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An Asymptotic Preserving scheme for the
shallow-water equations with Manning friction using

viscous correction of the HLL scheme
Solène Bulteau∗ Christophe Berthon †

Marianne Bessemoulin-Chatard ‡

December 9, 2021

Abstract. The aim of this paper is to propose a numerical scheme for the shallow-
water equations with a Manning’s friction source term able to preserve the diffusive
regime, namely the behavior of the solutions in long time and stiff friction limit. Because
of the non-usual rescaling of the friction parameter, a strongly nonlinear derivative
operator is involved in the diffusive limit and the development of a numerical scheme
possessing this property is not straightforward. The scheme presented here is based on
a perturbed HLL scheme with additional viscous terms.

Keywords. Finite volume schemes, asymptotic-preserving schemes, conservation laws
with source term, shallow-water equations.
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1 Introduction
This paper is devoted to the development of an asymptotic preserving scheme, based
on a perturbed HLL discretization, to approximate the solutions of the shallow-water
equations with a Manning’s friction source term [24]. The system of interest reads:

∂th+ ∂xq = 0,

∂tq + ∂x

(
q2

h
+

gh2

2

)
= −k|q|qh−η,

(x, t) ∈ R× R+, (1)

where the unknowns, h(x, t) > 0 and q(x, t) ∈ R, both depending on space and time,
respectively denote the water height and the discharge. As usual, the water velocity is
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given by u = q/h. In the model, g = 9.81 m.s−2 is the gravity constant while k and η
denote friction parameters according to the Manning friction model [24]. In general, η
is given by 7/3. Concerning the parameter k, called Manning coefficient, it defines the
intensity of the friction to be adopted.

Here, we are interested in the behavior of h and q in long time and dominant friction,
and faraway from dry areas. Since our aim is to build a numerical scheme able to preserve
the correct asymptotic behavior of the solutions, we formally recall the derivation of the
asymptotic diffusive regime. A small parameter ε is thus introduced in order to govern
the time t and the friction coefficient k as follows:

t← t/ε and k ← k/ε2. (2)

The friction parameter has to be rescaled differently than the time because of the
quadratic term in q in the source term (see [5, 13]). With this scaling, the system (1)
now reads: 

ε∂th+ ∂xq = 0,

ε∂tq + ∂x

(
q2

h
+

gh2

2

)
= − k

ε2
|q|qh−η.

(3)

To study the behavior of h and q when ε tends to zero, the following Chapman-Enskog
expansions of the unknowns are introduced:

h = h0 + εh1 + . . . and q = q0 + εq1 + . . . . (4)

The here considered water height h is assumed to be positive but, thereafter, we also
have to impose the positivity of its first-order term, namely h0 > 0. Plugging expansions
(4) in the rescaled system (3), enforcing ε to zero, we obtain the following limit system:{

∂xq
0 = 0,

− k|q0|q0(h0)−η = 0.
(5)

Since h0 > 0, the second expression of the above system necessarily gives q0 = 0. Then,
from (3), we now obtain the following limit problem:

∂th
0 + ∂xq

1 = 0,

∂x

(
g(h0)2

2

)
= −k|q1|q1(h0)−η.

(6)

The second expression of the above system leads to the following definition of q1, called
the local equilibrium (see [20]):

q1 = −sign(∂xh0)

√
(h0)η

k

∣∣∣∣∂x(g(h0)2

2

)∣∣∣∣. (7)

Next, considering the h0 governing evolution equation in (6), we obtain the following
nonlinear diffusion equation:

∂th
0 + ∂x

(
−sign(∂xh0)

√
(h0)η

k

∣∣∣∣∂x(g(h0)2

2

)∣∣∣∣
)

= 0. (8)

In the above equation, we may recognize a non stationary p-laplacian type equation
supplemented with a nonlinear flux function. Let us underline that the p-laplacian
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equation, known to be a degenerate parabolic equation, has been widely studied
(see [2, 19, 23, 26] for theoretical aspects and [1, 4, 22, 25] for some numerical studies)
and appears in several physical problems as, for instance, in non-newtonian fluids [12].

The aim of this work is to derive a scheme for (1) such that, in the diffusive regime,
the approximate solution is consistent with the limit problem (6), or equivalently
(7)-(8). This property to be satisfied by the numerical scheme, called asymptotic
preserving (AP) [5–9, 11, 14, 17, 20], is not straightforward and the development of
AP-schemes requires a particular attention. During the two last decades, numerous
AP-schemes were proposed in the literature. For instance, in [3, 6, 7], AP numerical
strategies have been introduced to accurately approximate the asymptotic diffusive
regime issuing from the radiative transfer models. We also refer to [21] where an
AP-scheme is derived to approximate the solutions of the isentropic gas dynamics in
the Darcy law regime. Next, in [6], a generic formulation of AP-schemes is proposed
by a suitable extension of the well-known HLL scheme [18]. At the wide discrepancy
with the above mentioned works where the source term rescaling is governed by 1/ε,
according to (2), in the present paper we have to deal with a rescaling prescribed
by 1/ε2. High order source term rescaling in 1/εm are considered in [5] where the
asymptotic diffusive regime is established to be strongly nonlinear. Of course, this
nonlinearity is clearly stated in (8). In [5], the authors concluded the asymptotic diffu-
sion study by the derivation of a generic numerical scheme. More recently, in [13], the
shallow-water model with a Manning friction given by (1) is adopted and a scheme with
interesting asymptotic behavior is derived. However, the diffusion regime satisfied by
the introduced method comes from an extension of the numerical technique introduced
in [6] designed for a scaling of the stiffness given by 1/ε. As a consequence, the authors
established a correct numerical asymptotic behavior of the water height. But, in [13],
the expected regime verified by the discharge, according to (8), is no longer preserved.
In this sense, the numerical scheme proposed in [13] is at most partially asymptotic
preserving. The present work is motivated in the design of a numerical scheme able to
fully restore the expected asymptotic diffusive regime given by both relations (7) and (8).

The paper is organized as follows. Section 2 is dedicated to the presentation of
the considered general framework. It allows to introduce several notations useful in
the next sections and to present a generic form for all the schemes presented in this
paper. Afterwards, in Section 3, the scheme given in [13] for the system under concern
(1) is recalled. The failure of this extension of the scheme presented in [6] is then
highlighted. Indeed, this scheme is able to preserve terms of order zero, namely h0

given by (8), but not of order one. As a consequence, the relation (7) to govern q1 is
not preserved and the resulting scheme is said a priori partially asymptotic preserving.
In fact, by studying the asymptotic behavior of the discharge, since the scheme adopts
a nonphysical scaling in 1/ε, we exhibit an additional relation satisfied once again by
h0. This new relation combined with (8) make this scheme not asymptotic preserving.
This failure is illustrated with several numerical experiments. In Section 4, an extension
of the generic method introduced in [6], respecting the natural rescaling of the source
term stiffness, is proposed. This generalization is able to deal with stiffness rescaled in
1/εm with m ∈ N∗. From now on, we emphasize that the here derived scheme turns out
to be a revisit of the numerical approach introduced in [5]. Next, this proposed method
is applied on the model (1), for which m = 2, and the diffusive limit regime, given by
(7) and (8), is proved to be preserved by the here designed numerical technique. More
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precisely, the respect of the natural rescaling allows to catch consistent discretizations of
the order zero, to get (8), and the order one, to get (7), of the solutions in the diffusive
regime. Finally, Section 5 is devoted to the numerical results to illustrate the interest
of the developed scheme.

2 A Godunov-type scheme with source term
For the sake of completeness in the forthcoming developments, we briefly detail the
asymptotic preserving numerical technique introduced in [6]. To address such an issue,
we consider hyperbolic systems with source terms as follows:

∂tW + ∂xF (W ) = k (R(x,W )−W ) , (x, t) ∈ R× R+, (9)
where W ∈ Ω is the vector of the unknowns, with Ω ∈ RN the phase space, F (W ) ∈ RN

is the physical flux and R(W ) ∈ RN is a function occurring in the source term. We
immediately notice that the system (1) enters in such a formalism with

W = t (h, q) , F (W ) = t

(
q,

q2

h
+ g

h2

2

)
and R(x,W ) = t

(
h, q − q|q|h−η

)
. (10)

For the sake of simplicity, we assume k to be a constant and we refer to [6] for more
complex interactions.

Next, we introduce a free parameter, denoted k, such that the system (9) equivalently
reformulates as follows:

∂tW + ∂xF (W ) =
(
k + k

) (
R(x,W )−W

)
, (x, t) ∈ R× R+, (11)

with
R(x,W ) =

k

k + k
(R(x,W )−W ) +W. (12)

In fact, from a numerical point of view, k will play the role of a correction to be
prescribed in order to recover the expected numerical asymptotic regime.

First, we consider the space discretization made of cells (xi−1/2, xi+1/2)i∈Z with a
constant size ∆x such that xi+1/2 = xi−1/2 + ∆x for all i ∈ Z. Next, concerning the
time discretization, we adopt tn+1 = tn +∆t where ∆t > 0 denotes the time increment
and where t0 = 0. As usual, in order to enforce some stability conditions, the time
increment will be restricted according to a CFL like condition [10]. Now, equipped
with (Wn

i )i∈Z over each cell (xi−1/2, xi+1/2) at time tn, we search for relevant updated
states (Wn+1

i )i∈Z to approximate the solution of (11) at time tn+1. Following [6], the
required updated states are obtained by adopting a Godunov-type scheme [15, 16, 18].
To address such an issue, we first exhibit an approximate Riemann solver made of four
constant states separated by three discontinuities (see Figure 1). According to [6], the
approximate Riemann solver of interest reads as follows:

W̃
(x
t
,WL,WR

)
=



WL, if x

t
≤ −λLR,

αLRW
∗ + (1− αLR)R(0−,WL), if − λLR <

x

t
≤ 0,

αLRW
∗ + (1− αLR)R(0+,WR), if 0 <

x

t
≤ λLR,

WR, if λLR <
x

t
,

(13)
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x
0

|
−∆x/2

|
∆x/2

t
λLR−λLR

WL

W ∗
L W ∗

R

WR

Figure 1: Structure of the approximate Riemann solver

where the parameter αLR is defined by

αLR =
2λLR

2λLR +
(
k + kLR

)
∆x

. (14)

The main originality in this approximate Riemann solver remains in the introduction
of the source term within the two intermediate states separated by a stationary dis-
continuity. Moreover, for the sake of simplicity in the forthcoming derivations, we here
have adopted a symmetric fan made of speed waves −λLR < 0 < λLR. Extensions with
speed waves λL < 0 < λR are straightforward and they are left to the reader. In (13),
the vector W ∗ denotes the intermediate state of the classical HLL scheme introduced
in [18], defined by

W ∗ =
1

2
(WR +WL)−

1

2λLR

(F (WR)− F (WL)) ,

and the following notation is used in the definition (13) of the Riemann solver:

R(0±,W ) = lim
x→0±

R(x,W ).

We underline that, for the specific symetric speeds we consider, the HLL scheme reduces
to the Rusanov scheme. In order to obtain the expected updated states, we first put
the approximate Riemann solver W̃ (

x−x
i+1

2

t ,Wn
i ,W

n
i+1) at each interface xi+ 1

2
for all

i ∈ Z. Next, we define Wn+1
i as follows:

Wn+1
i =

1

∆x

∫ xi

x
i− 1

2

W̃

(
x− xi− 1

2

∆t
,Wn

i−1,W
n
i

)
dx

+
1

∆x

∫ x
i+1

2

xi

W̃

(
x− xi+ 1

2

∆t
,Wn

i ,W
n
i+1

)
dx.

With clear notations stated at each interface xi+ 1
2
, after straightforward computations
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we obtain:

Wn+1
i = Wn

i −
∆t

2∆x

(
αi+ 1

2

(
F (Wn

i+1)− F (Wn
i )
)
+ αi− 1

2

(
F (Wn

i )− F (Wn
i−1)

))
+

∆t

2∆x

(
αi+ 1

2
λi+ 1

2

(
Wn

i+1 −Wn
i

)
− αi− 1

2
λi− 1

2

(
Wn

i −Wn
i−1

))
+
k∆t

2

(
αi+ 1

2

(
R(x−

i+ 1
2

,Wn
i )−Wn

i

)
+ αi− 1

2

(
R(x+

i− 1
2

,Wn
i )−Wn

i

))
.

(15)
Applying the above generic discretization to the shallow-water equations with Man-

ning friction (1), we obtain

hn+1
i = hn

i −
∆t

2∆x

(
αi+ 1

2

(
qni+1 − qni

)
+ αi− 1

2

(
qni − qni−1

))
(16)

+
∆t

2∆x

(
λi+ 1

2
αi+ 1

2

(
hn
i+1 − hn

i

)
− λi− 1

2
αi− 1

2

(
hn
i − hn

i−1

))
,

qn+1
i = qni −

∆t

2∆x

(
αi+ 1

2

(
(qni+1)

2

hn
i+1

+ g
(hn

i+1)
2

2
− (qni )

2

hn
i

− g
(hn

i )
2

2

)
(17)

+αi− 1
2

(
(qni )

2

hn
i

+ g
(hn

i )
2

2
−

(qni−1)
2

hn
i−1

− g
(hn

i−1)
2

2

))
+

∆t

2∆x

(
λi+ 1

2
αi+ 1

2

(
qni+1 − qni

)
− λi− 1

2
αi− 1

2

(
qni − qni−1

))
−k∆t

2

(
αi+ 1

2
+ αi− 1

2

)
qni |qni |(hn

i )
−η,

where the wave velocities (λi+ 1
2
)i∈Z are fixed as follows:

λi+ 1
2
= max

(
|qni |
hn
i

+
√
ghn

i ,
|qni+1|
hn
i+1

+
√

ghn
i+1

)
for all i ∈ Z. (18)

The coefficient α is still defined by (14), where the parameter k, in order to restore the
expected asymptotic preserving property, plays the role of a free parameter and is fixed
to catch a discretization of the correct limit in the diffusive regime.

3 Failure of an asymptotic preserving scheme
In this section, we recall the scheme developed in [13] and we show that the expected AP-
property is not fully satisfied. We adopt the scheme (16)-(17) with the wave velocities
(18). According to [13], in order to recover the asymptotic diffusion equation (8), the
parameters (ki+ 1

2
)i∈Z are given by

ki+ 1
2
= 2λ2

i+ 1
2

√
k|hn

i+1 − hn
i |

g∆x((hn
i+1)

η + (hn
i )

η)(hn
i+1 + hn

i )
− k for all i ∈ Z. (19)

This correction has been selected in order to get a consistent approximation of the
diffusive equation (8) in the asymptotic regime. However, this limit regime is obtained
adopting the following rescaling of the time increment ∆t and the friction coefficients k
and kLR, using a small parameter ε:

∆t← ∆t/ε, k ← k/ε and kLR ← kLR/ε.
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Once again, we underline that this rescaling is not the natural rescaling of the friction,
given by (2). As a consequence, this rescaling is inconsistent with the continuous
framework.

After injecting the above rescaling, the scheme (16)-(17) now reads as follows:

hn+1
i = hn

i −
∆t

2ε∆x

(
αε
i+ 1

2

(
qni+1 − qni

)
+ αε

i− 1
2

(
qni − qni−1

))
(20)

+
∆t

2ε∆x

(
λi+ 1

2
αε
i+ 1

2

(
hn
i+1 − hn

i

)
− λi− 1

2
αε
i− 1

2

(
hn
i − hn

i−1

))
,

qn+1
i = qni −

∆t

2ε∆x

(
αε
i+ 1

2

(
(qni+1)

2

hn
i+1

+ g
(hn

i+1)
2

2
− (qni )

2

hn
i

− g
(hn

i )
2

2

)
(21)

+αε
i− 1

2

(
(qni )

2

hn
i

+ g
(hn

i )
2

2
−

(qni−1)
2

hn
i−1

− g
(hn

i−1)
2

2

))
+

∆t

2ε∆x

(
λi+ 1

2
αε
i+ 1

2

(
qni+1 − qni

)
− λi− 1

2
αε
i− 1

2

(
qni − qni−1

))
−k∆t

2ε2

(
αε
i+ 1

2
+ αε

i− 1
2

)
qni |qni |(hn

i )
−η.

where α, defined by (14) is also rescaled to get:

αε
i+ 1

2
=

2λi+ 1
2
ε

2λi+ 1
2
ε+ (k + ki+ 1

2
)∆x

, (22)

and with ki+ 1
2

defined by (19).

In the following theorem, we exhibit the failure of the above scheme. We only
consider the case with a non constant water height for the sake of simplicity. Indeed, a
failure in this particular case is enough to invalidate the asymptotic preserving nature
of the scheme.

Theorem 3.1. We assume that hn,0
i > 0 for all i ∈ Z and we consider a cell [xi− 1

2
, xi+ 1

2
]

such that hn,0
i ̸= hn,0

i−1 and hn,0
i ̸= hn,0

i+1. Then, in the limit of ε to zero, the first equation
of the scheme (20) reads as follows:

h0,n+1
i − h0,n

i

∆t
=

1

∆x

sign
(
h0,n
i+1 − h0,n

i

)√√√√ (h0,n
i+1)

η + (h0,n
i )η

2k

∣∣∣∣∣ g2 (h
0,n
i+1)

2 − g
2 (h

0,n
i )2

∆x

∣∣∣∣∣
(23)

−sign
(
h0,n
i − h0,n

i−1

)√√√√ (h0,n
i )η + (h0,n

i−1)
η

2k

∣∣∣∣∣ g2 (h
0,n
i )2 − g

2 (h
0,n
i−1)

2

∆x

∣∣∣∣∣
 ,

while the second equation (21) reduces to a discretization of

∂xh
0 = 0. (24)

As expected with the choice of k, the discrete diffusion equation (23) is a consistent
discretization, when ∆x and ∆t tend to zero, of the diffusion equation (8). The
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first result (23) thus assesses the asymptotic preserving property of the scheme
(20)-(21) in the sense that the diffusive limit (8) is preserved. This is the meaning of
asymptotic-preserving adopted in [13].

However, here, we also study the behavior of the second equation of the scheme
(21) in the diffusive regime, and the result given by (24) does not coincide with a
discretization of the expected local equilibrium (7). Moreover, this new statement
establishes a constant behavior of (hn

i )i∈Z as ε goes to zero, wich arises in contradiction
with the specific non constant water height case we consider.

Proof. The zero-order expansions of (hn
i )

n
i and (qni )

n
i read

hn
i = h0,n

i +O(ε) and qni = q0,ni +O(ε).

Moreover, since we consider an interface with a non constant water height, the coefficient
αε is of order ε at interfaces xi− 1

2
and xi+ 1

2
:

αε
i− 1

2
= O(ε) and αε

i+ 1
2
= O(ε). (25)

Using the above expressions, in the limit of ε to zero, the second equation of the scheme
(21) yields to

q0,ni |q
0,n
i |(h

0,n
i )−η = 0 for all i ∈ Z.

Since h0,n
i > 0, we immediately get q0,ni = 0. Now, once again with (25), the scheme

(20) is written as follows in the limit of ε to zero:

h0,n+1
i = h0,n

i +
∆t

2∆x

(
λi+ 1

2
lim
ε→0

αε
i+ 1

2

ε

(
h0,n
i+1 − h0,n

i

)
− λi− 1

2
lim
ε→0

αε
i− 1

2

ε

(
h0,n
i − h0,n

i−1

))
.

(26)
Using the definition of αε

i+ 1
2

given by (22) and the definition of ki+ 1
2

given by (19), we
have:

lim
ε→0

αε
i+ 1

2

ε
=

1

λi+ 1
2

√√√√g((h0,n
i+1)

η + (h0,n
i )η)(h0,n

i+1 + h0,n
i )

k∆x|h0,n
i+1 − h0,n

i |
. (27)

and the limit scheme (26) coincides with the expected limit (23).

Now we prove that the second equation (21) converges towards a discretization of
(24). Since q0,ni = 0 and with (25), when ε tends to zero, the relation (21) reduces as
follows:

lim
ε→0

αε
i+ 1

2

ε

(h0,n
i+1)

2 − (h0,n
i )2

∆x
+ lim

ε→0

αε
i− 1

2

ε

(h0,n
i )2 − (h0,n

i−1)
2

∆x
= 0.

Moreover, since (27) holds, the above relation can be rewritten

sign
(
h0,n
i+1 − h0,n

i

∆x

)
1

λi+ 1
2

√√√√((h0,n
i+1)

η + (h0,n
i )η)(h0,n

i+1 + h0,n
i )3

∣∣∣∣∣h
0,n
i+1 − h0,n

i

∆x

∣∣∣∣∣
+sign

(
h0,n
i − h0,n

i−1

∆x

)
1

λi− 1
2

√√√√((h0,n
i )η + (h0,n

i−1)
η)(h0,n

i + h0,n
i−1)

3

∣∣∣∣∣h
0,n
i − h0,n

i−1

∆x

∣∣∣∣∣ = 0.
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Now, we show that the above discretization is consistent with (24). To address such
an issue, let us consider h0(x) a smooth enough function such that h0,n

i = h0(xi) and
h0,n
i±1 = h0(xi ±∆x). As a consequence, we easily get:

sign
(
∂xh

0(xi) +O(∆x)
) 1

λi+ 1
2

√
16(h0(xi))η+3 |∂xh0(xi)|+O(∆x)

+sign
(
∂xh

0(xi) +O(∆x)
) 1

λi− 1
2

√
16(h0(xi))η+3 |∂xh0(xi)|+O(∆x) = 0.

The above equality can thus be rewritten as follows:(
sign

(
∂xh

0(xi) +O(∆x)
)

λi+ 1
2

+
sign

(
∂xh

0(xi) +O(∆x)
)

λi− 1
2

)
×
√
(h0(xi))η+3 |∂xh0(xi)|+O(∆x) = 0.

Since the wave speeds (λi+ 1
2
)i∈Z are positive then, when ∆x tends to zero, the above

expression is consistent with the expected limit (24). The proof is thus achieved.

From now on, let us illustrate the inappropriate behavior of the discretizations given
by the scheme (20)-(21). To address such an issue, two different initial conditions are
considered. They are defined on the spatial domain [−5, 5] and are given as follows.

• Continuous initial condition:

h0(x) =


2 if x < −1,
1

2

(
3 + sin

(
3πx

2

))
if − 1 ≤ x < 1,

1 else,

and q0(x) = 0. (28)

• Discontinuous initial condition:

h0(x) =

{
2 if x < 0,

1 else,
and q0(x) = 0. (29)

These two initial conditions are displayed on Figure 2.

Figure 2: Initial water height.
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Moreover, the parameter k is set equal to 1, the parameter η is equal to 7/3 and
zero-flux boundary conditions are used.

As we can observe in dotted line on Figures 3 and 4, the water height in the
asymptotic regime is non constant. Thus we are in the framework of the Theorem
3.1 and we expect the scheme (20)-(21) not to be asymptotic preserving. First, we
compare the discretization of the water height given by the equation (20) with the
straightforward discretization (23) of the diffusive limit. On Figure 3, we display the
approximate water height, at time t = 0.01 and for the continuous initial condition,
obtained with the scheme (20)-(21) for different values of ε, the asymptotic parameter.
The dotted line corresponds to the limit water height obtained with (23). The same
plots, obtained for the discontinuous initial condition, can be observed on Figure 4.
The preservation of the diffusive limit by the scheme (20)-(21) developed in [13] cannot
be observed, which is in agreement with Theorem 3.1.

(a) N = 100 (b) N = 800

Figure 3: Water height at time t = 0.01 with the continuous initial condition for different
values of ε.

(a) N = 100 (b) N = 800

Figure 4: Water height at time t = 0.01 with the discontinuous initial condition for
different values of ε.

To complete this illustration, we display on Figures 5 and 6 the water height
obtained for a fixed value of ε and different number of cells. The water height
discretized by the limit scheme (23) is still obtained with 800 cells.
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(a) ε = 0.01 (b) ε = 0.0001

Figure 5: Water height at time t = 0.01 with the continuous initial condition for different
number of cells.

(a) ε = 0.01 (b) ε = 0.0001

Figure 6: Water height at time t = 0.01 with the discontinuous initial condition for
different number of cells.

Moreover, to observe the behavior of the order one of the approximate discharge
given by the scheme (20)-(21), we consider (qni /ε)

n
i where (qni )

n
i is the discharge given

by (21). We compare it with the following discretization of the local equilibrium (7) :

qni = −sign
(
hn
i+1 − hn

i−1

)√ (hn
i )

η

k

∣∣ g
2 (h

n
i+1)

2 − g
2 (h

n
i−1)

2
∣∣

2∆x
, (30)

where (hn
i )

n
i is given by the discrete diffusion equation (23). This comparison is

displayed on Figures 7 and 8 for a fixed value of N and different values of ε. We can
observe that, for a fixed number of cells, more ε is small and more the order one of
the approximate discharge is far from the discrete local equilibrium. This allows us
to confirm that the scheme (20)-(21) is not asymptotic preserving in the sense that it
does not preserve both the diffusive limit (8) and the local equilibrium (7).

Finally, on Figures 9 and 10, we display the order one of the discharge compared
to the discrete local equilibrium (30) for a fixed value of ε and different number of
cells. Once again, we remark that the scheme (20)-(21) fails capturing the expected
asymptotic behavior.
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(a) N = 100 (b) N = 800

Figure 7: Order one of the water discharge at time t = 0.01 with the continuous initial
condition for different values of ε.

(a) N = 100 (b) N = 800

Figure 8: Order one of the water discharge at time t = 0.01 with the discontinuous
initial condition for different values of ε.

(a) ε = 0.01 (b) ε = 0.0001

Figure 9: Order one of the water discharge at time t = 0.01 with the continuous initial
condition for different number of cells.

4 An improved AP-scheme
A generic method is now developed to design asymptotic preserving schemes for the
hyperbolic problem (11) with a diffusive regime governed by a rescaling of t and k of
the following form:

t← t/ε, and k ← k/εm,
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(a) ε = 0.01 (b) ε = 0.0001

Figure 10: Order one of the water discharge at time t = 0.01 with the discontinuous
initial condition for different number of cells.

where m ∈ N∗. Let us emphasize that m is restricted to 1 in [6] while we have to fix
m = 2 to deal with system (3). To derive the scheme under interest, we extend the
formalism (11) in order to correctly mimic the rescaling of the source term in 1/εm. To
address such an issue, we introduce a second free parameter δ > 0 as follows:

∂tW + ∂xF (W ) = δ(k + k)
(
R(x,W )−W

)
, (x, t) ∈ R× R+,

where R is now given by

R(x,W ) =
k

δ(k + k)
(R(x,W )−W ) +W.

We notice that δ is a proportional parameter. It will be chosen according to the
rescaling in order to restore the correct asymptotic behavior.

The scheme (20)-(21)-(22) can then be applied by substituting k+kLR by δ(k+kLR).
The next step consists in injecting into the obtained numerical method the following
natural rescaling of the time step ∆t and the parameters k and kLR:

∆t← ∆t/ε, k ← k/εm and kLR ← kLR/ε
m. (31)

Moreover, the parameter δ is chosen as follows:

δ = εm−1.

As usual, the parameter kLR is given at each interface by (19) such that the first
equation of the scheme is consistent with the diffusive equation in the limit regime.

Now we exhibit the scheme for the shallow-water equations with Manning friction
(1). The integer m is equal to 2 and the wave speeds are, once again, defined by (18).
As mentionned previously, the only modification in the scheme (20)-(21)-(22) is the
substitution of k + kLR by δ(k + kLR). This time, the natural rescaling defined by

∆t← ∆t/ε, k ← k/ε2 and kLR ← kLR/ε
2, (32)

can then be adopted and δ fixed to ε to obtain the following rescaled scheme:

hn+1
i = hn

i −
∆t

2ε∆x

(
αε
i+ 1

2

(
qni+1 − qni

)
+ αε

i− 1
2

(
qni − qni−1

))
(33)
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+
∆t

2ε∆x

(
λi+ 1

2
αε
i+ 1

2

(
hn
i+1 − hn

i

)
− λi− 1

2
αε
i− 1

2

(
hn
i − hn

i−1

))
,

qn+1
i = qni −

∆t

2ε∆x

(
αε
i+ 1

2

(
(qni+1)

2

hn
i+1

+ g
(hn

i+1)
2

2
− (qni )

2

hn
i

− g
(hn

i )
2

2

)
(34)

+αε
i− 1

2

(
(qni )

2

hn
i

+ g
(hn

i )
2

2
−

(qni−1)
2

hn
i−1

− g
(hn

i−1)
2

2

))
+

∆t

2ε∆x

(
λi+ 1

2
αε
i+ 1

2

(
qni+1 − qni

)
− λi− 1

2
αε
i− 1

2

(
qni − qni−1

))
−k∆t

2ε3

(
αε
i+ 1

2
+ αε

i− 1
2

)
qni |qni |(hn

i )
−η,

where (αε
i+ 1

2

)i∈Z is still given by (22). The discrepancy between the above scheme
(33)-(34) and the scheme (20)-(21), developed in [13], stays in the introduction of the
coefficient δ which modifies the ε-order of the coefficient of the source term discretization.
Indeed, we now have a division by ε3 in (34) and no longer ε2 as in (21). The new
parameter δ turns out to be essential to improve the numerical diffusion involved in the
scheme in order to deal with the correct scaling (31). We now state the asymptotic
behavior satisfied by the scheme (33)-(34).

Theorem 4.1. We consider the scheme (33)-(34)-(22), where the additional parameter
ki+ 1

2
is defined by (19). When ε tends to zero, the two following assertions hold.

(i) In the diffusive regime, the equation (34) coincides with a discretization of the
local equilibrium (7).

(ii) In the diffusive regime, the equation (33) coincides with the discrete diffusion
equation (23) to discretize (8).

Proof. Let us adopt the following Chapman-Enskog expansions of hn
i and qni for all

i ∈ Z, n ∈ N:
hn
i = h0,n

i +O(ε) and qni = q0,ni +O(ε), (35)

where the order zero of the water height h0,n
i is assumed to be positive for all i ∈ Z and

n ∈ N. First, we underline that the following developments easily hold for all i ∈ Z and
n ∈ N:

(qni )
2

hn
i

+ g
(hn

i )
2

2
=

(q0,ni )2

h0,n
i

+ g
(h0,n

i )2

2
+O(ε).

The discrete discharge evolution law (34) can then be rewritten as follows:

q0,n+1
i = q0,ni −

∆t

2ε∆x

(
αε
i+ 1

2

(
(q0,ni+1)

2

h0,n
i+1

+ g
(h0,n

i+1)
2

2
− (q0,ni )2

h0,n
i

− g
(h0,n

i )2

2
+O(ε)

)

+αε
i− 1

2

(
(q0,ni )2

h0,n
i

+ g
(h0,n

i )2

2
−

(q0,ni−1)
2

h0,n
i−1

− g
(h0,n

i−1)
2

2
+O(ε)

))

+
∆t

2ε∆x

(
λi+ 1

2
αε
i+ 1

2

(
q0,ni+1 − q0,ni +O(ε)

)
− λi− 1

2
αε
i− 1

2

(
q0,ni − q0,ni−1 +O(ε)

))
−k∆t

2ε3

(
αε
i+ 1

2
+ αε

i− 1
2

)(
q0,ni |q

0,n
i |(h

0,n
i )−η +O(ε)

)
+O(ε).

(36)
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Moreover, from the definition of (αε
i+ 1

2

)i∈Z given by (22) and the definition of (ki+ 1
2
)i∈Z

given by (19), αε
i+ 1

2

can be rewritten as follows:

αε
i+ 1

2
= ε

(
ε+ λi+ 1

2

√
k∆x|hn

i+1 − hn
i |

g((hn
i+1)

η + (hn
i )

η)(hn
i+1 + hn

i )

)−1

.

Using expansions (35), from the above expression we deduce the following limit:

lim
ε→0

αε
i+ 1

2

ε
=


1

λi+ 1
2

√√√√g((h0,n
i+1)

η + (h0,n
i )η)(h0,n

i+1 + h0,n
i )

k∆x|h0,n
i+1 − h0,n

i |
, if h0,n

i ̸= h0,n
i+1,

+∞, if h0,n
i = h0,n

i+1.

Even if the limit of αε
i+ 1

2

/ε is not necessarily finite, when ε goes to zero, the dom-
inant term in the equation (36) coincides with the source term discretization. As a
consequence, we get the following limit for all i ∈ Z:

0 = q0,ni |q
0,n
i |(h

0,n
i )−η. (37)

Since h0,n
i is assumed to be positive, the above expression necessarily gives that the

order zero of the discharge q0,ni vanishes in each cell, and the expansions (35) then
rewrite:

hn
i = h0,n

i + εh1,n
i +O(ε) and qni = ε

(
q1,ni +O(ε)

)
. (38)

Moreover, the following development now holds:

qni |qni |(hn
i )

−η = ε2
(
q1,ni |q

1,n
i |(h

0,n
i )−η +O(ε)

)
. (39)

Now, it is necessary to distinguish the expansion of (αε
i+ 1

2

)i∈Z with respect to the be-
havior of the water height as follows:

αε
i+ 1

2
=


εα1

i+ 1
2
+O(ε2) if h0,n

i ̸= h0,n
i+1,

√
εα

1/2

i+ 1
2

+O(ε) if h0,n
i = h0,n

i+1 and h1,n
i ̸= h1,n

i+1,

α0
i+ 1

2
+O(ε) if h0,n

i = h0,n
i+1 and h1,n

i = h1,n
i+1,

(40)

where

α1
i+ 1

2
=

1

λi+ 1
2

√√√√g((h0,n
i+1)

η + (h0,n
i )η)(h0,n

i+1 + h0,n
i )

k∆x|h0,n
i+1 − h0,n

i |
,

α
1/2

i+ 1
2

=
2

λi+ 1
2

√
g(h0,n

i )η+1

k|h1,n
i+1 − h1,n

i |∆x
,

α0
i+ 1

2
=

1 +
λi+ 1

2

2

√
k|h2,n

i+1 − h2,n
i |∆x

g(h0,n
i )η+1

−1

.

(41)

We notice that the quantities α1
i+ 1

2

, α1/2

i+ 1
2

and α0
i+ 1

2

are positive and well defined. For
the sake of simplicity in the notations, we introduce (βL,ε

i+ 1
2

)i∈Z and (βR,ε

i+ 1
2

)i∈Z defined as
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follows:

βL,ε

i+ 1
2

= −∆t

2ε
αε
i+ 1

2

(
g

2∆x

(
(hn

i+1)
2 − ((hn

i )
2
)
+

k

ε2
qni |qni |(hn

i )
−η

)
,

βR,ε

i+ 1
2

= −∆t

2ε
αε
i+ 1

2

(
g

2∆x

(
(hn

i+1)
2 − ((hn

i )
2
)
+

k

ε2
qni+1|qni+1|(hn

i+1)
−η

)
.

From (38), (39) and (40), βK,ε

i+ 1
2

admits the following expansion:

βK,ε

i+ 1
2

=



βK,0

i+ 1
2

+O(ε) if h0,n
i ̸= h0,n

i+1,

1√
ε
β
K,−1/2

i+ 1
2

+O(1) if h0,n
i = h0,n

i+1 and h1,n
i ̸= h1,n

i+1,

1

ε
βK,−1

i+ 1
2

+O(1) if h0,n
i = h0,n

i+1 and h1,n
i = h1,n

i+1,

where we have set

βL,0

i+ 1
2

= −∆t

2
α1
i+ 1

2

( g

2∆x

(
(h0,n

i+1)
2 − ((h0,n

i )2
)
+ kq1,ni |q

1,n
i |(h

0,n
i )−η

)
,

β
L,−1/2

i+ 1
2

= −k∆t

2
α
1/2

i+ 1
2

q1,ni |q
1,n
i |(h

0,n
i )−η,

βL,−1

i+ 1
2

= −k∆t

2
α0
i+ 1

2
q1,ni |q

1,n
i |(h

0,n
i )−η,

and

βR,0

i+ 1
2

= −∆t

2
α1
i+ 1

2

( g

2∆x

(
(h0,n

i+1)
2 − ((h0,n

i )2
)
+ kq1,ni+1|q

1,n
i+1|(h

0,n
i+1)

−η
)
,

β
R,−1/2

i+ 1
2

= −k∆t

2
α
1/2

i+ 1
2

q1,ni+1|q
1,n
i+1|(h

0,n
i+1)

−η,

βR,−1

i+ 1
2

= −k∆t

2
α0
i+ 1

2
q1,ni+1|q

1,n
i+1|(h

0,n
i+1)

−η.

Adopting this new notation, we easily rewrite (34) as follows:

qn+1
i = qni +βL,ε

i+ 1
2

+ βR,ε

i− 1
2

+
∆t

2ε∆x

(
λi+ 1

2
αε
i+ 1

2

(
qni+1 − qni

)
− λi− 1

2
αε
i− 1

2

(
qni − qni−1

))
− ∆t

2ε∆x

(
αε
i+ 1

2

(
(qni+1)

2

hn
i+1

− (qni )
2

hn
i

)
+ αε

i− 1
2

(
(qni )

2

hn
i

−
(qni−1)

2

hn
i−1

))
.

(42)
Now, let us consider the limit of (42) as ε goes to zero. Since the behavior of αi+ 1

2

and βK,ε

i+ 1
2

depends on the values of the water height, two cases must be distinguished
to exhibit the limit scheme. First, let us assume that h0,n

i = h0,n
i−1 and/or h0,n

i = h0,n
i+1,

then the limit of (42) as ε goes to zero reads

q1,ni |q
1,n
i |(h

0,n
i )−η = 0. (43)

Next, if we have h0,n
i ̸= h0,n

i−1 and h0,n
i ̸= h0,n

i+1 then, in the limit of ε to zero, (42) now
tends to

α1
i+ 1

2

α1
i+ 1

2

+ α1
i− 1

2

g
2 (h

0,n
i+1)

2 − g
2 (h

0,n
i )2

∆x
+

α1
i− 1

2

α1
i+ 1

2

+ α1
i− 1

2

g
2 (h

0,n
i )2 − g

2 (h
0,n
i−1)

2

∆x

= −kq1,ni |q
1,n
i |(h

0,n
i )−η.

(44)
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To achieve the establishment of (i), we have to show that the above limit scheme, given
by (43) or (44), is consistent with the local equilibrium (7). To address such an issue,
we introduce two smooth enough functions, h0(x) and q1(x), such that (h0,n

i , q1,ni ) =

(h0(xi), q
1(xi)) and (h0,n

i±1, q
1,n
i±1) = (h0(xi ± ∆x), q1(xi ± ∆x)). Now, in order to deal

with the limit scheme, (43) or (44), we have to distinguish the case h0(xi) = h0(xi−∆x)
and/or h0(xi) = h0(xi + ∆x) and the case h0(xi) ̸= h0(xi ± ∆x). Since the expected
consistency comes in the limit of ∆x to zero, the case h0(xi) = h0(xi − ∆x) and/or
h0(xi) = h0(xi + ∆x), for all ∆x small enough, necessarily implies h0(x) equal to a
constant in a neighborhood of xi. Then, since h0(xi) > 0, the limit (43) gives q1(xi) = 0,
which coincides with the expected local equilibrium (7) with a constant water height.
Next, let us assume that h0(x) is not given by a constant. As a consequence we have
h0(xi) ̸= h0(xi ± ∆x) as soon as ∆x is small enough. Then, we easily obtain the
following limit

lim
∆x→0

(
α1
i+ 1

2

α1
i+ 1

2

+ α1
i− 1

2

g
2h

0(xi +∆x)2 − g
2h

0(xi)
2

∆x

+
α1
i− 1

2

α1
i+ 1

2

+ α1
i− 1

2

g
2h

0(xi)
2 − g

2h
0(xi −∆x)2

∆x

)
= ∂x

(
gh0(xi)

2

2

)
,

to immediately deduce the required consistency of the ε-asymptotic scheme (44)
with the local equilibrium (7) as the water height is not constant. This achieves the
establishment of (i).

Now we turn proving (ii). First, we give the behavior of the discretization (33) for ε
in a neighborhood of zero. To address such an issue, let us underline that the expansions
(38) now write:

hn
i = h0,n

i +O(ε) and qni =


ε
(
q1,ni +O(ε)

)
if h0,n

i ̸= h0,n
i−1 and h0,n

i ̸= h0,n
i+1,

ε2
(
q2,ni +O(ε)

)
otherwise.

The above expansions combined with the expansion (40) of αε
i+ 1

2

imply:

1

2ε∆x
αε
i+ 1

2

(
qni+1 − qni

)
= O(ε), (45)

so that the discrete water height evolution law (33) now reads:

hn+1
i = hn

i +∆tO(ε) + ∆t

2ε∆x

(
λi+ 1

2
αε
i+ 1

2

(
hn
i+1 − hn

i

)
− λi− 1

2
αε
i− 1

2

(
hn
i − hn

i−1

))
. (46)

To simplify the notations, let us set

γε
i+ 1

2
=

λi+ 1
2
αε
i+ 1

2

2ε∆x

(
hn
i+1 − hn

i

)
,

such that we reformulate (46) as follows:

hn+1
i = hn

i +∆tO(ε) + ∆t
(
γε
i+ 1

2
− γε

i− 1
2

)
. (47)
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From (40), the following behavior of γε
i+ 1

2

is obtained:

γε
i+ 1

2
=



λi+ 1
2
α1
i+ 1

2

2∆x

(
h0,n
i+1 − h0,n

i

)
+O(ε) if h0,n

i ̸= h0,n
i+1,

√
ε
λi+ 1

2
α
1/2

i+ 1
2

2∆x

(
h1,n
i+1 − h1,n

i

)
+O(ε) if h0,n

i = h0,n
i+1 and h1,n

i ̸= h1,n
i+1,

ε
λi+ 1

2
α0
i+ 1

2

(
h2,n
i+1 − h2,n

i

)
2∆x

+O(ε2) if h0,n
i = h0,n

i+1 and h1,n
i = h1,n

i+1.

Thus, as soon as h0,n
i = h0,n

i+1, the quantity γε
i+ 1

2

is at least of order
√
ε. Then, the above

expansion rewrites as follows:

γε
i+ 1

2
=

λi+ 1
2
α1
i+ 1

2

2∆x

(
h0,n
i+1 − h0,n

i

)
+O(

√
ε). (48)

Moreover, by the definition of α1
i+ 1

2

, given by (41), the following equality holds :

λi+ 1
2
α1
i+ 1

2

2∆x

(
h0,n
i+1 − h0,n

i

)

=
1

2∆x

√
g

k
sign(h0,n

i+1 − h0,n
i )

√√√√(
(h0,n

i+1)
η + (h0,n

i )η
) ∣∣∣(h0,n

i+1)
2 − (h0,n

i )2
∣∣∣

∆x
.

(49)

As a consequence, the expansion (48) of γε
i+ 1

2

can thus be rewritten as follows:

γε
i+ 1

2
=

1

∆x
sign(h0,n

i+1 − h0,n
i )

√√√√ (h0,n
i+1)

η + (h0,n
i )η

2k

∣∣∣ g2 (h0,n
i+1)

2 − g
2 (h

0,n
i )2

∣∣∣
∆x

+O(
√
ε). (50)

Then, equipped with the above expression, the discretization (33), or equivalently (47),
thus admits the following behavior:

hn+1
i = hn

i +
∆t

∆x

sign
(
h0,n
i+1 − h0,n

i

)√√√√ (h0,n
i+1)

η + (h0,n
i )η

2k

∣∣∣ g2 (h0,n
i+1)

2 − g
2 (h

0,n
i )2

∣∣∣
∆x

−sign
(
h0,n
i − h0,n

i−1

)√√√√ (h0,n
i )η + (h0,n

i−1)
η

2k

∣∣∣ g2 (h0,n
i )2 − g

2 (h
0,n
i−1)

2
∣∣∣

∆x


+∆tO(

√
ε).

In the limit of ε to zero, we immediately obtain the expected consistency with the
diffusion equation (8). The proof is thus achieved.

5 Numerical illustrations
This section is devoted to the numerical representation of the convergence of the
discretization given by (33)-(34) towards the discretization given by the limit scheme
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(23). The preservation of the asymptotic behavior of the discharge given by (7) is also
highlighted. The two initial conditions introduced in Section 3 and given by (28) and
(29) are considered. Moreover, the parameter k is set equal to 1, the parameter η is
equal to 7/3 and zero-flux boundary conditions are used.

We compare the discretization of the water height given by the scheme (33)-(34)
with the straightforward discretization (23) of the diffusive limit. As detailed in the
proof of Theorem 4.1, the approximate water height given by (33) coincides with the
discretization given by this limit scheme when ε tends to zero. On Figures 11 and
12, we display the approximate water height, at time t = 0.01 and for both initial
conditions, obtained with the scheme (33)-(34) for different values of ε, the asymptotic
parameter. The dotted line denotes the limit water height obtained with (23). We
can clearly observe the preservation of the diffusion equation by the scheme (33)-(34).
However, we see that when ε goes to zero, the water height discretizations starts
by overestimate the limit, then underestimate it, to finish by converging towards
the correct limit discretization. This phenomenon is probably due to the transitory
discretizations, whose behavior is unknown.

(a) N = 100 (b) N = 800

Figure 11: Water height at time t = 0.01 with the continuous initial condition for
different values of ε.

(a) N = 100 (b) N = 800

Figure 12: Water height at time t = 0.01 with the discontinuous initial condition for
different values of ε.

To complete this illustration, we display on Figures 13 and 14 the water height
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obtained for a fixed value of ε and different number of cells. The expected space limit
in these regimes stays unknown. Just as an indication, we display the approximation of
the diffusive limit as ε tends to zero. The behavior of the space convergence is clearly
better than for the scheme developed in [13], whose results are displayed in Section
3. However, the space convergence seems difficult to be reached. Concerning Figures
13(a) and 14(a), we remark a zig-zag convergence when N grows. In Figure 13(a), for
N between 100 and 200, we note that the local maximum decreases, and then increases
for N larger than 400. We suppose that this weird convergence is due to the strongly
nonlinear differential operator involved in the limit regime. Next concerning Figures
13(b) and 14(b), once again we expect a zig-zag mesh convergence. Nevertheless, to
observe this phenomenon, we need very fine meshes involving extremely small val-
ues of the time step, so that converging simulations are computationally too expensive.

(a) ε = 0.01 (b) ε = 0.0001

Figure 13: Water height at time t = 0.01 with the continuous initial condition for
different number of cells.

(a) ε = 0.01 (b) ε = 0.0001

Figure 14: Water height at time t = 0.01 with the discontinuous initial condition for
different number of cells.

Moreover, to observe the behavior of the order one of the approximate discharge
given by the scheme (34), we consider (qni /ε)

n
i where (qni )

n
i is the discharge given by

(34). We compare it with the discrete local equilibrium (30) on Figures 15 and 16
for a fixed value of N and different values of ε. At the discrepancy with results from
Section 3, the convergence toward the discrete local equilibrium is illustrated and the
scheme (33)-(34) preserves both the diffusion equation (8) and the local equilibrium (7).
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(a) N = 100 (b) N = 800

Figure 15: Order one of the water discharge at time t = 0.01 with the continuous initial
condition for different values of ε.

(a) N = 100 (b) N = 800

Figure 16: Order one of the water discharge at time t = 0.01 with the discontinuous
initial condition for different values of ε.

Finally, on Figures 17 and 18, we display the order one of the discharge compared
to the discrete local equilibrium (30) for a fixed value of ε and different number of
cells. The spatial convergence of the scheme (33)-(34) is, here again, better than the
spatial convergence of the scheme (20)-(21), from [13], displayed in Section 3. More-
over, we remark the same weird convergence behavior as detailed for Figures 13 and 14.

6 Conclusion
In this article, we developed a scheme for the shallow-water equations with Manning
friction preserving the correct behavior in long time and dominant friction regime. The
proposed method is a generalization of the perturbed HLL discretization introduced
in [6]. In this previous work [6], the considered framework is linear, in the sense that
the source term is linear and leads to a diffusive limit involving a linear operator of
Laplacian type. In the case we are interested in here, the shallow-water equations with
Manning friction, the source term is quadratic, leading to a diffusive limit involving a
nonlinear differential operator of p-Laplacian type. We highlighted the fact that the
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(a) ε = 0.01 (b) ε = 0.0001

Figure 17: Order one of the water discharge at time t = 0.01 with the continuous initial
condition for different number of cells.

(a) ε = 0.01 (b) ε = 0.0001

Figure 18: Order one of the water discharge at time t = 0.01 with the discontinuous
initial condition for different number of cells.

linear framework could not be directly applied to the considered problem. Indeed, we
illustrated the failure of the scheme proposed in [13] to capture correctly both the order
zero and one of the solution in the diffusive regime. To overcome this difficulty, we
proposed an extension of the generic method introduced in [6] respecting the natural
rescaling of the source term stiffness. This has allowed us to catch consistent discretiza-
tions of both the order zero and one of the diffusive limit. This consistency is formally
established thanks to Chapman-Enskog expansions of the approximate solutions, and
illustrated by several numerical experiments.
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