
HAL Id: hal-02479217
https://hal.science/hal-02479217

Submitted on 14 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

High-Precision Sound Analysis to Find Safety and
Cybersecurity Defects

Daniel Kästner, Laurent Mauborgne, Stephan Wilhelm, Christian Ferdinand

To cite this version:
Daniel Kästner, Laurent Mauborgne, Stephan Wilhelm, Christian Ferdinand. High-Precision Sound
Analysis to Find Safety and Cybersecurity Defects. 10th European Congress on Embedded Real Time
Software and Systems (ERTS 2020), Jan 2020, TOULOUSE, France. �hal-02479217�

https://hal.science/hal-02479217
https://hal.archives-ouvertes.fr

High-Precision Sound Analysis to Find
Safety and Cybersecurity Defects

Daniel Kästner, Laurent Mauborgne, Stephan Wilhelm, Christian Ferdinand
AbsInt Angewandte Informatik GmbH. Science Park 1, D-66123 Saarbrücken, Germany

Abstract
In recent years, security concerns have become more
and more relevant for safety-critical systems. Many cy-
bersecurity vulnerabilities are caused by runtime errors,
hence sound static runtime error analysis contributes to
meeting both safety and security goals. In addition, for
cybersecurity goals, often sophisticated data and con-
trol flow analyses are needed, e.g., to track the effects
of corrupted values, or determine dependence on po-
tentially corrupted inputs. A sound analysis can guar-
antee that neither control flow paths nor read or write
accesses are missed, even in case of data or function
pointer accesses. To be feasible for industrial use, a
static analyzer must be precise, i.e., produce few false
alarms, and it must be user-configurable to allow ana-
lyzing specific data and control flow properties. It must
also support efficient alarm investigation to minimize
the manual effort needed to review the findings of the
analyzer. In this article we give an overview of novel
extensions of the sound static analyzer Astrée to mini-
mize the false alarm rate, and to support advanced data
and control flow analysis by taint analysis and analysis-
enhanced program slicing. We describe an application
of Astrée’s taint analysis framework to detect Spectre
v1/1.1/SplitSpectre vulnerabilities. Astrée’s program
slicer can also be applied for alarm slicing, which can
significantly reduce the manual effort of reviewing the
analyzer findings. Practical experience is reported on
industrial avionic and automotive applications.

1 Introduction
A failure of a safety-critical system may cause high
costs or even endanger human beings. With the growing
size of software-implemented functionality, preventing
software-induced system failures becomes an increas-
ingly important task. It becomes paramount when fail-
operational behavior is required, which is the case for
systems providing highly automated driving capability.

One particularly dangerous class of errors are run-
time errors due to undefined or unspecified behaviors of
the programming language used. Examples are faulty
pointer manipulations, numerical errors such as arith-
metic overflows and division by zero, data races, and
synchronization errors in concurrent software. Such er-

rors can cause software crashes, invalidate separation
mechanisms in mixed-criticality software, and are a fre-
quent cause of errors in concurrent and multi-core appli-
cations. At the same time, these defects also constitute
security vulnerabilities, and have been at the root of a
multitude of cybersecurity attacks, in particular buffer
overflows, dangling pointers, or race conditions [5].

In the past, security properties have mostly been rele-
vant for non-embedded and/or non-safety-critical pro-
grams. Due to increasing connectivity requirements
(cloud-based services, car-to-car communication, over-
the-air updates, etc.), more and more security issues are
rising in safety-critical software as well. Security ex-
ploits like the Jeep Cherokee hacks [17] which affect
the safety of the system are becoming more and more
frequent. Because of the increasingly pervasive moni-
toring of personal data including location data or health
information, confidentiality breaches in embedded sys-
tems like mobile phones, automobiles, or airplanes have
to be considered increasingly critical. Furthermore, data
leakage might also have impacts on safety, e.g., if ad-
ministrator or maintenance passwords are leaked.

Static code analysis has evolved to be a standard tech-
nique in the development process of safety-critical soft-
ware. It can be applied to show compliance to coding
guidelines, and to demonstrate the absence of critical
programming errors, including runtime errors and data
races. Abstract interpretation is a formal methodology
for semantics-based static program analysis [2] which
can be applied to demonstrate the absence of code de-
fects due to undefined/unspecified behaviors, including
runtime errors and data races. Abstract interpretation
supports formal soundness proofs, i.e., it can be proven
that – from the class of errors under analysis – no error
is missed. Sound static analyzers provide full control
and data coverage and allow conclusions to be drawn
that are valid for all program runs with all inputs.

Safety-critical software is developed according to
strict guidelines which effectively reduce the relevant
subset of the programming language used and improve
software verifiability. As an example dynamic memory
allocation and recursion often are forbidden or used in
a very limited way. By using formal techniques like ab-
stract interpretation on such software, proving the ab-
sence of programming defects like runtime errors be-

1

comes possible with very low false alarm rates: then, the
corresponding safety risks and security vulnerabilities
have been effectively eliminated. In addition, for cyber-
security – and for data safety [15] –, advanced data and
control flow analyses are needed, e.g., to determine data
and control coupling, to track the effects of corrupted
values, or to determine dependence on potentially cor-
rupted inputs. Here, a sound analysis can guarantee that
neither control flow paths nor read or write accesses are
missed, even when functions are called indirectly via
function pointers, and data is accessed via pointers.

While soundness means that false negatives can be
ruled out, the analyzer may still report false alarms. In
general, if the false alarm rate of a (sound or unsound)
analyzer is too high, the effort to review and classify the
findings may be economically unsustainable. In this ar-
ticle we focus on the sound static analyzer Astrée for
which the zero alarm goal has been an important de-
sign criterion [1, 8, 9] right from the start. The key idea
is to be parameterizable with respect to its abstract do-
mains: new domains can be added, and there is a global
hierarchy in the implementation, which determines what
kind of information each domain may access, and what
level of abstraction they can use. As an example, we
will give an overview of its most recent abstract domain,
designed to automatically detects finite state machines
and their state variables, which allows to disambiguate
the different states and transitions by partitioning. Ex-
perimental results on real-life automotive and aerospace
code show that embedded control software using finite
state machines can be analyzed with close to zero false
alarms, and that the improved precision can reduce anal-
ysis time.

The contribution of this article is to give an overview
of the key mechanisms to enable precise and flexible
sound static analysis for safety and cybersecurity prop-
erties, with the example of the analyzer Astrée.

The article is structured as follows: after a brief intro-
duction of abstract interpretation in Sec. 2, we outline
general design considerations for achieving high anal-
ysis precision in Sec. 3, give an overview of Astrée’s
novel finite state machine domain (Sec. 3.1) and sum-
marize practical experience made on industrial software.
To enable configurable deep data and control flow anal-
yses (Sec. 4), Astrée has been equipped with a generic
abstract domain for taint analysis, which is described
in Sec. 4.1. It allows Astrée to perform normal code
analysis, with its usual process-interleaving, interproce-
dural and memory layout precision, while carrying and
computing taint information at the byte level. Any num-
ber of taint hues can be tracked by Astrée, and their
combinations will be soundly abstracted. Based on this
generic taint analysis framework we implemented an au-
tomatic detection of Spectre V1/V1.1/SplitSpectre vul-
nerabilities (cf. Sec. 4.2). To complement taint analysis,
which is a forward analysis, Astrée also has been ex-
tended by a program slicer which performs backward

analysis to identify the code parts and inputs relevant
for a selected slicing criterion (cf. Sec. 4.3). While sup-
porting analyzing safety- or security-oriented informa-
tion flow in a program, it also allows for automatic alarm
slicing, which improves usability of the analyzer. This
is the subject of Sec. 5. Sec. 6 concludes.

2 Abstract Interpretation
The semantics of a programming language is a formal
description of the behavior of programs. The most pre-
cise semantics is the so-called concrete semantics, de-
scribing closely the actual execution of the program on
all possible inputs. Yet in general, the concrete seman-
tics is not computable. Even under the assumption that
the program terminates, it is too detailed to allow for ef-
ficient computations. Unsound analyzers may choose to
reduce complexity by not taking certain program effects
or certain execution scenarios into account. A sound an-
alyzer is not allowed to do this; all potential program
executions must be accounted for. Since in the con-
crete semantics this is too complex, the solution is to
introduce a formal abstract semantics that approximates
the concrete semantics of the program in a well-defined
way and still is efficiently computable. This abstract se-
mantics can be chosen as the basis for a static analysis.
Compared to an analysis of the concrete semantics, the
analysis result may be less precise but the computation
may be significantly faster.

Abstract interpretation is a formal method for sound
semantics-based static program analysis [2]. It supports
formal correctness proofs: it can be proved that an anal-
ysis will terminate and that it is sound, i.e., that it com-
putes an over-approximation of the concrete semantics.
Imprecisions can occur, but it can be shown that they
will always occur on the safe side.

The difference between syntactical, unsound semanti-
cal and sound semantical analysis can be illustrated with
the example of division by 0. In the expression x/0 the
division by zero can be detected syntactically, but not in
the expression a/b. When an unsound analyzer does not
report a division by zero in a/b it might still happen in
scenarios not taken into account by the analyzer. When
a sound analyzer does not report a division by zero in
a/b, this is a proof that b can never be 0.

3 Minimizing False Alarms
Astrée [14][9] uses abstractions to efficiently represent
and manipulate over-approximations of program states.
One simple example of abstraction used pervasively in
Astrée is to consider only the bounds of a numeric vari-
able, forgetting the exact set of possible values within
these bounds. However, more complex abstractions can
also be necessary, such as tracking linear relationships
between numeric variables (which is useful for the pre-
cise analysis of loops).

As no single abstraction is enough to obtain suffi-

ciently precise results, Astrée is actually built by com-
bining a large set of efficient abstractions. Some of
them, such as abstractions of digital filters – and now of
finite state machines –, have been developed specifically
to analyze control-command software as these consti-
tute an important share of safety-critical embedded soft-
ware. In addition to numeric properties, Astrée contains
abstractions to reason about pointers, pointer arithmetic,
structures, arrays (in a field-sensitive or field-insensitive
way). Finally, to ensure precision, Astrée keeps a pre-
cise representation of the control flow, by performing
a fully context-sensitive, flow-sensitive (and even par-
tially path-sensitive) inter-procedural analysis. Com-
bined, the available abstract domains enable a highly
precise analysis with low false alarm rates.

To deal with concurrency defects, Astrée implements
a sound low-level concurrent semantics [12] which pro-
vides a scalable sound abstraction covering all possi-
ble thread interleavings. The interleaving semantics en-
ables Astrée, in addition to the classes of runtime er-
rors found in sequential programs, to report data races,
and lock/unlock problems, i.e., inconsistent synchro-
nization. The set of shared variables does not need to be
specified by the user: Astrée assumes that every global
variable can be shared, and discovers which ones are ef-
fectively shared, and on which ones there is a data race.
After a data race, the analysis continues by consider-
ing the values stemming from all interleavings. Since
Astrée is aware of all locks held for every program point
in each concurrent thread, Astrée can also report all po-
tential deadlocks.

Practical experience on avionics and automotive in-
dustry applications are given in [8][13][9]. They show
that industry-sized programs of millions of lines of code
can be analyzed in acceptable time with high precision
for runtime errors and data races.

3.1 Analyzing Finite State Machines
One long-standing problem for static analyzers is the
analysis of finite state machine implementations: as
control flow is encoded in data values, the values of state
variables must be very precisely known in order to de-
termine the feasible control flow paths. Using legacy
abstractions, such analyses were either very imprecise
or very slow and memory demanding, sometimes both.
Hence the required precision used not to be feasible,
typically resulting in high false alarm rates.

Consider the code fragment in Fig 1. It implements
the state machine described in Fig 2 whose state is rep-
resented by variable state.

One major difficulty on this simple code, is to rec-
ognize that in state 3, the pointer p always points to
the variable state. Using standard abstract domains,
the analyzer cannot distinguish between individual iter-
ations of the endless loop, it can only compute invari-
ants which hold for any possible loop iteration. That
means that the analyzer will (correctly) determine that at

1 int *p; int state = 0;
2 while (1) {
3 switch (state) {
4 case 0:
5 if (event) state = 1;
6 else state = 2;
7 break;
8 case 1:
9 state = 3;

10 p = &state;
11 break;
12 case 2:
13 if (event) state = 0;
14 else state = 1;
15 break;
16 case 3:
17 *p = 4;
18 break;
19 case 4:
20 return;
21 }
22 }

Figure 1: Example C implementation of Fig. 2

// 0

�� ��

1

��

2oo

UU

3 // 4

Figure 2: State machine

the beginning of any iteration of the loop p being either
uninitialized (invalid) or pointing to state. After
executing the statements of case 0 the value of p did
not change, but state can be in 1,2. After case 1,
p points to state, and state must be 3. However,
as the information at the beginning of the loop body is
imprecise the analyzer cannot infer that when execution
reaches case 3, it must have been in case 1 in the
previous iteration. Therefore it cannot exclude that p
may be invalid and will raise an alarm in line 17 (possi-
bly invalid pointer dereference).

3.1.1 The FSM Domain

The FSM (finite state machine) domain allows us to map
each relevant program variable to an own abstract value
for every possible value of a state variable in a finite
state machine. This works by partitioning the abstract
value of the memory domain according to the state vari-
able.

Let us first assume we already have a basic abstrac-
tion for sets of memory states, which we assume to be
sound and terminating. Such an abstraction introduces
an abstract domain that will be referred in the follow-
ing as the underlying domain. We denote this domain
D#, > its maximal element, v its approximation partial
order, t its join operator, and ∇ its widening operator

(see Sec. 2). The meaning of an abstract element is de-
scribed by the concretization function γ , such that for
any abstract element a, γ(a) is the set of memory states
represented by a. This is summarized by the following
notation: (

D#,>,v,t,∇
) γ−→ (P (M) ,⊆,∪) (1)

In order to formally define the state machine abstract
domain, we introduce the sets: L, of expressions of
a program which are valid destinations of assignments
(left-values), and V, of integer values. Our goal is to
define a new abstraction where we can have a separate
abstract value of the underlying domain (i.e. a set of
memory states) for each integer value that the state vari-
able may take. For reasons of efficiency this partitioning
must not be applied in cases where it is not relevant (i.e.
when we are outside the scope of a finite machine im-
plementation), or unnecessarily costly. Then the state
machine domain D#

A is defined as follows:

D#
A :=

(
(V→ D#)×L

)
∪
(
D#×{>}

)
(2)

An abstract value of the state machine domain is ei-
ther a value of the underlying abstract domain combined
with > to denote cases when we do not partition. Or it
is a function f S : V→ D#, called partitioning function,
from integer values to abstract values in the underlying
domain, combined with an expression l ∈ L that is cur-
rently partitioned. Here l is an lvalue of a state vari-
able S, and the integer values in V are the values S can
take. This allows us to have different abstract values in
the underlying domain for each different value of S. As
mentioned before, the underlying domain is the mem-
ory domain which keeps track of the values of all pro-
gram variables. Hence we can separately keep track of
the values of all variables for each possible value of the
state variable.

3.1.2 Implementation

As mentioned above, Astrée combines a lot of abstract
domains to achieve precision, parameterization and ef-
ficiency. There is a global hierarchy in the implemen-
tation, which determines what kind of information each
domain may access, and what level of abstraction they
can use.

The State Machine Domain builds on the Memory
Layout Domain, which abstracts memory locations and
pointer information, and associates memory locations
to unique keys. All value domains only see the keys
and compute sets of possible values for those keys. A
dedicated helper value domain tracks which keys must
be considered as state machine variables, and warns the
State Machine Domain when such a variable is modi-
fied. Then, and only then, does the State Machine Do-
main trigger a call to trans, which is key to the efficient
implementation for that domain.

While state machine state variables can be de-
clared by an end-user using a simple directive

(__ASTREE_states_track((v));), we always
aim at the maximum automation of Astrée. In order
to avoid this end-user declaration, we also have imple-
mented automatic discovery of state machine state vari-
ables. It works in the following way:

• Identify integer variables used in switch statements

• keep those variables which are also assigned in at
least one case of the switch, possibly following
function calls

• keep only the switch statements appearing inside
possibly infinite loops

That heuristics captures some commonly generated state
machines, and allows for a fully automatic and precise
analysis of codes using this pattern. When the heuristics
misses a state machine, the analysis will just miss the
expected precision gain, which can still be achieved us-
ing directives. When the heuristics wrongly identifies a
state machine, if the number of supposed states is small
enough, the analysis will just be imprecise, and if the
number of supposed states exceeds a built-in threshold,
it will be rejected by the heuristics. Generalizing the
heuristics to cover more complex patterns is subject of
future work.

3.1.3 Applying the FSM Domain

The formal definition of the FSM Domain is given in
[3]; here we will illustrate its operation with Fig. 3,
which shows the analysis results of the working exam-
ple of Fig. 1.

Let us call an abstract value of the underlying mem-
ory domain an environment. Using the heuristics de-
scribed above, the analyzer automatically detects the fi-
nite state machine in the code and is aware that the vari-
able state represents its states. Therefore it maintains
a full partitioning of state which means that it keeps a
separate environment for each possible value of state.
The environment includes full information about the ab-
stract value of all relevant program variables. In partic-
ular, this allows the analyzer to be aware of the fact that
when state is 3 at the beginning of a loop iteration,
p must point to state. Fig. 3 depicts this partition-
ing, i.e. the environments associated with every possible
value of state at the beginning of the loop (A), imme-
diately before the break statement in each switch case
(B-E), and immediately before the return (F). More
precisely, the tree structures of Fig. 3 represent the par-
titioning functions. For example, the tree shown at loca-
tion (B) represents the abstract value d = (f ,state),
where state is the state machine variable, and f a par-
titioning function such that f (1) is the abstract memory
value (i.e. the environment) in which state is 1, p is
invalid and E is true. f (2) is the abstract memory value
in which state is 2, p is invalid and E is false.

Figure 3: Analysis result with novel FSM domain

3.1.4 Practical Experience

In [3] an detailed discussion of analysis results on sev-
eral industrial examples is given. The largest benefit
could be seen in an automotive control module imple-
mented as hierarchal finite state machine composed of
four sub-automata which comprises 348.530 lines of
code. Without the FSM domain the analysis reports 45
alarms, needs 816 MB RAM and finishes in 24.5 min-
utes. With the FSM domain the analysis raises 4 alarms,
finishes in 9 seconds, and consumes 424 MB RAM. The
41 alarms which are not reported any more have been
confirmed as false alarms; the four remaining alarms
can be considered justified. The reduction in analysis
time and memory consumption is due to the fact that
by applying the FSM domain the analyzer can eliminate
many infeasible control flow paths that otherwise had to
be taken into account.

In general, the required analysis time typically in-
creases, and the observed increase depends on the num-
ber of combined states possible at a given program lo-
cation during the run of the program. Also the memory
needed for the analysis typically increases when we do
an analysis with state partitioning. In the benchmarks
under investigation in [3] the maximum observed in-
crease in RAM usage is 40%.

4 Data and Control Flow Analysis
Safety standards such as DO-178C and ISO-26262 re-
quire to perform control and data flow analysis as a part
of software unit or integration testing and in order to
verify the software architectural design. Investigating
control and data flow is also subject of the Data Safety
guidance [15], and it is a prerequisite for analyzing con-
fidentiality and integrity properties as a part of a secu-

rity case. Technically, any semantics-based static analy-
sis is able to provide information about data and control
flow, since this is the basis of the actual program anal-
ysis. However, data and control flow analysis has many
aspects, and for some of them, tailored analysis mecha-
nisms are needed.

Global data and control flow analysis gives a summary
of variable accesses and function invocations through-
out program execution. It is the basis to determine the
data and control coupling, as required by DO-178C.

In its standard data and control flow reports Astrée
computes the number of read/write accesses for every
global or static variable and lists the location of each ac-
cess along with the function from which the access is
made and the thread in which the function is executed.
The control flow is described by listing all callers and
callees for every C function along with the threads (and,
if specified, the core) in which they can be run. Indirect
variable accesses via pointers as well as function pointer
call targets are fully taken into account. Filtering allows
determining the control and data flow per software com-
ponent. Astrée also provides a call graph visualization
enhanced by data flow information, which can be inter-
actively explored.

More sophisticated information can be provided by
two dedicated analysis methods: taint analysis and pro-
gram slicing. Taint analysis is a forward analysis and
can answer questions about program parts affected by
reading corrupted input values. Program slicing is a
backward analysis which can answer questions about
the program parts which might influence the value of
a particular variable at a particular program point.

4.1 Taint Analysis
Astrée has been equipped with a generic abstract do-
main for taint analysis. It allows Astrée to perform nor-
mal code analysis, with its usual process-interleaving,
interprocedural and memory layout precision, while car-
rying and computing taint information at the byte level.
Any number of taint hues can be tracked by Astrée, and
their combinations will be soundly abstracted.

Taint propagation can be formalized using a non-
standard semantics of programs, where an imaginary
taint is associated to some input values. Considering a
standard semantics using a successor relation between
program states, and considering that a program state
is a map from memory locations (variables, program
counter, etc.) to values in V, the tainted semantics re-
lates tainted states, which are maps from the same mem-
ory locations to V×{taint,notaint}, and such that if we
project on V we get the same relation as with the stan-
dard semantics.

To define what happens to the taint part of the tainted
value, one must define a taint policy. The taint policy
specifies:

• Taint sources which are a subset of input values or
variables such that in any state, the values associ-
ated with that input values or variables are always
tainted.

• Taint propagation describes how the tainting gets
propagated. Typical propagation is through assign-
ment, but more complex propagation can take more
control flow into account, and may not propagate
the taint through all arithmetic or pointer opera-
tions.

• Taint cleaning is an alternative to taint propaga-
tion, describing all the operations that do not prop-
agate the taint. In this case, all assignments not
containing the taint cleaning will propagate the
taint.

• Taint sinks is an optional set of memory locations.
This has no semantical effect, except to specify
conditions when an alarm should be emitted when
verifying a program (an alarm must be emitted if a
taint sink may become tainted for a given execution
of the program).

Tainted input is specified through directives
(__ASTREE_taint((var;hues))) attached
to program locations. Such directives can precisely
describe which variables, and which part of those
variables, is to be tainted, with the given taint hues,
each time this program location is reached.

Taint sink directives may be used to declare that some
parts of some variables must be considered as taint sinks
for a given set of taint hues. When a tainted value is
assigned to a taint sink, then Astrée will emit a dedi-
cated alarm, and remove the sinked hues, so that only

the first occurrence has to be examined to fix potential
issues with the security data flow.

The main intended use of taint analysis in Astrée is
to expose potential vulnerabilities with respect to secu-
rity policies or resilience mechanisms. Thanks to the
intrinsic soundness of the approach, no tainting can be
forgotten, and that without any bound on the number
of iterations of loops, size of data or length of the call
stack.

4.2 Detecting Spectre Vulnerabilities
Spectre/Meltdown attacks are transient instruction ex-
ecution attacks, i.e., they exploit instructions which
should not have an observable effect since they are spec-
ulatively executed [10] or have to be flushed because of
an exception [11]. They affect a wide range of target
architectures. The Spectre v1, Spectre v1.1 and Split-
Spectre attacks (Spectre-PHT) are based on speculative
execution, in particular, on branch prediction on array
bound index checks. Taint analysis is particularly well
suited to help detecting these vulnerabilities.

The first condition of Spectre-PHT vulnerabilities is
the ability to control a variable through user (or public)
input. The data flow from the corresponding input loca-
tions can be approximated using tainting, so first taint-
ing directives have to be introduced, using the directive
ASTREE taint. Typically this just requires tainting

the arguments of some specific input functions.
The second condition is that such data controlled by

the attacker are compared to a bound, so that speculative
execution can be exploited. The idea here is to use the
facility for Astrée to deal with more than one taint hue,
to distinguish between possibly controlled, and possibly
controlled and tested to be smaller than a bound. Since
it would be quite demanding to manually add tainting
directives for that to the source code under analysis, we
added inside Astrée an automatic detection of compari-
son with bounds, which automatically changes the taint
from controlled to dangerous.

Now the question is, how far in the code should vari-
ables stay dangerous? Speculative execution does not
last forever, and in all known attacks so far, the mem-
ory access using dangerous variables must occur dur-
ing speculative execution, which is one of the reasons
why [16] introduced their speculative execution win-
dow. But we work on the source code level, and we
aim at target architecture independence. One reasonable
limit, though, is the length of the branches: when there
is a test, there are two possible outcome, the branches,
and when the control flow becomes the same whatever
the outcome (the branches are merged) then the variable
should not be considered dangerous anymore. The im-
plementation challenge with that view is that tainting,
by design, cannot be removed on joins. So, we came up
with some non-standard use of the multi-hues tainting
facilities offered by Astrée: we decided to taint public
input with two hues (let us call them 1 and 2), and that

flagging a memory location as dangerous consists in re-
moving a hue (let us say it is hue 2). In that way, as long
as the memory is tainted with only hue 1, it is consid-
ered dangerous, but as soon as we merge with a context
where it is tainted with hue 1 and 2, it becomes merely
controlled by the attacker again.

The third step is that the dangerous variable must be
used to compute some memory address. Once again,
we automatically discover in Astrée when a dangerous
value is used to compute a memory location, and in that
case, flag that address with a new taint hue. At each
place where an address tainted with that hue is deref-
erenced, we emit a Spectre vulnerability alarm, and re-
move the tainting for that address, so that end-users can
concentrate on the first occurrence, where they can, e.g.,
introduce fences that will anyway mitigate the vulnera-
bility for all subsequent dereferences of the same ad-
dress.

To illustrate the tainting algorithm we use the follow-
ing example code shown in Figure 4:

Figure 4: Code excerpt with taint coloring.

In that code, val is tainted with hues 1 and 2, to de-
note that it may be controlled by the attacker. The taint
is propagated to argument x of the victim function, and
when x is compared to the size of the array, the tainting
is transformed into hue 1 (hue 2 is removed from the
tainting of x). This means that x is considered danger-
ous after the test. Then when x is used to compute an
offset of array1 before dereferencing, Astrée emits a
Spectre vulnerability alarm.

A screen shot of a Spectre vulnerability alarm in
Astrée is shown in Fig.5. The taint hues derived for vari-
ables in the code are shown in the tool tips.

This approach does not provide absolute safety from
Spectre attacks. The first limitation is that tainting can
only taint reachable code, and Spectre may be exploited
on unreachable code (speculative execution may cause
the execution of normally unreachable code). Note that
Astrée displays unreachable code as parts of its normal
output. If needed, the code can be made reachable to
be covered by the analysis. Second, it targets a specific
set of Spectre vulnerabilities, not all possible flavors of
Spectre vulnerabilities. It embeds the Spectre detection
into the runtime error analysis which is needed in safety-
critical systems anyway, and reports vulnerabilities with

Figure 5: Astrée GUI showing Spectre vulnerability
alarm

high precision and on the basis of a sound analysis. This
helps to significantly reduce the attack surface with little
overhead.

The article [6] gives a detailed overview of Spectre
attacks, Astrée’s Spectre detection and its application to
the PikeOS operating system. Astrée analyzes the whole
code (400 000 LOC) in 2h30, using 17 GB of memory.
During the analysis, Astrée does much more than warn
about Spectre vulnerabilities, it also checks for compli-
ance to coding rules, or warns about potential runtime
errors. The precision is very high: Astrée only reports
68 locations with possible Spectre vulnerabilities, and
manual inspection confirms that the false alarm rate is
below 5%.

Further experiments were conducted on industrial
avionics and automotive code. In the two cases de-
scribed in the following we manually selected some
global variables as taint sources since no information
about actual user-controlled values was available to us.
The first project is avionics software consisting of 2 mil-
lion lines of preprocessed C code. It ran through in 2h43
(21 GB), compared to 2h36 without Spectre detection.
The run with Spectre detection enabled found 113 possi-
ble vulnerabilities. The second project is an automotive
application which consists of about 2.7 million lines of
preprocessed C code. Without Spectre detection, it ran
through in 1h42, and in 1h47 with Spectre detection en-
abled, and found 1271 vulnerabilities.

4.3 Program Slicing
The following definitions introduce the basic principles
of static program slicing.
Definition 1 (Slicing Criterion) Let P be a program. A
slicing criterion in P is a tuple (s,V) which consists of
a statement s and a set of variables V from P
Definition 2 (Slice) A slice S is a subprogram of P that
exhibits the same behavior with respect to the slicing

criterion (s,V).

Computing minimal slices is an undecidable prob-
lem. However there are well-established algorithms
for computing non-minimal, but still useful slices. A
common approach is to compute a System Dependence
Graph (SDG), which contains all data and control de-
pendences of the program. Then a slice can be expressed
as a reachability problem in this graph [4]. The pre-
cision of the slice directly depends on the precision of
the SDG. However, computing precise system depen-
dency graphs is a non-trivial task since it requires de-
riving intricate program properties. These may include
points-to information for variable and function pointers,
code reachability, context information or possible vari-
able values at certain program points. As an example,
over-approximating the set of possible destinations of a
pointer variable blows up the size of the system depen-
dence graph as it may add false dependences to state-
ments which contain variables that would otherwise not
be included in the slice. This may cause a drastic transi-
tive increase in the number of dependences and vertices.

4.3.1 Analysis-Enhanced Slicing

A first novel contribution of Astrée’s program slicer is
that it leverages the invariants computed by the main
Astrée analysis. In the following, we denote this slic-
ing method analysis-enhanced slicing. This slicer can
produce sound and compact slices by exploiting points-
to and reachability information. Furthermore Astrée de-
tects code which is guaranteed to be unreachable for any
possible program execution. Ignoring such unreachable
code fragments when constructing the system depen-
dence graph further decreases its size. Hence, compared
to slicing without leveraging Astrée invariants, a signif-
icant precision gain is achieved by reducing the amount
of vertices and the amount of data- and control depen-
dences in the system dependence graph. Another im-
portant advantage of analysis-enhanced slicing is its ef-
ficiency. While computing sound slices with standard
static slicing requires lots of time and memory, those
resources are significantly lower for analysis-enhanced
slicing. This is due to the smaller size and smaller
complexity of the computed system dependence graphs.
This efficiency improvement makes it possible to com-
pute slices for very large programs in feasible time.

A system dependence graph computed by our ap-
proach is a sound abstraction of the data- and control
dependences of a computer program. This follows from
the soundness of the Astrée core analysis. As a conse-
quence, the resulting slices are also sound. The amount
of precision gain depends on the precision of the ex-
ported invariants.

A detailed experimental survey of Astrée’s analysis-
enhanced program slicer with programs from automo-
tive and avionic industry is given in [7]. It demonstrates
that slicing can be applied to industry-size code with
high precision and with feasible memory and compu-

tation time requirements.

5 Alarm Slicing
A second novel contribution of Astrée’s slicer is its abil-
ity to compute a slice for one specific analysis context.
The main application for this is alarm slicing: the goal
is to compute a slice for the root cause of an alarm.
By helping developers to prove the alarm to be a false
alarm, or to recognize that it represents a true defect, re-
spectively, the manual effort of reviewing the findings
of the analyzer can be significantly reduced.

Astrée exhibits potential safety or security defects in
the form of alarm messages. These messages are con-
text sensitive with respective to the sequence of func-
tion calls and control decisions that lead to the particular
alarm. Fig. 6 displays an example of such a context.

[call#main at astree.cfg:18.0-50.1
call#dhry_main at astree.cfg:40.6-17
call#Proc0 at main.c:96.2-10
loop=1/100 at Proc0.c:99.8-127.9
loop=1/100 at Proc0.c:110.16-116.17
call#Proc7 at Proc0.c:113.24-57
ALARM (A): integer division by

zero {0} at Proc7.c:78.12-22]
Figure 6: Context-sensitive alarm message of Astrée.

In order to compute precise slices for such alarm mes-
sages, the slicer has to take into account context in-
formation. The basic idea is simple: the critical situa-
tion for a division by zero alarm, which is reported for
a given context, is precisely the context where the de-
nominator becomes 0. Therefore we want to compute
a partial slice for the variables used in the denominator,
which only considers program paths leading to this par-
ticular context. Therefore, we augment the previously
given definition of program slicing by call contexts.

Definition 3 (Call Context) We denote a call context a
sequence of functions [f1, f2, . . . , fn] in P, such that for
each i ∈ {1, . . . ,n−1} it holds that fi calls fi+1.

Definition 4 (Context-Sensitive Slicing Criterion)
A context-sensitive slicing criterion in P is a 3-tuple
(s,V, [f1, f2, . . . , fn]) consisting of a statement s ∈ fn, s
set of variables V and a call context [f1, f2, . . . , fn] of P.

Definition 5 (Context-Sensitive Slice) Let
(s,V, [f1, f2, . . . , fn]) be a context-sensitive slicing
criterion and S a slice of P with respect to (s,V). A
context-sensitive slice Sc is a subprogram of S, which
behaves the same in the call context [f1, f2, . . . , fn].

To compute context-sensitive slices we enhance the
slicing algorithm given in [4] with a description of call
contexts (stacks). In each step of the reachability anal-
ysis we additionally check that the dependences under
examination match the relevant stacks. Dependences
which do not match are discarded. When following a
dependency edge which represents a function call, the

Figure 7: Alarm Slicing in Astrée

topmost function is removed from the stack. This mod-
ification of the algorithm allows for context-sensitive
slicing as defined above (considering exactly one call
context), as well as context-insensitive slicing (consid-
ering all possible contexts). Thus it matches our defi-
nition of a context-sensitive slice which implies that for
one program point a context-insensitive slice is identical
with the union over all context-sensitive slices.

In our implementation, to ensure that only feasible
call contexts are taken into account, and that calls-by-
reference can be dealt with in a sound way, the slicer im-
ports the intermediate internal program representation
of Astrée. I then derives all possible call contexts from
this representation. The soundness of the call contexts
is directly inferred by the soundness of the Astrée anal-
ysis, in the same way as the information which is reused
in analysis-enhanced slicing. The notion of context-
sensitive slicing can be naturally extended to cover mul-
tiple call contexts.

In contrast to context-insensitive slices, context-
sensitive slices do not capture all possible behaviors of
the original program which influence the slicing crite-
rion. Instead, the behavior described by the slice is re-
stricted to execution paths which are in accordance with
the set of considered call contexts. Context-sensitive
slices tend to be significantly smaller than context-
insensitive ones.

The different slicing modes presented in this sec-
tion are relevant for demonstrating safety and security
properties. Sound slices can be computed by context-
insensitive analysis-enhanced slicing. With these slices
it is possible to show that certain parts of the code or
certain input variables might influence or cannot influ-
ence a program section of interest. They yield a global
overview of these properties for the entire program.

In contrast to that, context-sensitive analysis-
enhanced slicing, which only considers a subset of pos-
sible contexts, is more suitable for investigating the in-
fluence of a certain code section, e.g. a function, or a

module, on the program location of the slicing crite-
rion. Hence it is perfectly suited as a basis for automatic
alarm slicing.

5.1 Automatic Slicing of Astrée Alarm
Messages

The investigation of alarm messages which describe
safety- or security issues of a computer program is an
important task. In most cases defects only materialize
in certain executions and thus dependent on call con-
texts and control decisions. Consequently, only these
executions, and their respective contexts, are interesting
for the alarm investigation. To simplify manual inspec-
tion each Astrée alarm is emitted in conjunction with
problematic contexts. Unfortunately, even when utiliz-
ing the context information, alarm investigation is still a
tedious and time consuming task. One main reason for
this is the size of the code. Further, even with the ad-
ditional information it is hard to identify which parts of
the code are actually relevant for the issue under analy-
sis.

Context-sensitive analysis-enhanced slicing is a natu-
ral approach to construct a more efficient workflow for
alarm investigation. It can be configured to take into ac-
count the function call stack of the alarm context. On
top of that, some of the other alarm context elements, in
particular control decisions may be implicitly exploited
with the imported analysis information, as described in
Sec. 4.3. Hence, from the context menu of an alarm
in the Astrée graphical user interface the computation
of a slice for the alarm can be automatically triggered.
In Fig. 7 this is displayed for the alarm and context of
the example in Fig. 6. The Astrée program slicer then
transforms the given context into a call context C by dis-
carding all context entries that do not constitute function
calls. Further, it determines the relevant set of program
variables V that are part of the statement s for which the
alarm is emitted. These steps yield the context-sensitive
slicing criterion (s,V,C). By construction the result-
ing slice will behave the same as the original program
for the examined context. Investigating that behavior is
much more efficient, as the source code size is smaller
and its content needs not to be filtered for relevance.

6 Conclusion
Sound static program analysis can be applied to demon-
strate the absence of safety-relevant code defects, and of
cybersecurity vulnerabilities. To make the application
of such analyzers economically feasible, the false alarm
rate must be low. Analyzing finite state machines at the
C code level was a long-standing problem for static an-
alyzers that typically lead to high false alarm rates. We
illustrate a novel abstract domain which allows a highly
precise analysis of finite state machines implemented
in C programs. To support cybersecurity analyses, it
is additionally necessary to support advanced data and

control flow analyses, which allow to track the effect
of value corruption in a forward and backward manner.
We have developed a generic and user-parameterizable
abstract domain for taint analysis and applied it to de-
tect Spectre V1, V1.1 and SplitSpectre vulnerabilities.
This is complemented by Astrée’s novel program slicer,
which supports precise backwards analysis by analysis-
enhanced slicing. It can also be applied for automatic
alarm slicing, making it easier for developers to deter-
mine whether a given alarm is justified. Experimental
results on real-life software confirm both the precision
and the efficiency of our approach.

Acknowledgment
This work was funded within the project PROFORMA
by the German Federal Ministry for Education and Re-
search with the funding ID 01IS17083A-C. The respon-
sibility for the content remains with the authors.

References
[1] B. Blanchet, P. Cousot, R. Cousot, J. Feret,

L. Mauborgne, A. Miné, D. Monniaux, and X. Ri-
val. A Static Analyzer for Large Safety-Critical
Software. In Proceedings of the ACM SIGPLAN 2003
Conference on Programming Language Design and
Implementation (PLDI’03), pages 196–207, San Diego,
California, USA, June 7–14 2003. ACM Press.

[2] P. Cousot and R. Cousot. Abstract interpretation: a uni-
fied lattice model for static analysis of programs by con-
struction or approximation of fixpoints. In 4th POPL,
pages 238–252, Los Angeles, CA, 1977. ACM Press.

[3] J. Giet, L. Mauborgne, D. Kästner, and C. Ferdinand.
Towards zero alarms in sound static analysis of finite
state machines. In A. Romanovsky, E. Troubitsyna, and
F. Bitsch, editors, Computer Safety, Reliability, and Se-
curity, pages 3–18, Cham, 2019. Springer International
Publishing.

[4] S. Horwitz, T. Reps, and D. Binkley. Interprocedural
slicing using dependence graphs. ACM Trans. Program.
Lang. Syst., 12(1):26–60, Jan. 1990.

[5] D. Kästner, L. Mauborgne, and C. Ferdinand. Detect-
ing Safety- and Security-Relevant Programming Defects
by Sound Static Analysis. In J.-C. B. Rainer Falk,
Steve Chan, editor, The Second International Confer-
ence on Cyber-Technologies and Cyber-Systems (CY-
BER 2017), volume 2 of IARIA Conferences, pages 26–
31. IARIA XPS Press, 2017.

[6] D. Kästner, L. Mauborgne, and C. Ferdinand. Detecting
Spectre Vulnerabilities by Sound Static Analysis. In
R. F. Anne Coull, Steve Chan, editor, The Fourth Inter-
national Conference on Cyber-Technologies and Cyber-
Systems (CYBER 2019), volume 4 of IARIA Confer-
ences, pages 29–67. IARIA XPS Press, 2019. Archived
in the free access ThinkMindT M Digital Library,
http://www.thinkmind.org/download.
php?articleid=cyber_2019_3_10_80050.

[7] D. Kästner, L. Mauborgne, N. Grafe, and C. Ferdinand.
Advanced Sound Static Analysis to Detect Safety- and

Security-Relevant Programming Defects. In J.-C. B.
Rainer Falk, Steve Chan, editor, 8th International Jour-
nal on Advances in Security, volume 1 & 2, pages 149–
159. IARIA, 2018.

[8] D. Kästner, A. Miné, L. Mauborgne, X. Rival, J. Feret,
P. Cousot, A. Schmidt, H. Hille, S. Wilhelm, and C. Fer-
dinand. Finding All Potential Runtime Errors and Data
Races in Automotive Software. In SAE World Congress
2017. SAE International, 2017.

[9] D. Kästner, B. Schmidt, M. Schlund, L. Mauborgne,
S. Wilhelm, and C. Ferdinand. Analyze This! Sound
Static Analysis for Integration Verification of Large-
Scale Automotive Software. In Proceedings of the SAE
World Congress 2019 (SAE Technical Paper). SAE In-
ternational, 2019.

[10] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz,
and Y. Yarom. Spectre attacks: Exploiting speculative
execution. ArXiv e-prints, Jan. 2018.

[11] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas,
S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and
M. Hamburg. Meltdown. ArXiv e-prints, Jan. 2018.

[12] A. Miné. Static analysis of run-time errors in embed-
ded real-time parallel C programs. Logical Methods in
Computer Science (LMCS), 8(26):63, Mar. 2012.

[13] A. Miné and D. Delmas. Towards an Industrial Use of
Sound Static Analysis for the Verification of Concur-
rent Embedded Avionics Software. In Proc. of the 15th
International Conference on Embedded Software (EM-
SOFT’15), pages 65–74. IEEE CS Press, Oct. 2015.

[14] A. Miné, L. Mauborgne, X. Rival, J. Feret, P. Cousot,
D. Kästner, S. Wilhelm, and C. Ferdinand. Taking Static
Analysis to the Next Level: Proving the Absence of Run-
Time Errors and Data Races with Astrée. Embedded
Real Time Software and Systems Congress ERTS2, 2016.

[15] SCSC Data Safety Initiative Working Group [DSIWG].
Data Safety (Version 2.0) [SCSC-127B]. Technical re-
port, Safety-Critical Systems Club, Jan. 2017.

[16] G. Wang, S. Chattopadhyay, I. Gotovchits, T. Mitra,
and A. Roychoudhury. oo7: Low-overhead defense
against spectre attacks via binary analysis. CoRR,
abs/1807.05843, 2018.

[17] Wired.com. The jeep hackers are back to prove car hack-
ing can get much worse, 2016.

http://www.thinkmind.org/download.php?articleid=cyber_2019_3_10_80050
http://www.thinkmind.org/download.php?articleid=cyber_2019_3_10_80050

	Title
	Introduction
	Abstract Interpretation
	Minimizing False Alarms
	Analyzing Finite State Machines
	The FSM Domain
	Implementation
	Applying the FSM Domain
	Practical Experience

	Data and Control Flow Analysis
	Taint Analysis
	Detecting Spectre Vulnerabilities
	Program Slicing
	Analysis-Enhanced Slicing

	Alarm Slicing
	Automatic Slicing of Astrée Alarm Messages

	Conclusion

