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Abstract. The aim of this paper is to propose a numerical scheme for the shallow-
water equations with a Manning friction source term able to preserve the diffusive
regime, namely the behavior of the solutions in long time and stiff friction limit. Because
of the non-usual rescaling of the friction parameter, a strongly nonlinear derivative
operator is involved in the diffusive limit and the development of a numerical scheme
possessing this property is not straightforward. The scheme presented here is based on
a perturbed HLL scheme with additional viscous terms.
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1 Introduction

This paper is devoted to the development of an asymptotic preserving scheme, based
on a perturbed HLL discretization, to approximate the solutions of the shallow-water
equations with a Manning friction source term [19]. The system of interest reads:

∂th+ ∂xq = 0,

∂tq + ∂x

(
q2

h
+
gh2

2

)
= −k|q|qh−η,

(x, t) ∈ R× R+, (1.1)

where the unknowns, h(x, t) > 0 and q(x, t) ∈ R, both depending on space and time,
respectively denote the water height and the discharge. As usual, the water velocity is
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given by u = q/h. In the model, g = 9.81 m.s−2 is the gravity constant while k and η
denote friction parameters according to the Manning friction model [19]. In general, η
is given by 7/3. Concerning the parameter k, called Manning coefficient, it defines the
intensity of the friction to be adopted.

Here, we are interested in the behavior of h and q in long time and dominant friction,
and faraway from dry areas. Since our aim is to build a numerical scheme able to preserve
the correct asymptotic behavior of the solutions, we formally recall the derivation of the
asymptotic diffusive regime. A small parameter ε is thus introduced in order to govern
the time t and the friction coefficient k as follows:

t← t/ε and k ← k/ε2. (1.2)

The friction parameter has to be rescaled differently than the time because of the
quadratic term in q in the source term (see [5, 10]). With this scaling, the system (1.1)
now reads: 

ε∂th+ ∂xq = 0,

ε∂tq + ∂x

(
q2

h
+
gh2

2

)
= − k

ε2
|q|qh−η.

(1.3)

To study the behavior of h and q when ε tends to zero, the following Chapman-Enskog
expansions of the unknowns are introduced:

h = h0 + εh1 + . . . and q = q0 + εq1 + . . . . (1.4)

The here considered water height h is assumed to be positive but, thereafter, we also have
to impose the positivity of its first-order term, namely h0 > 0. Plugging expansions
(1.4) in the rescaled system (1.3), enforcing ε to zero, we obtain the following limit
system: {

∂xq
0 = 0,

− k|q0|q0(h0)−η = 0.
(1.5)

Since h0 > 0, the second expression of the above system necessary gives q0 = 0. Then,
from (1.3), we now obtain the following limit problem:

∂th
0 + ∂xq

1 = 0,

∂x

(
g(h0)2

2

)
= −k|q1|q1(h0)−η.

(1.6)

The second expression of the above system leads to the following definition of q1, called
the local equilibrium (see [15]):

q1 = −sign(∂xh
0)

√
(h0)η

k

∣∣∣∣∂x(g(h0)2

2

)∣∣∣∣. (1.7)

Next, considering the h0 governing evolution equation in (1.6), we obtain the following
nonlinear diffusion equation:

∂th
0 + ∂x

(
−sign(∂xh

0)

√
(h0)η

k

∣∣∣∣∂x(g(h0)2

2

)∣∣∣∣
)

= 0. (1.8)

In the above equation, we may recognize a non stationary p-laplacian type equation
supplemented with a nonlinear flux function. Let us underline that the p-laplacian
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equation, known to be a degenerate parabolic equation, has been widely studied
(see [2, 14, 18, 21] for theoretical aspects and [1, 4, 17, 20] for some numerical studies)
and appears in several physical problems as, for instance, in non-newtonian fluids [9].

The aim of this work is to derive a scheme for (1.1) such that, in the diffusive regime,
the approximate solution is consistent with the limit problem (1.6), or equivalently
(1.7)-(1.8). This property to be satisfied by the numerical scheme, called asymptotic
preserving (AP) [5, 6, 15], is not straightforward and the development of AP-schemes
requires a particular attention. During the two last decades, numerous AP-schemes
were proposed in the literature. For instance, in [3, 6, 7], AP numerical strategies have
been introduced to accurately approximate the asymptotic diffusive regime issuing
from the radiative transfer models. We also refer to [16] where an AP-scheme is derived
to approximate the solutions of the isentropic gas dynamics in the Darcy law regime.
Next, in [6], a generic formulation of AP-schemes is proposed by a suitable extension of
the well-known HLL scheme [13]. At the wide discrepancy with the above mentioned
works where the source term rescaling is governed by 1/ε, according to (1.2), in the
present paper we have to deal with a rescaling prescribed by 1/ε2. High order source
term rescaling in 1/εm are considered in [5] where the asymptotic diffusive regime
is established to be strongly nonlinear. Of course, this nonlinearity is clearly stated
in (1.8). In [5], the authors concluded the asymptotic diffusion study by the derivation
of a generic numerical scheme. More recently, in [10], the shallow-water model with a
Manning friction given by (1.1) is adopted and a scheme with interesting asymptotic
behavior is derived. However, the diffusion regime satisfied by the introduced method
comes from an extension of the numerical technique introduced in [6] designed for a
scaling of the stiffness given by 1/ε. As a consequence, the authors established a correct
numerical asymptotic behavior of the water height. But, in [10], the expected regime
verified by the discharge, according to (1.8), is no longer preserved. In this sense, the
numerical scheme proposed in [10] is at most partially asymptotic preserving. The
present work is motivated in the design of a numerical scheme able to fully restore the
expected asymptotic diffusive regime given by both relations (1.7) and (1.8).

The paper is organized as follows. Section 2 is dedicated to the presentation of
the considered general framework. It allows to introduce several notations useful in
the next sections and to present a generic form for all the schemes presented in this
paper. Afterwards, in Section 3, the scheme given in [10] for the system under concern
(1.1) is recalled. The failure of this extension of the scheme presented in [6] is then
highlighted. Indeed, this scheme is able to preserve terms of order zero, namely h0

given by (1.8), but not of order one. As a consequence, the relation (1.7) to govern q1 is
not preserved and the resulting scheme is said a priori partially asymptotic preserving.
In fact, by studying the asymptotic behavior of the discharge, since the scheme adopts
a nonphysical scaling in 1/ε, we exhibit an additional relation satisfied once again by
h0. This new relation combined with (1.8) make this scheme not asymptotic preserving.
This failure is illustrated with several numerical experiments. In Section 4, an extension
of the generic method introduced in [6], respecting the natural rescaling of the source
term stiffness, is proposed. This generalization is able to deal with stiffness rescaled in
1/εm with m ∈ N∗. From now on, we emphasize that the here derived scheme turns
out to be a revisit of the numerical approach introduced in [5]. Next, this proposed
method is applied on the model (1.1), for which m = 2, and the diffusive limit regime,
given by (1.7) and (1.8), is proved to be preserved by the here designed numerical
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technique. More precisely, the respect of the natural rescaling allows to catch consistent
discretizations of the order zero, to get (1.8), and the order one, to get (1.7), of the
solutions in the diffusive regime. Finally, Section 5 is devoted to the numerical results
to illustrate the interest of the developed scheme.

2 A Godunov-type scheme with source term

For the sake of completeness in the forthcoming developments, we briefly detail the
asymptotic preserving numerical technique introduced in [6]. To address such an issue,
we consider hyperbolic systems with source terms as follows:

∂tW + ∂xF (W ) = k (R(x,W )−W ) , (x, t) ∈ R× R+, (2.1)

where W ∈ Ω is the vector of the unknowns, with Ω ∈ RN the phase space, F (W ) ∈ RN
is the physical flux and R(W ) ∈ RN is a function occurring in the source term. We
immediately notice that the system (1.1) enters in such a formalism with

W = t (h, q) , F (W ) = t

(
q,
q2

h
+ g

h2

2

)
and R(x,W ) = t

(
h, q − q|q|h−η

)
. (2.2)

For the sake of simplicity, we assume k to be a constant and we refer to [6] for more
complex interactions.

Next, we introduce a free parameter, denoted k, such that the system (2.1) equiva-
lently reformulates as follows:

∂tW + ∂xF (W ) =
(
k + k

) (
R(x,W )−W

)
, (x, t) ∈ R× R+, (2.3)

with

R(x,W ) =
k

k + k
(R(x,W )−W ) +W. (2.4)

In fact, from a numerical point of view, k will play the role of a correction to be
prescribed in order to recover the expected numerical asymptotic regime.

First, we consider the space discretization made of cells (xi−1/2, xi+1/2)i∈Z with a
constant size ∆x such that xi+1/2 = xi−1/2 + ∆x for all i ∈ Z. Next, concerning the
time discretization, we adopt tn+1 = tn + ∆t where ∆t > 0 denotes the time increment
and where t0 = 0. As usual, in order to enforce some stability conditions, the time
increment will be restricted according to a CFL like condition [8]. Now, equipped
with (Wn

i )i∈Z over each cell (xi−1/2, xi+1/2) at time tn, we search for relevant updated

states (Wn+1
i )i∈Z to approximate the solution of (2.3) at time tn+1. Following [6], the

required updated states are obtained by adopting a Godunov-type scheme [11–13]. To
address such an issue, we first exhibit an approximate Riemann solver made of four
constant states separated by three discontinuities (see Figure 1). According to [6], the
approximate Riemann solver of interest reads as follows:

W̃
(x
t
,WL,WR

)
=



WL, if
x

t
≤ −λLR,

αLRW
∗ + (1− αLR)R(0−,WL), if − λLR <

x

t
≤ 0,

αLRW
∗ + (1− αLR)R(0+,WR), if 0 <

x

t
≤ λLR,

WR, if λLR <
x

t
,

(2.5)
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x
0

|
−∆x/2

|
∆x/2

t
λLR−λLR

WL

W ∗L W ∗R

WR

Figure 1: Structure of the approximate Riemann solver

where the parameter αLR is defined by

αLR =
2λLR

2λLR +
(
k + kLR

)
∆x

. (2.6)

The main originality in this approximate Riemann solver remains in the introduction
of the source term within the two intermediate states separated by a stationary dis-
continuity. Moreover, for the sake of simplicity in the forthcoming derivations, we here
have adopted a symmetric fan made of speed waves −λLR < 0 < λLR. Extensions with
speed waves λL < 0 < λR are straightforward and they are left to the reader. In (2.5),
the vector W ∗ denotes the intermediate state of the classical HLL scheme introduced
in [13], defined by

W ∗ =
1

2
(WR +WL)− 1

2λLR

(F (WR)− F (WL)) ,

and the following notation is used in the definition (2.5) of the Riemann solver:

R(0±,W ) = lim
x→0±

R(x,W ).

In order to obtain the expected updated states, we first put the approximate Riemann

solver W̃ (
x−x

i+1
2

t ,Wn
i ,W

n
i+1) at each interface xi+ 1

2
for all i ∈ Z. Next, we define Wn+1

i

as follows:

Wn+1
i =

1

∆x

∫ xi

x
i− 1

2

W̃

(
x− xi− 1

2

∆t
,Wn

i−1,W
n
i

)
dx

+
1

∆x

∫ x
i+1

2

xi

W̃

(
x− xi+ 1

2

∆t
,Wn

i ,W
n
i+1

)
dx.

With clear notations stated at each interface xi+ 1
2
, after straightforward computations
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we obtain:

Wn+1
i = Wn

i −
∆t

2∆x

(
αi+ 1

2

(
F (Wn

i+1)− F (Wn
i )
)

+ αi− 1
2

(
F (Wn

i )− F (Wn
i−1)

))
+

∆t

2∆x

(
αi+ 1

2
λi+ 1

2

(
Wn
i+1 −Wn

i

)
− αi− 1

2
λi− 1

2

(
Wn
i −Wn

i−1

))
+
k∆t

2

(
αi+ 1

2

(
R(x−

i+ 1
2

,Wn
i )−Wn

i

)
+ αi− 1

2

(
R(x+

i− 1
2

,Wn
i )−Wn

i

))
.

(2.7)
In order to restore the expected asymptotic preserving property, the free parameter kLR

is fixed to catch a discretization of the correct limit in the diffusive regime.

3 Failure of an asymptotic preserving scheme

In this section, we recall the scheme developed in [10] and we show that the expected
AP-property is not fully satisfied. We adopt the scheme (2.6)-(2.7) where the wave
velocities (λi+ 1

2
)i∈Z are fixed as follows:

λi+ 1
2

= max

(
|qni |
hni

+
√
ghni ,

|qni+1|
hni+1

+
√
ghni+1

)
for all i ∈ Z. (3.1)

According to [10], in order to recover the asymptotic diffusion equation (1.8), the pa-
rameters (ki+ 1

2
)i∈Z are given by

ki+ 1
2

= 2λ2
i+ 1

2

√
k|hni+1 − hni |

g∆x((hni+1)η + (hni )η)(hni+1 + hni )
− k for all i ∈ Z. (3.2)

This correction has been selected in order to get a consistent approximation of the
diffusive equation (1.8) in the asymptotic regime. However, this limit regime is obtained
adopting the following rescaling of the time increment ∆t and the friction coefficients k
and kLR, using a small parameter ε:

∆t← ∆t/ε, k ← k/ε and kLR ← kLR/ε.

Once again, we underline that this rescaling is not the natural rescaling of the friction,
given by (1.2). As a consequence, this rescaling is inconsistent with the continuous
framework.

After rescaling and when specified to (2.2), the scheme (2.7) now reads as follows:

hn+1
i = hni −

∆t

2ε∆x

(
αεi+ 1

2

(
qni+1 − qni

)
+ αεi− 1

2

(
qni − qni−1

))
(3.3)

+
∆t

2ε∆x

(
λi+ 1

2
αεi+ 1

2

(
hni+1 − hni

)
− λi− 1

2
αεi− 1

2

(
hni − hni−1

))
,

qn+1
i = qni −

∆t

2ε∆x

(
αεi+ 1

2

(
(qni+1)2

hni+1

+ g
(hni+1)2

2
− (qni )2

hni
− g (hni )2

2

)
(3.4)

+αεi− 1
2

(
(qni )2

hni
+ g

(hni )2

2
−

(qni−1)2

hni−1

− g
(hni−1)2

2

))
+

∆t

2ε∆x

(
λi+ 1

2
αεi+ 1

2

(
qni+1 − qni

)
− λi− 1

2
αεi− 1

2

(
qni − qni−1

))
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−k∆t

2ε2

(
αεi+ 1

2
+ αεi− 1

2

)
qni |qni |(hni )−η.

where

αεi+ 1
2

=
2λi+ 1

2
ε

2λi+ 1
2
ε+ (k + ki+ 1

2
)∆x

, (3.5)

and with ki+ 1
2

defined by (3.2). In the following lemma, we recall the asymptotic

convergence result coming from [10]:

Lemma 3.1. We assume that hn,0i > 0 for all i ∈ Z and

αεi+ 1
2

= O(ε) for all i ∈ Z. (3.6)

In the limit of ε to zero, the scheme (3.3)-(3.4) reads as follows:

h0,n+1
i = h0,n

i +
∆t

∆x

sign
(
h0,n
i+1 − h

0,n
i

)√√√√ (h0,n
i+1)η + (h0,n

i )η

2k

∣∣∣∣∣ g2 (h0,n
i+1)2 − g

2 (h0,n
i )2

∆x

∣∣∣∣∣
(3.7)

−sign
(
h0,n
i − h0,n

i−1

)√√√√ (h0,n
i )η + (h0,n

i−1)η

2k

∣∣∣∣∣ g2 (h0,n
i )2 − g

2 (h0,n
i−1)2

∆x

∣∣∣∣∣
 ,

q0,n
i = 0. (3.8)

As expected, the discrete diffusion equation (3.7) is a consistent discretization, when
∆x and ∆t tend to zero, of the diffusion equation (1.8).

Proof. Since the zero-order expansion of both (hni )ni and (qni )ni reads

hni = h0,n
i +O(ε) and qni = q0,n

i +O(ε),

with assumption (3.6), in the limit of ε to zero, the scheme (3.4) yields to

q0,n
i |q

0,n
i |(h

0,n
i )−η = 0 for all i ∈ Z.

With h0,n
i > 0, we immediately get q0,n

i = 0 and the discharge limit equation (3.8) is
recovered. Now, once again with (3.6), the scheme (3.3) is written as follows in the limit
of ε to zero:

h0,n+1
i = h0,n

i +
∆t

2∆x

(
λi+ 1

2
lim
ε→0

αε
i+ 1

2

ε

(
h0,n
i+1 − h

0,n
i

)
− λi− 1

2
lim
ε→0

αε
i− 1

2

ε

(
h0,n
i − h0,n

i−1

))
.

(3.9)
Using the definition of αε

i+ 1
2

given by (3.5) and the definition of ki+ 1
2

given by (3.2), we

have:

lim
ε→0

αε
i+ 1

2

ε
=

1

λi+ 1
2

√√√√g((h0,n
i+1)η + (h0,n

i )η)(h0,n
i+1 + h0,n

i )

k∆x|h0,n
i+1 − h

0,n
i |

. (3.10)

The scheme (3.9) thus coincides with the expected limit (3.7) and the proof is achieved.
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This first lemma assesses the asymptotic preserving property of the scheme (3.3)-
(3.4) in the sense that the diffusive limit (1.8) is preserved. However, we now state a
result concerning the behavior of the equation (3.4) in the diffusive regime, which does
not coincide with a discretization of the expected local equilibrium (1.7). Moreover,
this new statement establishes a non-consistent behavior of (hni )i∈Z as ε goes to zero.

Lemma 3.2. Assuming (3.6), as ε tends to zero, the limit of the equation (3.4) is
consistent with ∂xh

0 = 0.

Proof. After Lemma 3.1, we have hni = h0,n
i + O(ε) and qni = O(ε). Because of (3.6),

when ε tends to zero, the relation (3.4) reduces as follows:

lim
ε→0

αε
i+ 1

2

ε

(h0,n
i+1)2 − (h0,n

i )2

∆x
+ lim
ε→0

αε
i− 1

2

ε

(h0,n
i )2 − (h0,n

i−1)2

∆x
= 0.

Moreover, since (3.10) holds, the above relation can be rewritten

sign

(
h0,n
i+1 − h

0,n
i

∆x

)
1

λi+ 1
2

√√√√((h0,n
i+1)η + (h0,n

i )η)(h0,n
i+1 + h0,n

i )3

∣∣∣∣∣h
0,n
i+1 − h

0,n
i

∆x

∣∣∣∣∣
+sign

(
h0,n
i − h0,n

i−1

∆x

)
1

λi− 1
2

√√√√((h0,n
i )η + (h0,n

i−1)η)(h0,n
i + h0,n

i−1)3

∣∣∣∣∣h
0,n
i − h0,n

i−1

∆x

∣∣∣∣∣ = 0.

Now, we show that the above discretization is consistent with ∂xh
0 = 0. To address

such an issue, let us consider h0(x) a smooth enough function such that h0,n
i = h0(xi)

and h0,n
i±1 = h0(xi ±∆x). As a consequence, we easily get:

sign
(
∂xh

0(xi) +O(∆x)
) 1

λi+ 1
2

√
16(h0(xi))η+3 |∂xh0(xi)|+O(∆x)

+sign
(
∂xh

0(xi) +O(∆x)
) 1

λi− 1
2

√
16(h0(xi))η+3 |∂xh0(xi)|+O(∆x) = 0.

The above equality can thus be rewritten as follows:(
sign

(
∂xh

0(xi) +O(∆x)
)

λi+ 1
2

+
sign

(
∂xh

0(xi) +O(∆x)
)

λi− 1
2

)
×
√

(h0(xi))η+3 |∂xh0(xi)|+O(∆x) = 0.

Since the wave speeds (λi+ 1
2
)i∈Z are positive then, when ∆x tends to zero, the above

expression is consistent with the expected limit ∂xh
0 = 0. The proof is thus achieved.

This second result clearly exhibits that the asymptotic water height admits a
constant behavior. Moreover, no additional information on the behavior of q1 can be
obtained to mimic the required relation (1.7).

It is worth noticing that the hypothesis (3.6) imposes k + ki+ 1
2
6= 0 for all i ∈ Z.

However, according to the definition of ki+ 1
2

given by (3.2), the case k+ki+ 1
2

= 0 arises
when the water height is constant at an interface. In this situation, αi+ 1

2
= 1 and the
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condition (3.6) does not hold. As a consequence, lemmas 3.1 and 3.2 cannot be applied
in cases of constant water height and the partial asymptotic preserving property is,
once again, no longer valid for the scheme (3.3)-(3.4).

From now on, let us illustrate the inappropriate behavior of the discretizations given
by the scheme (3.3)-(3.4). To address such an issue, two different initial conditions are
considered. They are defined on the spatial domain [−5, 5] and are given as follows.

� Continuous initial condition:

h0(x) =


2 if x < −1,

1

2

(
3 + sin

(
3πx

2

))
if − 1 ≤ x < 1,

1 else,

and u0(x) = 0. (3.11)

� Discontinuous initial condition:

h0(x) =

{
2 if x < 0,

1 else,
and u0(x) = 0. (3.12)

These two initial conditions are displayed on Figure 2.

Figure 2: Initial water height.

Moreover, the parameter k is set equal to 1, the parameter η is equal to 7/3 and
zero-flux boundary conditions are used.

We compare the discretization of the water height given by the scheme (3.3) with
the straightforward discretization (3.7) of the diffusive limit. As detailed in the proof
of Lemma 3.1, the approximate water height given by (3.3)-(3.4) coincides with the
discretization given by this limit scheme in case of non constant water height. On
Figure 3, we display the approximate water height, at time t = 0.01 and for the
continuous initial condition, obtained with the scheme (3.3)-(3.4) for different values
of ε, the asymptotic parameter. The dotted line corresponds to the limit water height
obtained with (3.7). The same plot, obtained for the discontinuous initial condition,
can be observed on Figure 4. The preservation of the diffusive limit by the scheme
(3.3)-(3.4) developed in [10] is not obvious. This result is not surprising since we are
not in the framework given by hypothesis (3.6) for both initial conditions (3.11) and
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(a) N = 100 (b) N = 800

Figure 3: Water height at time t = 0.01 with the continuous initial condition for different
values of ε.

(a) N = 100 (b) N = 800

Figure 4: Water height at time t = 0.01 with the discontinuous initial condition for
different values of ε.

(3.12).

To complete this illustration, we display on Figures 5 and 6 the water height
obtained for a fixed value of ε and different number of cells. Moreover the water height
discretized by the limit scheme (3.7) is obtained with 800 cells.

(a) ε = 0.01 (b) ε = 0.0001

Figure 5: Water height at time t = 0.01 with the continuous initial condition for different
number of cells.
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(a) ε = 0.01 (b) ε = 0.0001

Figure 6: Water height at time t = 0.01 with the discontinuous initial condition for
different number of cells.

Moreover, to observe the behavior of the one-order of the approximate discharge
given by the scheme (3.3)-(3.4), we consider (qni /ε)

n
i where (qni )ni is the discharge given

by (3.3)-(3.4). We compare it with the following discretization of the local equilibrium
(1.7) :

qni = −sign
(
hni+1 − hni−1

)√ (hni )η

k

∣∣ g
2 (hni+1)2 − g

2 (hni−1)2
∣∣

2∆x
, (3.13)

where (hni )ni is given by the discrete diffusion equation (3.7). This comparison is
displayed on Figures 7 and 8 for a fixed value of N and different values of ε. We can
observe that, for a fixed number of cells, more ε is small and more the one-order of
the approximate discharge is far from the discrete local equilibrium. This allows us to
confirm that the scheme (3.3)-(3.4) is not asymptotic preserving in the sense that it
does not preserve both the diffusive limit (1.8) and the local equilibrium (1.7).

(a) N = 100 (b) N = 800

Figure 7: Order one of the water discharge at time t = 0.01 with the continuous initial
condition for different values of ε.

Finally, on Figures 9 and 10, we display the one-order of the discharge compared
to the discrete local equilibrium (3.13) for a fixed value of ε and different number of
cells. Once again, we remark that the scheme (3.3)-(3.4) fails capturing the expected
asymptotic behavior.
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(a) N = 100 (b) N = 800

Figure 8: Order one of the water discharge at time t = 0.01 with the discontinuous
initial condition for different values of ε.

(a) ε = 0.01 (b) ε = 0.0001

Figure 9: Order one of the water discharge at time t = 0.01 with the continuous initial
condition for different number of cells.

(a) ε = 0.01 (b) ε = 0.0001

Figure 10: Order one of the water discharge at time t = 0.01 with the discontinuous
initial condition for different number of cells.

4 An improved AP-scheme

A generic method is now developed to design asymptotic preserving schemes for the
hyperbolic problem (2.3) with a diffusive regime governed by a rescaling of t and k of
the following form:

t← t/ε, and k ← k/εm,
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where m ∈ N∗. Let us emphasize that m is restricted to 1 in [6] while we have to fix
m = 2 to deal with system (1.3). To derive the scheme under interest, we extend the
formalism (2.3) in order to correctly mimic the rescaling of the source term in 1/εm.
To address such an issue, we introduce a second free parameter δ > 0 as follows:

∂tW + ∂xF (W ) = δ(k + k)
(
R(x,W )−W

)
, (x, t) ∈ R× R+,

where R is now given by

R(x,W ) =
k

δ(k + k)
(R(x,W )−W ) +W.

We notice that δ is a proportional parameter. It will be chosen according to the
rescaling in order to restore the correct asymptotic behavior.

The scheme (2.6)-(2.7) can then be applied by substituting k + kLR by δ(k + kLR).
The next step consists in injecting into the obtained numerical method the following
natural rescaling of the time step ∆t and the parameters k and kLR:

∆t← ∆t/ε, k ← k/εm and kLR ← kLR/ε
m. (4.1)

Moreover, the parameter δ is chosen as follows:

δ = εm−1.

As usual, the parameter kLR is given at each interface by (3.2) such that the first
equation of the scheme is consistent with the diffusive equation in the limit regime.

Now we exhibit the scheme for the shallow-water equations with Manning friction
(1.1). The integer m is equal to 2 and the wave speeds are, once again, defined by (3.1).
The natural rescaling defined by

∆t← ∆t/ε, k ← k/ε2 and kLR ← kLR/ε
2, (4.2)

can be adopted and δ fixed to ε to obtain the following rescaled scheme:

hn+1
i = hni −

∆t

2ε∆x

(
αεi+ 1

2

(
qni+1 − qni

)
+ αεi− 1

2

(
qni − qni−1

))
(4.3)

+
∆t

2ε∆x

(
λi+ 1

2
αεi+ 1

2

(
hni+1 − hni

)
− λi− 1

2
αεi− 1

2

(
hni − hni−1

))
,

qn+1
i = qni −

∆t

2ε∆x

(
αεi+ 1

2

(
(qni+1)2

hni+1

+ g
(hni+1)2

2
− (qni )2

hni
− g (hni )2

2

)
(4.4)

+αεi− 1
2

(
(qni )2

hni
+ g

(hni )2

2
−

(qni−1)2

hni−1

− g
(hni−1)2

2

))
+

∆t

2ε∆x

(
λi+ 1

2
αεi+ 1

2

(
qni+1 − qni

)
− λi− 1

2
αεi− 1

2

(
qni − qni−1

))
−k∆t

2ε3

(
αεi+ 1

2
+ αεi− 1

2

)
qni |qni |(hni )−η,

where (αε
i+ 1

2

)i∈Z is given by

αεi+ 1
2

=
2λi+ 1

2
ε

2λi+ 1
2
ε+ (k + ki+ 1

2
)∆x

. (4.5)
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The discrepancy between the above scheme (4.3)-(4.4) and the scheme (3.3)-(3.4), devel-
oped in [10], stays in the introduction of the coefficient δ which modifies the definition of
α given by (4.5). This new parameter turns out to be essential to improve the numerical
diffusion involved in the scheme in order to deal with the correct scaling (4.1). We now
state the asymptotic behavior satisfied by the scheme (4.3)-(4.4).

Theorem 4.1. We consider the scheme (4.3)-(4.4)-(4.5), where the additional param-
eter ki+ 1

2
is defined by (3.2). When ε tends to zero, the two following assertions are

satisfied.

(i) In the diffusive regime, the equation (4.4) coincides with a discretization of the
local equilibrium (1.7).

(ii) In the diffusive regime, the equation (4.3) coincides with the discrete diffusion
equation (3.7) to discretize (1.8).

Proof. Let us adopt the following Chapman-Enskog expansions of hni and qni for all
i ∈ Z, n ∈ N:

hni = h0,n
i +O(ε) and qni = q0,n

i +O(ε), (4.6)

where the zero-order of the water height h0,n
i is assumed to be positive for all i ∈ Z and

n ∈ N. First, we underline that the following developments easily hold for all i ∈ Z and
n ∈ N:

(qni )2

hni
+ g

(hni )2

2
=

(q0,n
i )2

h0,n
i

+ g
(h0,n
i )2

2
+O(ε).

The discrete discharge evolution law (4.4) can then be rewritten as follows:

q0,n+1
i = q0,n

i −
∆t

2ε∆x

(
αεi+ 1

2

(
(q0,n
i+1)2

h0,n
i+1

+ g
(h0,n
i+1)2

2
− (q0,n

i )2

h0,n
i

− g (h0,n
i )2

2
+O(ε)

)

+αεi− 1
2

(
(q0,n
i )2

h0,n
i

+ g
(h0,n
i )2

2
−

(q0,n
i−1)2

h0,n
i−1

− g
(h0,n
i−1)2

2
+O(ε)

))

+
∆t

2ε∆x

(
λi+ 1

2
αεi+ 1

2

(
q0,n
i+1 − q

0,n
i +O(ε)

)
− λi− 1

2
αεi− 1

2

(
q0,n
i − q0,n

i−1 +O(ε)
))

−k∆t

2ε3

(
αεi+ 1

2
+ αεi− 1

2

)(
q0,n
i |q

0,n
i |(h

0,n
i )−η +O(ε)

)
+O(ε).

(4.7)
Moreover, from the definition of (αε

i+ 1
2

)i∈Z given by (4.5) and the definition of (ki+ 1
2
)i∈Z

given by (3.2), αε
i+ 1

2

can be rewritten as follows:

αεi+ 1
2

= ε

(
ε+ λi+ 1

2

√
k∆x|hni+1 − hni |

g((hni+1)η + (hni )η)(hni+1 + hni )

)−1

.

Using expansions (4.6), from the above expression we deduce the following limit:

lim
ε→0

αε
i+ 1

2

ε
=


1

λi+ 1
2

√√√√g((h0,n
i+1)η + (h0,n

i )η)(h0,n
i+1 + h0,n

i )

k∆x|h0,n
i+1 − h

0,n
i |

, if h0,n
i 6= h0,n

i+1,

+∞, if h0,n
i = h0,n

i+1.
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Even if the limit of αε
i+ 1

2

/ε is not necessary finite, when ε goes to zero, the dominant term

in the equation (4.7) coincides with the source term discretization. As a consequence,
we get the following limit for all i ∈ Z:

0 = q0,n
i |q

0,n
i |(h

0,n
i )−η. (4.8)

Since h0,n
i is assumed to be positive, the above expression necessary gives that the zero-

order of the discharge q0,n
i vanishes in each cell, and the expansions (4.6) then rewrite:

hni = h0,n
i + εh1,n

i +O(ε) and qni = ε
(
q1,n
i +O(ε)

)
. (4.9)

Moreover, the following development now holds:

qni |qni |(hni )−η = ε2
(
q1,n
i |q

1,n
i |(h

0,n
i )−η +O(ε)

)
. (4.10)

Now, it is necessary to distinguish the expansion of (αε
i+ 1

2

)i∈Z with respect to the be-

havior of the water height as follows:

αεi+ 1
2

=


εα1

i+ 1
2

+O(ε2) if h0,n
i 6= h0,n

i+1,

√
εα

1/2

i+ 1
2

+O(ε) if h0,n
i = h0,n

i+1 and h1,n
i 6= h1,n

i+1,

α0
i+ 1

2
+O(ε) if h0,n

i = h0,n
i+1 and h1,n

i = h1,n
i+1,

(4.11)

where

α1
i+ 1

2
=

1

λi+ 1
2

√√√√g((h0,n
i+1)η + (h0,n

i )η)(h0,n
i+1 + h0,n

i )

k∆x|h0,n
i+1 − h

0,n
i |

,

α
1/2

i+ 1
2

=
2

λi+ 1
2

√
g(h0,n

i )η+1

k|h1,n
i+1 − h

1,n
i |∆x

,

α0
i+ 1

2
=

1 +
λi+ 1

2

2

√
k|h2,n

i+1 − h
2,n
i |∆x

g(h0,n
i )η+1

−1

.

(4.12)

We notice that the quantities α1
i+ 1

2

, α
1/2

i+ 1
2

and α0
i+ 1

2

are positive and well defined. For

the sake of simplicity in the notations, we introduce (βL,ε
i+ 1

2

)i∈Z and (βR,ε
i+ 1

2

)i∈Z defined as

follows:

βL,ε
i+ 1

2

= −∆t

2ε
αεi+ 1

2

(
g

2∆x

(
(hni+1)2 − ((hni )2

)
+
k

ε2
qni |qni |(hni )−η

)
,

βR,ε
i+ 1

2

= −∆t

2ε
αεi+ 1

2

(
g

2∆x

(
(hni+1)2 − ((hni )2

)
+
k

ε2
qni+1|qni+1|(hni+1)−η

)
.

From (4.9), (4.10) and (4.11), βK,ε
i+ 1

2

admits the following expansion:

βK,ε
i+ 1

2

=



βK,0
i+ 1

2

+O(ε) if h0,n
i 6= h0,n

i+1,

1√
ε
β
K,−1/2

i+ 1
2

+O(1) if h0,n
i = h0,n

i+1 and h1,n
i 6= h1,n

i+1,

1

ε
βK,−1

i+ 1
2

+O(1) if h0,n
i = h0,n

i+1 and h1,n
i = h1,n

i+1,
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where we have set

βL,0
i+ 1

2

= −∆t

2
α1
i+ 1

2

( g

2∆x

(
(h0,n
i+1)2 − ((h0,n

i )2
)

+ kq1,n
i |q

1,n
i |(h

0,n
i )−η

)
,

β
L,−1/2

i+ 1
2

= −k∆t

2
α

1/2

i+ 1
2

q1,n
i |q

1,n
i |(h

0,n
i )−η,

βL,−1

i+ 1
2

= −k∆t

2
α0
i+ 1

2
q1,n
i |q

1,n
i |(h

0,n
i )−η,

and

βR,0
i+ 1

2

= −∆t

2
α1
i+ 1

2

( g

2∆x

(
(h0,n
i+1)2 − ((h0,n

i )2
)

+ kq1,n
i+1|q

1,n
i+1|(h

0,n
i+1)−η

)
,

β
R,−1/2

i+ 1
2

= −k∆t

2
α

1/2

i+ 1
2

q1,n
i+1|q

1,n
i+1|(h

0,n
i+1)−η,

βR,−1

i+ 1
2

= −k∆t

2
α0
i+ 1

2
q1,n
i+1|q

1,n
i+1|(h

0,n
i+1)−η.

Adopting this new notation, we easily rewrite (4.4) as follows:

qn+1
i = qni +βL,ε

i+ 1
2

+ βR,ε
i− 1

2

+
∆t

2ε∆x

(
λi+ 1

2
αεi+ 1

2

(
qni+1 − qni

)
− λi− 1

2
αεi− 1

2

(
qni − qni−1

))
− ∆t

2ε∆x

(
αεi+ 1

2

(
(qni+1)2

hni+1

− (qni )2

hni

)
+ αεi− 1

2

(
(qni )2

hni
−

(qni−1)2

hni−1

))
.

(4.13)
Now, let us consider the limit of (4.13) as ε goes to zero. Since the behavior of αi+ 1

2

and βK,ε
i+ 1

2

depends on the values of the water height, two cases must be distinguished

to exhibit the limit scheme. First, let us assume that h0,n
i = h0,n

i−1 and/or h0,n
i = h0,n

i+1,
then the limit of (4.13) as ε goes to zero reads

q1,n
i |q

1,n
i |(h

0,n
i )−η = 0. (4.14)

Next, if we have h0,n
i 6= h0,n

i−1 and h0,n
i 6= h0,n

i+1 then, in the limit of ε to zero, (4.13) now
tends to

α1
i+ 1

2

α1
i+ 1

2

+ α1
i− 1

2

g
2 (h0,n

i+1)2 − g
2 (h0,n

i )2

∆x
+

α1
i− 1

2

α1
i+ 1

2

+ α1
i− 1

2

g
2 (h0,n

i )2 − g
2 (h0,n

i−1)2

∆x

= −kq1,n
i |q

1,n
i |(h

0,n
i )−η.

(4.15)

Nowadays, to achieve the establishment of (i), we have to show that the above limit
scheme, given by (4.14) or (4.15), is consistent with the local equilibrium (1.7). To
address such an issue, we introduce two smooth enough functions, h0(x) and q1(x),
such that (h0,n

i , q1,n
i ) = (h0(xi), q

1(xi)) and (h0,n
i±1, q

1,n
i±1) = (h0(xi ±∆x), q1(xi ±∆x)).

Now, in order to deal with the limit scheme, (4.14) or (4.15), we have to distinguish
the case h0(xi) = h0(xi − ∆x) and/or h0(xi) = h0(xi + ∆x) and the case h0(xi) 6=
h0(xi ±∆x). Since the expected consistency comes in the limit of ∆x to zero, the case
h0(xi) = h0(xi −∆x) and/or h0(xi) = h0(xi + ∆x), for all ∆x small enough, necessary
implies h0(x) equal to a constant in a neighborhood of xi. Then, since h0(xi) > 0, the
limit (4.14) gives q1(xi) = 0, which coincides with the expected local equilibrium (1.7)
with a constant water height. Next, let us assume that h0(x) is not given by a constant.
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As a consequence we have h0(xi) 6= h0(xi ±∆x) as soon as ∆x is small enough. Then,
we easily obtain the following limit

lim
∆x→0

(
α1
i+ 1

2

α1
i+ 1

2

+ α1
i− 1

2

g
2h

0(xi + ∆x)2 − g
2h

0(xi)
2

∆x

+
α1
i− 1

2

α1
i+ 1

2

+ α1
i− 1

2

g
2h

0(xi)
2 − g

2h
0(xi −∆x)2

∆x

)
= ∂x

(
gh0(xi)

2

2

)
,

to immediately deduce the required consistency of the ε-asymptotic scheme (4.15)
with the local equilibrium (1.7) as the water height is not constant. This achieves the
establishment of (i).

Now we turn proving (ii). First, we give the behavior of the discretization (4.3)
for ε in a neighborhood of zero. To address such an issue, let us underline that the
expansions (4.9) now write:

hni = h0,n
i +O(ε) and qni =


ε
(
q1,n
i +O(ε)

)
if h0,n

i 6= h0,n
i−1 and h0,n

i 6= h0,n
i+1,

ε2
(
q2,n
i +O(ε)

)
otherwise.

The above expansions combined with the expansion (4.11) of αε
i+ 1

2

imply:

1

2ε∆x
αεi+ 1

2

(
qni+1 − qni

)
= O(ε), (4.16)

so that the discrete water height evolution law (4.3) now reads:

hn+1
i = hni +∆tO(ε)+

∆t

2ε∆x

(
λi+ 1

2
αεi+ 1

2

(
hni+1 − hni

)
− λi− 1

2
αεi− 1

2

(
hni − hni−1

))
. (4.17)

To simplify the notations, let us set

γεi+ 1
2

=
λi+ 1

2
αε
i+ 1

2

2ε∆x

(
hni+1 − hni

)
,

such that we reformulate (4.17) as follows:

hn+1
i = hni + ∆tO(ε) + ∆t

(
γεi+ 1

2
− γεi− 1

2

)
. (4.18)

From (4.11), the following behavior of γε
i+ 1

2

is obtained:

γεi+ 1
2

=



λi+ 1
2
α1
i+ 1

2

2∆x

(
h0,n
i+1 − h

0,n
i

)
+O(ε) if h0,n

i 6= h0,n
i+1,

√
ε
λi+ 1

2
α

1/2

i+ 1
2

2∆x

(
h1,n
i+1 − h

1,n
i

)
+O(ε) if h0,n

i = h0,n
i+1 and h1,n

i 6= h1,n
i+1,

ε
λi+ 1

2
α0
i+ 1

2

(
h2,n
i+1 − h

2,n
i

)
2∆x

+O(ε2) if h0,n
i = h0,n

i+1 and h1,n
i = h1,n

i+1.



S. BULTEAU, C. BERTHON, M. BESSEMOULIN-CHATARD 18

Thus, as soon as h0,n
i = h0,n

i+1, the quantity γε
i+ 1

2

is at least of order
√
ε. Then, the above

expansion rewrites as follows:

γεi+ 1
2

=
λi+ 1

2
α1
i+ 1

2

2∆x

(
h0,n
i+1 − h

0,n
i

)
+O(

√
ε). (4.19)

Moreover, by the definition of α1
i+ 1

2

, given by (4.12), the following equality holds :

λi+ 1
2
α1
i+ 1

2

2∆x

(
h0,n
i+1 − h

0,n
i

)

=
1

2∆x

√
g

k
sign(h0,n

i+1 − h
0,n
i )

√√√√(
(h0,n
i+1)η + (h0,n

i )η
) ∣∣∣(h0,n

i+1)2 − (h0,n
i )2

∣∣∣
∆x

.

(4.20)
As a consequence, the expansion (4.19) of γε

i+ 1
2

can thus be rewritten as follows:

γεi+ 1
2

=
1

∆x
sign(h0,n

i+1−h
0,n
i )

√√√√ (h0,n
i+1)η + (h0,n

i )η

2k

∣∣∣ g2 (h0,n
i+1)2 − g

2 (h0,n
i )2

∣∣∣
∆x

+O(
√
ε). (4.21)

Then, equipped with the above expression, the discretization (4.3), or equivalently
(4.18), thus admits the following behavior:

hn+1
i = hni +

∆t

∆x

sign
(
h0,n
i+1 − h

0,n
i

)√√√√ (h0,n
i+1)η + (h0,n

i )η

2k

∣∣∣ g2 (h0,n
i+1)2 − g

2 (h0,n
i )2

∣∣∣
∆x

−sign
(
h0,n
i − h0,n

i−1

)√√√√ (h0,n
i )η + (h0,n

i−1)η

2k

∣∣∣ g2 (h0,n
i )2 − g

2 (h0,n
i−1)2

∣∣∣
∆x


+ ∆tO(

√
ε).

In the limit of ε to zero, we immediately obtain the expected consistency with the
diffusion equation (1.8). The proof is thus achieved.

5 Numerical illustrations

This section is devoted to the numerical representation of the convergence of the
discretization given by (4.3)-(4.4) towards the discretization given by the limit scheme
(3.7). The preservation of the asymptotic behavior of the discharge given by (1.7) is
also highlighted. The two initial conditions introduced in Section 3 and given by (3.11)
and (3.12) are considered. Moreover, the parameter k is set equal to 1, the parameter
η is equal to 7/3 and zero-flux boundary conditions are used.

We compare the discretization of the water height given by the scheme (4.3)-(4.4)
with the straightforward discretization (3.7) of the diffusive limit. As detailed in the
proof of Theorem 4.1, the approximate water height given by (4.3) coincides with the
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discretization given by this limit scheme when ε tends to zero. On Figures 11 and
12, we display the approximate water height, at time t = 0.01 and for both initial
conditions, obtained with the scheme (4.3)-(4.4) for different values of ε, the asymptotic
parameter. The dotted line denotes the limit water height obtained with (3.7). We can
clearly observe the preservation of the diffusion equation by the scheme (4.3)-(4.4).

(a) N = 100 (b) N = 800

Figure 11: Water height at time t = 0.01 with the continuous initial condition for
different values of ε.

(a) N = 100 (b) N = 800

Figure 12: Water height at time t = 0.01 with the discontinuous initial condition for
different values of ε.

To complete this illustration, we display on Figures 13 and 14 the water height
obtained for a fixed value of ε and different number of cells. The behavior of the space
convergence is clearly better than for the scheme developed in [10], whose results are
displayed in Section 3.

Moreover, to observe the behavior of the one-order of the approximate discharge
given by the scheme (4.4), we consider (qni /ε)

n
i where (qni )ni is the discharge given by

(4.4). We compare it with the discrete local equilibrium (3.13) on Figures 15 and
16 for a fixed value of N and different values of ε. At the discrepancy with results
from Section 3, the convergence toward the discrete local equilibrium is illustrated
and the scheme (4.3)-(4.4) preserves both the diffusion equation (1.8) and the local
equilibrium (1.7).
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(a) ε = 0.01 (b) ε = 0.0001

Figure 13: Water height at time t = 0.01 with the continuous initial condition for
different number of cells.

(a) ε = 0.01 (b) ε = 0.0001

Figure 14: Water height at time t = 0.01 with the discontinuous initial condition for
different number of cells.

(a) N = 100 (b) N = 800

Figure 15: Order one of the water discharge at time t = 0.01 with the continuous initial
condition for different values of ε.

Finally, on Figures 17 and 18, we display the one-order of the discharge compared
to the discrete local equilibrium (3.13) for a fixed value of ε and different number of
cells. The spatial convergence of the scheme (4.3)-(4.4) is, here again, better than the
spatial convergence of the scheme (3.3)-(3.4), from [10], displayed in Section 3.
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(a) N = 100 (b) N = 800

Figure 16: Order one of the water discharge at time t = 0.01 with the discontinuous
initial condition for different values of ε.

(a) ε = 0.01 (b) ε = 0.0001

Figure 17: Order one of the water discharge at time t = 0.01 with the continuous initial
condition for different number of cells.

(a) ε = 0.01 (b) ε = 0.0001

Figure 18: Order one of the water discharge at time t = 0.01 with the discontinuous
initial condition for different number of cells.
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[11] G. Gallice. Schémas de type Godunov entropiques et positifs préservant les dis-
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