transitions and substitution transitions.

Readers may refer to [2] for further details. We propose to add

the function θ that illustrates the rule transformation of TD

constructs on timed CP-net. All translation rules are presented

on table III.

Table I. Mapping of Hierarchical use of IOD

Rule IOD constructs
HCPN

ΩH (translation rules) Intuitive translation

1 IODn of hierarchical level 0 If IODn and level (IOD) = 0 then Create Page(pg0); prime page

2 IODn of hierarchical level n, n>0 If IODn and level(IOD)>0 then Create Page(pgi) ∈ Pg; page

3
an interaction node in on level n

(Inline Interaction)

∀ in ∈ I in level n, Create a substitution transition subtri ∈ Subtr in pgn;
Create a page pgi ∈ Pgn+1, ΩH(Ref(ini))=subtri; Trpg(subtri,pgi);

Trsub(ΩH(IODcomp-1(ini))) = Trsub(ΩH(IODcomp-1(ini))) ∪ subtri;

substitution
transition

4 initial node ni level n
∀ nii ∈ Ni in level n, Create a place pi ∈ pgi;

Pl(ΩH(IODcomp-1(nii))) = Pl(ΩH(IODcomp-1(nii))) ∪ pi;
place

5 final node nf level n
∀ nfi ∈ NF in level n, Create a place pi ∈ pgi;

Pl(ΩH(IODcomp-1(nfi))) = Pl(ΩH(IODcomp-1(nfi))) ∪ pi;
place

6 join/fork node jfn
∀ jfni ∈ B in level n, Create an ordinary transition tsi ∈ pgi;

Tr_ord(ΩH(IODcomp-1(jfni))) = Tr_ord(ΩH(IODcomp-1(jfni))) ∪ tsi;
transition

7 merge/decision mdn
∀ mdni ∈ D in level n, Create a place pi ∈ pgi;

Pl(ΩH(IODcomp-1(mdni))) = Pl(ΩH(IODcomp-1(mdni))) ∪ pi;
place

8
connection of the sub-net with

the in-Transition
∀ lfi ∈ Lf in level n, Create a place plf ∈ pgi; Pl(ΩH(IODcomp-

1(lfi)))=Pl(ΩH(IODcomp-1(lfi))) ∪ plf; Create an arc a = (plf,tin)∈ A;
place + arc

9
connection of the sub-net with

the out-Transition
∀ lfi ∈ Lf in level n, Create a place plf ∈ pgi; Pl(ΩH(IODcomp-

1(mdni)))=Pl(ΩH(IODcomp-1(mdni))) ∪ plf; Create an arc ai = (tout,plf) ∈ A;
place + arc

10 IOD edges See Table II

Table II. Mapping of IOD edges

Rule
Source node of the

transition

Destination node

of the transition
ΩH (Translation rules) HCPN

10.1
initial or Merge or

Decision

Interaction or
Join
Fork

∀ e= Ed(i,j) such that (i∈ Ni ∪ D) ∧ (j ∈ I ∪ B); Create an arc a = (Ω(i), Ω(j)) ∈ A; Arc

10.2
Initial or Merge

Decision

Merge or
Decision

Final

∀ e=Ed(i,j) such that (i∈ Ni ∪ D) ∧ (j∈ D ∪ NF) then Create an ordinary transition
ts ∈ T; Tr(ΩH(Ref(in))) = Pl(ΩH(Ref(in))) ∪ ts; Create an arc ai = (Ω(i),ts) ∈ A;

Create an arc aj = (ts,Ω(j))∈ A;

transit
ion +
2 arcs

10.3
Interaction or Join

Fork
Merge or Decision

Final
∀ e=Ed(i,j) such that (i∈ I ∪ B) ∧ (j ∈ D ∪ NF); Create an arc a = (Ω(i), Ω(j)) ∈ A; Arc

10.4
Interaction or Join

Fork

Interaction or
Join
Fork

∀ e=Ed(i,j) such that (i∈ I ∪ B) ∧ (j∈ I ∪ B) then create a place p ∈ P
Pl(ΩH(Ref(in))) = Pl(ΩH(Ref(in))) ∪ p; Create an arc ai = (Ω(i), p) ∈ A; Create an

arc aj = (p, Ω(j)) ∈ A;

place+
2 arcs

Table III shows the transformation of the TD constructs into

timed CP-net. For each TD, we make the equivalent timed CP-

net construct expressed by an intuitive transformation on as

well as a more formal transformation. We call functions and

operations used in [3] to make the translation rules like

GetMsgOut, GetMsgIn, CreateSeq, GetPointsLF, and

MsgSynch. Also, we propose others functions for developing

translations rules of TD constructs like Assign and GetColor.

Readers can refer this latter reference for more details.

Table III. Mapping of TD elements

Rule TD elements
timed CP-net

θ (translation rules) elements

11 TD Fragment Given td ∈ I; Create Page(pgi)∈ Pagen; θ1: IPagen; θ1(td)=pgi; page

12 Lf Given lfi ∈ Lf; Create Place(pi)∈ P; θ2:LfP; θ2(lf)=pi; place

13 Pt
Given pti ∈ Pt and lf ∈ Lf; i=1;for pti ∈ getPointsLf(lf) do createSeq(Tlfi-1,Tlf1,Plf1) end; if

(msgSynch(getMsg(lf, pti))=true then i:=i+1; end;

θ3:Pt(P,A,T); θ3(pti)=createSeq(Tlfi,Plfi);

place +arc + transition

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],
San Francisco State University, CA, U.S.A., March 2013
Doi: 10.7321/jscse.v3.n3.31 e-ISSN: 2251-7545

 210

14 Msg
Given m ∈ Msg; lf1,lf2 ∈ Lf and p1,p2∈P;m=getMsgOut(lf1,p1)= getMsgIn(lf2,p2);

createSeq(θ3(p1),pm,θ3(p2)) that θ3(p1); θ3(p2) ∈ T; θ4:MsgP; θ4(m)=pm;
place

15 State
Given st ∈ State; p ∈ P; Ain ∈ A; getColor(p,c) that c(p) ⊂ E;

assign(E,Ain,p);θ5:StatePc;θ5(st)=pcolor;
color in place + arc

16 Dc
Given dc ∈ Dc and t ∈ T; t= θ2(getPointsLF(dc)); x=initial time for state ; y=final time for

state; Timestamp(t, uniform(x,y)); θ6:DcTTEMP;θ6(dc)=ttemp=constraint;
temp in transition output

17 Tc
Given tc ∈ Tc and t ∈ T; t= θ2 (getPointsLF(tc));

Timestamp(t, uniform(x,y)); θ7:TcTG;θ7(tc)=tguard=constraint;
guard time in transition

18 Event
Given e ∈ Event; t∈T; Ain∈A; Create place(p) ∈P;t= θ2(getPointsLf(e)); assign(lf,p);

assign(E,Aout,p);θ8:Event(P,T);θ8(e)=createSeq(p,t);
place + arc

VI. ILLUSTRATED EXAMPLE

In this section, we validate our approach through an

example. The considered system is the Automatic Teller

Machine (ATM).

A. Case study modeling

We describe the UML model of the system using IOD.

Figure2 shows the class diagram of the ATM system. This

diagram describes the static relations between the classes

constituting the system, which are System, Client and Bank.

Fig2. UML2 Class Diagram

In order to describe the system behavior and the

interactions between the objects, we use the IOD (fig3 shows

these interactions). Indeed, the client starts by putting his card

into the ATM. After introducing his Personal Identification

Number code, the system performs the authentication. When

it’s valid, the menu is shown. However, in the case of

authentication failure, the system performs a new

identification. Since the IOD in figure 3 is the main diagram,

its hierarchical level is 0.

In a hierarchical way, we refine the behavior of the

interaction node Identification (Figure4) through another IOD.

In this diagram, three interaction nodes, which are Pin Test,

Eject Card and Welcome Message, are identified. Their

behavior also is refined, but through SD, as illustrated in

figure 5. For clarity reasons, the latter figure shows only the

SD associated to the node Pin Test.

B. Verification of HCPN based model using timed CP-net

After applying the rules mentioned above, a HCPN model is

obtained. The figure 6 shows page of obtained model. Using

CPN Tools, we can check safety and liveness properties using

the Standard ML language. Our work is based on the state

space generation. We recall that the final references diagrams

should be an SD or a TD. Otherwise, it’s not possible to

generate a state space. For each given a property, a positive or

negative answer is obtained. However, our system is

resettable. Additional properties may be checked based on the

work proposed in [12].

VII. CONCLUSION AND FUTURE WORK

This work aimed at the formalization of the hierarchical use

of IOD, in order to formally validate the models based on these

diagrams. For this purpose, first, we recalled previous work.

Then, we proposed the IOD formalization in hierarchical way.

Finally, we created the mapping function that maps a model

constituted of IOD, SD and TD into a HCPN model using

timed CP-net. Using CPNTools, the formal verification of

supported properties can be performed. The obtained results

are promising. A tool for the automatic generation of our

approach is currently under development. As future work, we

propose to apply our approach to an industrial system by using

specifics properties.

REFERENCES

[1] T. Tebibel, “An Object-Oriented Approach to Formally Analyze the

UML 2.0 Activity Partitions”, Information and Software Technology,
Volume 49, pages 999-1016, September 2007.

[2] M. Bennnama, and T. Bouabana-Tebibel, “Formalisation des

diagrammes globaux d'interaction, Master's thesis, National Institute of
Computer Science, Algeria, 2008.

[3] T. Tebibel, “semantics of the interaction overview diagram”, In Proc of

the10th IEEE international conference on Information Reuse &
Integration, pages 287-283, Las Vegas, Nevada, USA, 2009.

[4] S. Boufenara, K. Barkaoui, F. Belala, and H. Boucheneb, “On

Formalizing UML2.0 Activities Using Transactional Petri Nets: Case
Studies”, 5th International Workshop on Verification and Evaluation of

Computer and Communication Systems, (VECoS 2011), Tunisia, 2011.

[5] T. Mieg, and L.M. Hillah,“UML Behavioral Consistency Checking
Using Instantiable Petri Nets”, Innovations in systems and software

engineering, Volume 4, Number 3, pages 293-300, 2008.

[6] L. Baresi, A. Morzenti, A. Motta, and M. Rossi, “From Interaction
Overview Diagrams to Temporal Logic”, Lecture Notes in Computer

Science, Volume 6627/2011, pages 90-104, 2011.

[7] H. Störrle, “Semantics and Verification of Data Flow in UML2.0
Activities, In Proc of the 2004 IEEE Ws on Visual Languages and

Formal Methods (VLFM'04), pages 38-52, 2004.

[8] H. Störrle, “Semantics of Control-Flow in UML2 Activities”, In Proc
of the 2004 IEEE Symposium on Visual Languages, Human Centric

Computing, pages 235-242, 2004.

[9] H. Störrle, “Semantics of Expansion Nodes in UML2 Activities”, In
Proc.2nd Nordic Workshop on UML, Modeling, Methods and Tools

(NWUML'04), 2004.

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],
San Francisco State University, CA, U.S.A., March 2013
Doi: 10.7321/jscse.v3.n3.31 e-ISSN: 2251-7545

 206

[10] H.Störrle, “Semantics of Exceptions in UML2 Activities”, Journal of
Software and Systems Modeling, 2004.

[11] J. Campos, and J. Merseguer, “On the Integration of UML and Petri

Nets in Software Development”, 27th ICATPN, Petri Nets and other
models of concurrency, Springer-Verlag, volume 4024, pages 19-36, ,

Berlin Heidelberg, 2006.

[12] T. Tebibel, “Formal validation with OCL”, in Proc of IEEE
International Conference on Systems”, Man and Cybernetics, Taipei,

Taiwan, October 2006.

[13] K. Jensen, “Colored Petri Nets. Basic Concepts, Analysis Methods and
Practical Use”, Volume 2, Springer-Verlag, 1995.

[14] D. Berardi, D. Calvanese, and D. De Giacomo, “Reasoning on UML

class diagrams”, Artificial Intelligence, Volume 168, Issues 1-2, pages
70-118, 2005.

[15] H. Hansen, J. Ketema, B. Luttik, M. Mousavi, and J. Van de Pol,

“Towards model checking executable uml specifications in mcrl2”,
Innovations in Systems and Software Engineering, Volume 6, pages

83-90, 2010.

[16] E. Andrade, P. Maciel, G. Callou, B. Nogueira, “Mapping UML
Interaction Overview Diagram to Time Petri Net for Analysis and

Verification of Embedded Real-Time Systems with Energy

Constraints”, in Proc of the IEEE International Conference,
Computational Intelligence for Modeling Control and Automation,

pages 615-620, 2008.

[17] E. Andrade, P. Maciel, G. Callou, B. Nogueira, “A methodology for
Mapping SysML Activity Diagram to Time Petri Net for Requirement

Validation of Embedded Real-Time Systems with Energy Constraints”,

in Proc of the IEEE International Conference of Digital society, pages
615-620, 2009.

[18] C. Kangle, Y. Zongyuan, X. Jinkui, and W. Kaiyu, “Unifying

Modeling and Simulation Based on UML Timing Diagram and
UPPAAL”, in Proc of the IEEE International Conference on Computer

Modeling and Simulation, pages 615-620, 2010.

Fig3. IOD main (level0)

 Fig4. IOD level1 (Identification Interaction node)

Fig5. Pin Test SD

Fig6. HCPN prime page derived from IOD level 0

