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Using Generic Software Components for Safety-Critical
Embedded Systems – An Engineering Framework

Felix Bräunling∗, Robert Hilbrich†, Simon Wegener‡, Isabella Stilkerich§, and Daniel Kästner‡

Abstract
Modern software development in the automotive do-
main would be unthinkable without leveraging reusable
software components. Such generic software compo-
nents have to be configured and tailored for each specific
target application. Nowadays, complexity has reached
a point where developing generic software components
and manually adapting each component for each variant
in the product family is error-prone and no longer eco-
nomically feasible. In this article we propose an engi-
neering framework for automated adaptation of generic
software components which focuses on temporal and
spatial integrity. The framework is built around a
generic methodology and leverages specialized software
tools to determine an allocation of software components
to the resources of an embedded system and to ensure
memory integrity. We use a quadcopter example, ex-
ecuted on the Infineon AURIXTM TC277 processor un-
der the AUTOSAR operating system to illustrate our ap-
proach.

1 Introduction
Safety-critical embedded systems represent a special
class of computerized control systems. The interplay
of their software and hardware parts realizes complex
functions, such as engine control or vehicular guid-
ance. Undetected errors in the implementation of a
function may jeopardize human lives, hence the addi-
tional attribute safety-critical. Implementing the nec-
essary software correctly, satisfying all safety require-
ments and maximizing hardware resource utilization in
a cost-sensitive and competitive market poses a sig-
nificant challenge for established software engineering
methods and tools.

A recent example for the increasing capabilities of mi-
crocontrollers are embedded multicore processors con-
taining multiple and possibly heterogeneous execution
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units. In order to tap their potential and maximize
resource utilization, software components have to be
tightly integrated and optimized specifically for each
hardware platform. This optimization step is referred
to as adaptation and often conducted manually.

With more software components sharing common re-
sources of a microcontroller, ensuring their isolation
against undesired interferences is essential in order to
maintain the reliability and safety of the system. There-
fore, the adaptation needs to ensure isolation between
tightly integrated software components. This can be
achieved by controlling access to both memory and CPU
time, thereby supporting error containment.

1.1 Problem Statement
Software engineering for safety-critical embedded sys-
tems is currently conducted in a “per-project” fashion.
Depending on the setup of the system architecture in
different projects, it may be necessary to distribute soft-
ware components across a network of microcontrollers
or to run them on different microcontroller derivatives.
Unfortunately, due to the complexity and the lack of
proper engineering tools, software components are of-
ten developed specifically to match the requirements of
a particular project. They are allocated manually to
the resources in the system’s hardware architecture and
adapted manually to make best use of the capabilities of
the microcontrollers. Especially for safety-critical sys-
tems, ensuring an isolated execution of software com-
ponents requires additional configuration and analysis
steps which are specific to the microcontroller and thus
often conducted manually as well.

While the “per-project” approach may be sufficient
for a small number of projects, it still requires a lot
of manual effort and reduces the reusability of soft-
ware components. With more and more control func-
tions in safety-critical devices being implemented in
software, the need for reusability and adaptability for
different hardware platforms increases, which renders
the “per-project” approach no longer economically sus-
tainable. The question arises, how software components
for safety-critical embedded systems can be developed
in a generic and reusable way, so that they can be used in
multiple projects, but without reducing resource utiliza-
tion or jeopardizing their isolation properties and mem-
ory safety.
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1.2 General Approach

The authors argue that the level of reusability can be
significantly improved with a model-based development
of generic software components in combination with an
automated adaptation toolkit to handle project-specific
hardware properties and safety requirements.

In general, software components are concerned with
the implementation of specific features of the system.
By using abstraction layers, they can be developed in
a platform agnostic manner and organized as a library
of generic software components for later use in mul-
tiple projects. As a result of adopting a formalized
and model-based development approach, these generic
functions can be automatically tailored and adapted to
the specific requirements of a project. In particular,
this approach facilitates automated software deployment
in combination with automated platform-specific code
generation as well as automated configuration and vali-
dation of isolation properties. This “feature-based” soft-
ware development is not entirely new [3, 5]. However,
the authors believe that the state of practice and the ca-
pabilities of available tools for this purpose have not
yet reached the level of maturity needed for the devel-
opment of multi-platform safety-critical embedded sys-
tems.

1.3 Contribution

In this paper, the authors present the results of the de-
velopment of an engineering framework aiding system
architects and software engineers. Software for embed-
ded systems relies on mature development tools in or-
der to cope with complexity and to satisfy all (safety)
requirements. Therefore, the framework combines and
extends the tools ASSIST, Astrée and cAMP. By provid-
ing interoperability between these tools and enhancing
them with new functionality, the framework is able to
automate the integration and tailoring of applications in
safety-critical embedded systems (i.e., automated adap-
tation).

In its current state, the framework provides an early
and significantly less error-prone evaluation of timing
and memory-partitioning decisions at the system level,
the software level and also the implementation level.
Combining these tools as a framework allows to au-
tomatically adapt and integrate generic software com-
ponents in order to create project-specific applications
running on project-specific microcontrollers. Project-
specific topics, such as the properties of a particular
microcontroller, as well as spatial and/or temporal iso-
lation requirements are also taken into account. By tak-
ing advantage of code generation, the framework sup-
ports an automated development process, thus building
the missing link between generic libraries of software
components and project-specific applications.

2 Conceptual Overview
Figure 1 depicts the simplified workflow of our frame-
work. It is based on the idea of a strictly top-down en-
gineering approach combined with the correctness by
construction methodology [8] and supports the engineer
by automating the synthesis and validation of crucial en-
gineering artifacts.

Based on a model of the functional architecture, the
systems engineer creates a model of the envisioned
system architecture. This model contains a selection
of generic software components from a library and a
project-specific hardware platform. The feasibility of
the chosen hardware platform with respect to the tech-
nical and safety-related requirements of the particular
project can be automatically validated by constructing a
deployment for the selected software components (see
Section 6). If a valid deployment cannot be found, ei-
ther the hardware platform or the selection of software
components need to be modified. Then, sound seman-
tic code analysis is applied to all software code to en-
sure sufficient isolation and memory protection, both of
which are essential to ensure the correctness of the sys-
tem (see Section 7). Finally, data and code of software
components are automatically mapped to the isolation
partitions of their microcontroller (see Section 8).

The essential parts of the framework are described in
more detail in the next sections. However, this paper is
not intended to provide a thorough and detailed descrip-
tion for each of the tools used in the framework. Instead
it focuses on their contribution for an automated devel-
opment process based on generic software components.

3 I4Copter
To illustrate our approach, we will use the I4Copter
flight controller as an overarching example. The
I4Copter is a research project developing a quadcopter
as an example for hard real-time systems and control
systems [37, 36]. While the quadcopter software was
originally meant to be deployed to a single-core In-
fineon TriCore TC1796, we used the AURIX TC277
for this paper, which is a three-core automotive micro-
controller. The control software of the I4Copter con-
sists of six modules: a digital signal processor (DSP) for
reading sensor and remote inputs, a two-stage controller,
and three observers. All these modules are responsible
for controlling the positioning of the quadcopter dur-
ing take-off, flight and landing. Further details of the
I4Copter and the targeted hardware will be given in the
following sections to describe their relevance to the pre-
sented framework. The example system resembles con-
trol systems similar to those used in automotive chassis
systems in complexity and size. The AURIX TC277
was selected because it is a widely used microcontroller
in the automotive domain. It also provides heteroge-
neous memories and computation units which allow for
a flexible and adaptive deployment of software based on
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Figure 1: Simplified Workflow

the product’s requirements, which makes it a suitable
target platform for a software platform driven develop-
ment approach.

4 Platform Development
In order to develop application software components in
a reusable and structured way, the state of practice in
systems engineering [20] recommends to start with a
functional architecture. It is constructed as a result of
a rigorous requirements engineering process and its re-
lationship to other system views [27].

The functional architecture is tightly bound to the log-
ical intentions and dependencies of the software appli-
cations. It is a special kind of abstraction and usually, it
does not include details of the technical architecture.

The separation into a functional and a technical archi-
tecture allows for a separation of concerns between the
problem domain and the variations of possible technical
solutions. This approach allows to construct applica-
tions and infrastructure software independently, because
implementations on both ends can be developed sepa-
rately as long as they comply with the “contract” of the
common interface.

In our case, this can be described by using the bridge
pattern, which is depicted in Figure 2. The bridge pat-
tern is intended to decouple the abstraction from its im-
plementation [12]. A functional element describes an
abstract function. A technical implementation on the
other hand is a tangible implementation providing the
functionality described by the functional element. The
functional element does not need to know about the tan-
gible implementation, thus the technical implementa-
tion can be replaced by other solutions as long as all
project-specific requirements are met. Still, the func-
tional and technical view are not fully independent of
each other, because changes in either view may have
significant effects on the other.

One example for a functional element in the I4Copter
software is the filter used to reduce noise from sensor
inputs. A technical implementation to provide the func-
tionality could be an alpha-beta-filter, a running average
filter or a Kalman filter. Their software modules must
provide a common interface to make the filter imple-
mentations exchangeable. The choice of the filtering al-

gorithm can be controlled by changing which module is
linked during compile time into the application code.

In each project, it is the task of the systems engineer to
select the suitable building blocks for each functional el-
ement, i.e., generic software components from a library
as well as hardware components (microcontrollers), in
order to create the system architecture model. Of course,
the model needs to fulfill the requirements set forth in
the functional architecture.

5 System Architecture
At the core of our approach is a system architecture
model. There are several notations available to model
a system architecture, for example SysML, UML, or
AMALTHEA [15], which allows to express safety- and
timing-related requirements as well-defined first-class
model elements.

Generally speaking, the system architecture model
comprises of a description of the software components
with their distinct resource requirements, a description
of the available hardware resources, such as microcon-
trollers or memory, and also constraints, in particular
safety requirements, that restrict the resource usage and
allocation of software components.

Examples for safety requirements can be the need to
detect sporadic hardware defects in the computation of a
software component, heterogeneous hardware execution
environments or the use of additional hardware for error
correcting/detecting codes. These requirements trans-
late to constraints on the system architecture and thus
are limiting the solution space of the architecture.

<<Functional Element>>
Noise Filter

Technical Implementation

filter()

<<Technical Implementation>>
Filter Construction Kit

filterNoise()

Running Average

filterNoise()

Alpha-Beta Filter

filterNoise()

Kalman Filter

filterNoise()

Figure 2: The relation between the functional elements
and the technical implementation exhibits the bridge
pattern.



6 Deployment
With the system architecture model being available, the
mapping between software components and hardware
resources is constructed in the next step. The construc-
tion needs to consider the capacities of all available re-
sources, e.g., the size of flash memory. It must also en-
sure that the additional constraints (temporal and spatial
isolation) are satisfied. This is achieved by construct-
ing a feasible mapping and a static periodic schedule
for all software components. Due to the complexity of
the solution space and the importance of the correctness
of the solution, this process is conducted in an auto-
mated fashion with the tool ASSIST [13]. The chal-
lenge of finding a correct mapping and a feasible static
schedule is addressed by transformation of this prob-
lem into an equivalent constraint-satisfaction problem
and the subsequent application of constraint program-
ming [10, 4, 31]. Similar approaches for safety-critical
systems have been published [14, 32].

Constraint programming refers to a set of techniques
in operations research, discrete optimization, and ar-
tificial intelligence. These techniques assist in find-
ing solutions for problems based on variables, which
are affected by constraints (constraint-satisfaction prob-
lems). Each variable has a finite integer domain and
every constraint defines valid or invalid solutions for
a subset of these variables. Solutions for this prob-
lem class can be obtained by applying a combination of
search techniques—including backtracking—and con-
straint propagation techniques for value elimination.
ASSIST automates this process and hides the intrica-
cies of a formal specification from the user by offering
a user-friendly domain specific language to describe the
mapping and scheduling problem.

Hardware {
/* ... */
Processor Processor1 {
Manufacturer = "Infineon";
Type = "TC277";
Provides 32768 of exclusive feature "LMU RAM";
Provides 4194304 of exclusive feature "PMU Program Flash";
Core Core0 {

Capacity = 100;
Architecture = "TriCore 1.6 P";
Provides shared feature "Performance";
Provides shared feature "FPU";
Provides 16384 of exclusive feature "I-Cache";
Provides 8192 of exclusive feature "D-Cache";

}
Core Core1 {

/* identical to Core0 */
}
Core Core2 {

Capacity = 60;
Architecture = "TriCore 1.6 E";
Provides shared feature "Efficiency";
Provides shared feature "FPU";
Provides shared feature "Lockstep";
Provides 8192 of exclusive feature "I-Cache";
Provides 128 of exclusive feature "DMI Readbuffer";

}
}

}

Figure 3: Hardware Specification in ASSIST

In contrast to other approaches [29, 30], which are
based on the composition of components with rich in-
terfaces, ASSIST works on a higher abstraction level
and treats mapping and scheduling as separate steps in
order to reduce the size of the problem in each step. For
this purpose, the modeling of component properties in

Software {
Application OS_Application_0 {
Task T1_Controllers { CoreUtilization = 2; }

}
Application OS_Application_1 {

Task T3_AttitudeObserver { CoreUtilization = 20; }
}
Application OS_Application_2 {

Task T2_EngineController {
CoreUtilization = 2;
Requires shared Core feature "Lockstep";

}
}
Application OS_Application_3 {

Task T4_HeightObserver { CoreUtilization = 20; }
}
Application OS_Application_4 {

Task T6_DSP { CoreUtilization = 3; }
}
Application OS_Application_5 {

Task T5_AltitudeObserver { CoreUtilization = 20; }
}

}

Figure 4: Applications and Tasks in ASSIST

ASSIST is less detailed. Software tasks are considered
to be “black boxes” with annotated resource require-
ments. ASSIST also aims to simplify the complexity
of the scheduling problem, by constructing a schedul-
ing for a single hyperperiod containing periodic execu-
tions of all tasks. Internally, ASSIST uses the CHOCO
SOLVER [28], which has been successfully applied in a
wide variety of scheduling problems.

Figure 3 contains the specification of the hard-
ware properties of the Infineon AURIX TC277 micro-
controller. ASSIST allows to specify features, such as
an FPU, as well as capacities, for example flash mem-
ory, to constrain the deployment process.

The specification of the software architecture is pre-
sented in Figure 4. It consists of six applications
together with their tasks. For the sake of simplic-
ity and readability of the example, each task only re-
quires a certain amount of the processor time (called
CoreUtilization in the specification). The core uti-
lization is determined by the task’s worst-case execution
time (WCET) divided by the task’s period. Safe upper
bounds on the WCET can be calculated, e.g., by aiT
WCET Analyzer [18] for timing-predictable processors
such as the AURIX TC277. On non-timing-predictable
multi-core processors, WCET estimates can be provided
by hybrid WCET analyzers such as TimeWeaver [19].
The task T2 EngineController shows how particu-
lar features of a processing core can be required by a
task.

Figure 5 shows the dependencies between the dif-
ferent tasks which are present for a single period of
the cyclic tasks of the I4Copter system. The tasks
T4 HeightObserver and T5 AltitudeObserver

could be run in parallel to exploit the resources of the
TC277 multicore processor.

Figure 5: Task Dependency Graph

In order to allow a parallel execution of these two
tasks, they should be deployed to separate cores. How-



TaskGraph {
T6_DSP -> T3_AttitudeObserver;
T3_AttitudeObserver -> T4_HeightObserver, T5_AltitudeObserver;
T4_HeightObserver -> T1_Controllers;
T5_AltitudeObserver -> T1_Controllers;
T1_Controllers -> T2_EngineController;

}

Figure 6: Task Graph Specification in ASSIST

Restrictions {
T6_DSP, T3_AttitudeObserver dislocal up to Core;
T6_DSP, T4_HeightObserver dislocal up to Core;

}

Figure 7: Mapping Constraint Specification in ASSIST

ever, this does not constitute a hard constraint for the de-
ployment synthesis, because a deployment of these tasks
to the same core may still be feasible, but less desir-
able. Therefore, ASSIST needs to treat the information
about the parallel execution of T4 HeightObserver

and T5 AltitudeObserver as a hint for achieving an
optimized solution. For this purpose, a task graph can
be specified in ASSIST, which allows the tool to auto-
matically determine which tasks could be run in parallel
in order to derive the optimization hints for the deploy-
ment. The specification of the task graph for the exam-
ple of this paper is contained in Figure 6.

In contrast to the “soft” optimization hints, there
are also “hard” deployment constraints, such as safety-
related constraints, which affect the feasibility and va-
lidity of the results. These constraints must be satisfied
in order to obtain a valid deployment. For the exam-
ple use case, two additional safety requirements are as-
sumed to ensure reliability despite potentially harsh en-
vironmental conditions.

1. The tasks T6 DSP and T3 AttitudeObserver

must not share the same core.

2. The tasks T6 DSP and T4 HeightOberserver

must not share the same core.

Figure 7 shows how these requirements can be ex-
pressed as “hard” mapping constraints in ASSIST.

Based on the deployment specification described in
the listings above, ASSIST was able to determine all
valid deployment solutions. There are 208 different so-
lutions, which were computed in about 250 ms on a reg-
ular desktop computer. In order to find the “best” so-
lutions among the set of valid solutions, ASSIST al-
lows to apply a set of metrics to each deployment.
Those metrics allow to compute a score for each solu-
tion, which reflects the fulfillment of the optimization
goals reflected in the metrics. Solutions with the highest
scores are therefore assumed to be the “best” solutions.

Figure 8: Evaluation of Solutions

For the example use case, two optimization goals for
the deployment of the application tasks where pursued.

Most important is the achievement of parallel execu-
tion of tasks by the deployment. Therefore, solutions
should be ranked higher, if parallel tasks in the task
graph are indeed mapped to different cores. Further-
more, mapping solutions with a uniform core load are
preferred over solutions with a heterogeneous load. Fig-
ure 8 shows the selection of these metrics in ASSIST.
Setting the Weight of the Max parallelism metric to the
value of two allows to express the importance of the
first goal in comparison to the second optimization goal.
The automated evaluation with the aforementioned met-
rics identified two solutions with the highest score, from
which we selected one (see Figure 10).

As a last step, an AUTOSAR-OS configuration file is
generated by ASSIST, which constitutes a central engi-
neering artifact for the following steps in our engineer-
ing framework.

7 Static Analysis of OS Configura-
tion and Source Code

This section addresses the prerequisites for an auto-
mated low-level deployment of code and data in order to
provide the memory handling and memory protection.

7.1 AUTOSAR-OS System Model
AUTOSAR is a partnership between different automo-
tive manufacturers to design a standard for an embed-
ded automotive operating system. Currently there are
two versions of the standard, the AUTOSAR Classic
for static systems and AUTOSAR Adaptive for dynamic
systems. In this paper we only refer to the AUTOSAR
Classic family of operating systems. The AUTOSAR
system model is depicted in Figure 9.

The system is structured around OS-Applications that
are executed on one specific computing unit of the un-
derlying hardware. OS-Applications manages instruc-
tions and data in memory as an execution environ-
ment for one or more tasks. The tasks themselves
are schedulable execution units, each with its own data
and stack segment. By using hardware-based mem-
ory access protection, such as a memory protection
unit (MPU), the kernel memory can be spatially iso-
lated from OS-Applications. The same mechanisms
also allows for spatial isolation of OS-Applications from
other OS-Applications, as well as of tasks inside of OS-
Applications. This is indicated by the thick black lines
in Figure 9

The static structure of an AUTOSAR system, con-
sisting of the mapping of cores, OS-Applications, tasks
and memory protection regions as well as schedules and
timer events, is described in a configuration file. The
so called ARXML files are written in an AUTOSAR-
standardized XML format. Based on this file operat-
ing systems implementing the AUTOSAR standard can
generate operating system code reflecting the configu-
ration described in the ARXML file. Such an ARXML
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file is the output of ASSIST, which in turn can then be
used by Astrée for a semantic analysis of the operating
system and the application code.

7.2 Ensuring Memory and Type Safety
Despite the successful deployment of all software com-
ponents, memory and type safety need to be addressed
in order to ensure spatial isolation between all tightly
integrated software components. Memory safety in the
scope of the C programming language is defined as the
absence of memory accesses that trigger undefined be-
havior, as well as the absence of data races where shared
variables are accessed by concurrent threads without
proper synchronization. Although the C programming
language itself does not ensure memory safety, a sound
static analysis of the C source code is able to guarantee
memory safety at the programming language level.

Table 1: Mapping of Requirements of Type- and Mem-
ory Safety [2] to Astrée Alarm Types [1].

Requirement Alarm Type
Operations only applied for Invalid pointer comparison
instances of correct type Subtraction of invalid pointers

Attempt to write to a constant
Dereference of mis-aligned pointer
Overflow of Integers or Float
Invalid shift argument
Use of uninitialized variables
Division or modulo by zero
Undefined integer modulo
Invalid function calls
Unsynchronized access to shared data

Access only existing objects Dereference of null or invalid pointer
Pointer to invalid or null function
Use of dangling pointer
Arithmetics on invalid pointers
Possible overflow upon dereference

Access only inside object Incorrect field dereference
boundaries Out-of-bound array access

Dereference of mis-aligned pointer
Possible overflow upon dereference

In our framework we use the Astrée analyzer [17,
24]. Its main purpose is to report program defects
caused by unspecified and undefined behaviors accord-
ing to the C99 standard. The reported code defects
include integer/floating-point division by zero, out-of-

bounds array indexing, erroneous pointer manipulation
and dereferencing (buffer overflows, null pointer deref-
erencing, dangling pointers, etc.), data races, lock/un-
lock problems, and deadlocks. To deal with concurrency
defects, Astrée implements a low-level concurrent se-
mantics [23] which provides a scalable sound abstrac-
tion covering all possible thread interleavings. The an-
alyzer takes task priorities into account and, for multi-
core systems, the mapping of tasks to applications and
cores. Table 1 shows the relation between memory and
type safety and the defects found by Astrée. Astrée is
widely used in safety-critical systems, and provides the
necessary tool qualification support, including Qualifi-
cation Support Kits and Qualification Software Life Cy-
cle Data reports.

The AUTOSAR-OS configuration file produced by
ASSIST during the high-level deployment is parsed by
Astrée to automatically generate a matching analysis
configuration that models the asynchronous execution
of the various tasks and ISRs. Astrée returns a list of
potential code defects. An analysis resulting in zero
alarms guarantees the absence of memory safety vio-
lations in the C source code. Since the C semantics
assumes unlimited stack space, the source-level analy-
sis needs to be complemented by a sound static stack-
usage analysis at the binary level to prove the absence of
stack overflows [16]. Moreover, using a formally veri-
fied compiler ensures that no memory safety defects are
introduced by miscompilation [21]. Together, these ap-
proaches are able to prevent software-induced memory
corruption, hence establishing memory safety.

Besides reporting runtime errors and concurrency de-
fects, Astrée also produces detailed data and control
flow reports. Soundness provides a guarantee that nei-
ther control flow paths nor read or write accesses are
missed, even in case of data or function pointer accesses,
or task interference. Global data and control flow anal-
ysis gives a summary of variable accesses and function
invocations throughout program execution.



Figure 10: Deployment solution found by ASSIST

Table 2: Excerpt from Astrée Data Flow Report
Variable Function Access Process Data Races Shared Class
In_altCtr_AccZ_g_altObs_noiseVariance TASK_T1_Controllers write T1 Controllers no no process local
In_altCtr_AccZ_g_altObs_processVariance TASK_T1_Controllers write T1 Controllers no no process local
Out_accX_g_dsp_noiseVariance TASK_T3_AttitudeObserver read T3 AttitudeObserver yes yes global
Out_accX_g_dsp_noiseVariance TASK_T6_DSP write T6 DSP yes yes global
Out_accX_g_dsp_processVariance TASK_T3_AttitudeObserver read T3 AttitudeObserver yes yes global
Out_accX_g_dsp_processVariance TASK_T6_DSP write T6 DSP yes yes global
Out_torqueX_NM_attCtr TASK_T2_EngineController read T2 EngineController yes yes core local
Out_torqueX_NM_attCtr STEP_AttitudeController write T1 Controllers yes yes core local
Out_torqueX_NM_engCtr TASK_T3_AttitudeObserver read T3 AttitudeObserver yes yes core local
. . . . . . . . . . . . . . . . . . . . .

The reports also contain each effectively shared vari-
able, the list of tasks accessing it, the application and
the core to which the task has been assigned, and the
types of the accesses (read, write, read/write). Indirect
variable accesses via pointers as well as function pointer
call targets are fully taken into account. Filtering allows
determining the control and data flow per software com-
ponent, thus supporting the analysis of data and control
coupling as required by DO-178C. An excerpt from the
data flow report for the example system is shown in Ta-
ble 2. Note that Astrée detects data races for each of
the shared variables in our example system, which is
expected, because the code does not contain any syn-
chronization mechanisms.

8 Memory Mapping
After the definition of the system, the deployment of
all software components, and the analysis for memory
safety, the next step constitutes the low-level mapping
of all instructions and their data to the physical mem-
ories of the specific microcontroller. This step is also
called binding.

8.1 Heterogeneous Memory
This task is especially important for multicore proces-
sors with heterogeneous memories, such as the AURIX
TC277, in order to achieve good runtime behavior
as well as spatial isolation for freedom from inter-
ference. The AURIX TC277 offers six core-coupled
SRAMs for data (DSPR) and instructions (PSPR), a
non-volatile flash memory (PMU) and a bus-accessed
SRAM (LMU). It is possible to access any of the mem-
ories from any of the cores using the microcontroller’s
bus. However, read and write operations to the core-
coupled SRAM take only one CPU cycle if they origi-

nate from the coupled core, whereas memory accesses
via the bus take more time. Moreover, accesses via the
bus have less deterministic access times because of in-
terference due to concurrent bus accesses. The flash
memory is also equipped with error correction capabili-
ties to ensure data integrity.

8.2 Data and Function Classes
At the same time, data and functions exhibit traits such
as origin of access, type of access, frequency of ac-
cess, and logical traits such as being constant or used for
in-system calibration. The combination of these proper-
ties favors the binding of each data item or function to
a different memory of the microcontroller. Data items
and functions that exhibit similar traits can be grouped
to variable and function classes, each with a set of pre-
ferred memories dictated by a binding policy. In the
I4Copter example two orthogonal types of classifica-
tion exists: task-wise and core-wise. Task-local data
and functions are only accessed by a single task whereas
task-global data is accessed by two or more tasks. Anal-
ogous to this, core-local data and functions are only
accessed from a single core, while core-global data
and functions are shared between different cores. Con-
stant data items are grouped into different classes, as
their read-only property makes them suitable for binding
them to the flash memory and relying on core-coupled
cache memories to reduce access times.

8.3 Binding Policy
Binding policies describe to which memory a particular
data item or functions should be mapped, depending on
both the properties exhibited by the available memories
as well as the variable and function classes.

An example for such a policy is the mapping of
task-local, core-local data to the core-coupled SRAM



to achieve the fastest access time. Another policy is
that task-global, core-global data is mapped to the core-
coupled memory of the core from which most accesses
are originating. As the capacity of these memories is
finite, it needs to be decided which data and functions
are bound first. This can be done by optimizing policies,
ranging from a very simple one based on the total access
frequency, using different weights for read and write op-
erations, to complex optimization algorithms using ei-
ther constraint solving problems or integer linear pro-
gramming.

In the I4Copter example presented in this paper, data
items are sorted by the total amount of reads and writes
to these data items. The access frequencies are deter-
mined by taking the amount of read and writes reported
by Astrée multiplied by the amount of task activations
during one hyperperiod (9 ms) of the system. Data items
with a higher count of total accesses are mapped first.

8.4 Automated Memory Mapping
Gathering the information about data and function traits,
combining it into classes and then creating a mapping
to hardware memories is not feasible if done manually
in systems of arbitrary complexity. The cAMP tool ad-
dresses this problem by automatically generating a map-
ping of instructions and data to memories. For this,
all available information from the previous development
steps is used: deployment information from ASSIST by
taking into account the deployment solution described
in the generated ARXML file. Information about data
and functions traits can be extracted from Astrée by tak-
ing into account the data flow report (see Table 2). Fi-
nally, also the requirements from the system specifica-
tion such as task times, safety requirements and con-
straints are taken into account.

The information is aggregated within cAMP and used
to generate a binding of data and functions to memories,
as well as assigning MPU-enforced memory protection
regions to each used section of memory. The binding
is performed by following the binding policies for the
selected hardware. The result of this process is a linker
script that describes the memory mapping and exposes
the sections needed to configure the system’s MPU.

To reduce the amount of effort necessary to use the
linker script, i.e., the assignment of individual variables
and functions to the various memory sections, cAMP is
able to interface with code generation tools to automati-
cally include the necessary annotations in the generated
code. In its current form, cAMP is able to interface with
TargetLink, a widely used C code generator for Mat-
Lab/Simulink.

The use of cAMP allows the automatic tailoring of
applications to specific hardware and memory layouts
by creating a reproducible binding process. Using
code generation and platform-based development adds
further benefits, such as automatic code adaption and
reusable binding policies. The automatic binding of

data and code results in a significant reduction of soft-
ware development time, while being less error-prone
than manual binding.

9 Related Work
The basic idea for our framework is inspired by KESO
and program families presented by Parnas [26]. Parnas
was one of the first to give thought to program fami-
lies and software-product lines (SPL). He described the
problem in the context of operating systems. Building
on his ideas, later approaches examined the variability
challenge in large software systems. For instance, Sin-
cero et al. [34] investigated the Linux kernel and treated
it as an SPL through configuration analyses. Liebig et
al. [22] looked at configurable software composed in
C and explored ways to deal with the complexity in-
duced through preprocessor directives. There are also
solutions (e.g., [11, 33]), which use generative program-
ming [9] to create program variants from configurabil-
ity models. Another project that leverages the idea of
program families is an operating-system construction
kit called PURE [6]. The authors define a base set
of reusable OS-infrastructure components (e.g., threads,
scheduling, concurrency, interruptions or memory ser-
vice) needed to build infrastructure services. For in-
stance, light-weight threads that can be used to com-
pose address spaces and processes. The authors em-
ploy a configuration- and code-generation-based frame-
work to create operating-system variants. Different
from these prior works, we allow to manipulate spa-
tial and temporal isolation properties in an early design
phase based on architecture- and code-analyzing tech-
niques of reusable application parts that can also be de-
veloped using model-based techniques.

The KESO Java Virtual Machine [35] provides an
isolation concept that is similar to the process concept
found in general-purpose operating systems. KESO fea-
tures a compiler, which is able to produce a virtual ma-
chine environment specialized for a particular applica-
tion. Therefore, KESO adopts ideas from Parnas’ ap-
proach. In the following, we describe the characteristics
of KESO that are relevant for our work. Spatial iso-
lation ensures that control flows are only able to access
memory of data regions belonging to the protection zone
(called domain) in the context of which the control flow
is being executed. Therefore, each piece of data can be
logically assigned to exactly one domain. In Java, type
safety ensures that programs can only access memory
regions to which they were given an explicit reference;
the type of the reference also determines in which way
a program can access the memory region pointed to by
the reference. To achieve spatial isolation, the KESO
compiler enforces that a reference value is never present
in more than a single domain. Different from KESO,
our applications are not developed in Java but using a
model-based technique in which the generated C code
is analyzed using abstract interpretation in order to cre-



ate memory-safe C code. We extended Astrée to use in-
formation on the AUTOSAR OS threading model to—
amongst other things— be able to perform a flow- and
context-sensitive analysis based on OS-Applications to
build logical isolation zones that are enforced by mem-
ory protection hardware.

The article [25] addresses problems similar to those
addressed by our work, but assumes a different commu-
nication model. In contrast to AUTOSAR, which uses
shared memory for communication between task, their
communication model is based on Kahn Process Net-
works, and the used operating system is based on a non-
shared memory model. For spatial isolation, they rely
solely on the use of the MPU to ensure dynamic fault
containment. We, in contrast, use sound static analysis
of the integrated source code to foster safety by con-
struction and utilize the MPU as a safety net. Moreover,
the high-level deployment is not part of their workflow
but assumed as an input.

10 Conclusion
The authors present the results of a joint research and
development project towards an engineering framework
for using generic software components in safety-critical
embedded systems. The framework combines sev-
eral tools, so that generic software components can be
adapted to a particular microcontroller and analyzed for
memory integrity. Common starting point is a model of
the system architecture comprising of a system specifi-
cation and a functional architecture. Additional infor-
mation about the target hardware (microcontroller fam-
ily) and a library of generic software components is con-
sidered to be available as well. These specifications are
passed through different engineering tools and code an-
alyzers via common exchange formats.

In particular, the tool suite ASSIST allows to generate
software allocations for the targeted hardware. By in-
cluding timing constraints, it also allows to construct a
static schedule, thus ensuring the feasibility of the sys-
tem design. This results in an operating system config-
uration describing the spatial and temporal behavior of
all software components.

In combination with the generated application soft-
ware, the C sources are examined with Astrée. By re-
moving memory and type defects found during the anal-
ysis, memory integrity can be ensured at the C code
level. Furthermore, information about data and function
access behavior is collected during the analysis step. In
a final step, this information is used by cAMP to per-
form the low-level mapping of data and functions to
physical memories and protection regions.

The final result comprises of annotated application
code and a linker script describing the memory map-
ping, which is guaranteed to satisfy all project-specific
safety requirements and to utilize the capabilities of the
microcontroller. The final results as well as the interme-
diate work products can be found on GitHub [7]. Us-

ing this framework allows to adapt generic application
software for safety-critical systems in an efficient and
automated manner, so that software reusability can be
achieved without reducing resource utilization or jeop-
ardizing system safety.
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[16] D. Kästner and C. Ferdinand. Proving the Absence of
Stack Overflows. In SAFECOMP ’14: Proceedings of
the 33th International Conference on Computer Safety,
Reliability and Security, volume 8666 of LNCS, pages
202–213. Springer, September 2014.
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W. Schröder-Preikschat. I4Copter: An adaptable and
modular quadrotor platform. In 26th ACM Symp. on Ap-
plied Computing (SAC ’11), pages 380–396, New York,
NY, USA, 2011. ACM.

https://www4.cs.fau.de/Research/I4Copter/
https://www4.cs.fau.de/Research/I4Copter/

	Title
	Introduction
	Problem Statement
	General Approach
	Contribution

	Conceptual Overview
	I4Copter
	Platform Development
	System Architecture
	Deployment
	Static Analysis of OS Configuration and Source Code
	AUTOSAR-OS System Model
	Ensuring Memory and Type Safety

	Memory Mapping
	Heterogeneous Memory
	Data and Function Classes
	Binding Policy
	Automated Memory Mapping

	Related Work
	Conclusion

