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COMPARISON OF EXPONENTIAL INTEGRATORS AND TRADITIONAL TIME

INTEGRATION SCHEMES FOR THE SHALLOW WATER EQUATIONS

MATTHIEU BRACHET, LAURENT DEBREU, AND CHRISTOPHER ELDRED

Abstract. The time integration scheme is probably one of the most fundamental choices in the development

of an ocean model. In this paper, we investigate several time integration schemes when applied to the shallow

water equations. This set of equations is accurate enough for the modeling of a shallow ocean and is also
relevant to study as it is the one solved for the barotropic (i.e. vertically averaged) component of a three

dimensional ocean model. We analyze different time stepping algorithms for the linearized shallow water

equations. High order explicit schemes are accurate but the time step is constrained by the Courant-
Friedrichs-Lewy stability condition. Implicit schemes can be unconditionally stable but, in practice lack

accuracy when used with large time steps. In this paper we propose a detailed comparison of such classical
schemes with exponential integrators. The accuracy and the computational costs are analyzed in different

configurations.

Keywords: Shallow water equations, Time stepping, Exponential integrators, Finite differences, Krylov
methods

1. Introduction

The shallow water equations are used to model fluid’s movements subject to the gravity. The system
is derived from the Euler equations assuming a small fluid thickness. In a one-dimensional framework, the
unknowns are h, the fluid thickness, and u, the horizontal velocity. The system is expressed as:

(1)


∂h

∂t
+

∂

∂x
(hu) = 0

∂u

∂t
+

∂

∂x

(
1

2
u2 + gh

)
= f(t, x)

for all x ∈ [0, d], t ≥ 0 and the initial data are (u0(x), h0(x)). Equations (1) are closed with appropriate
boundary conditions, which we consider here to be periodic. g is the gravity. The function f : (t, x) ∈
R+ × [0, d] 7→ f(t, x) ∈ R represents terms other than advection or gravity (e.g. bottom friction or wind).
The shallow water model is widely used in computational fluid dynamics. Among others, we can mention

• Ocean model : under the small thickness assumption but also in three dimensional ”primitive” equa-
tions model where the fast (barotropic) component is solved separately from the 3D equations using
a shallow water system forced by the depth average of the 3D right hand side (see [34] and reference
therein).

• Bedload transport : to model the sediment transport, shallow water equations are coupled with Exner
equation. In this system, the topography is moving and the bedload velocity is smaller than fluid
velocity [10].

• Atmosphere model : shallow water system on a rotating sphere is the simplest atmospheric model of
interest. It is considered as a first step in the study of a numerical solver for geophysical fluids [37].
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The desired degree of accuracy of the numerical solution of (1) is dependent on the application and impacts
the choice of temporal and spatial discretization schemes. One may prefer a numerical solver with a low
computational cost even if the accuracy is moderate. This is the case for example for large scale (e.g.
climate) oceanic applications. Operational (and thus time to solution) constraints can also favor the use of
such schemes. For other applications, like bedload transport or tidal model, accuracy is essential and high
order schemes are necessary.

In this paper, we study various time integration schemes for the solution of the shallow water equations.
Explicit schemes, like the Runge-Kutta, the Kinnmark-Gray and the Forward-Backward schemes discussed
later, have a low computation cost per time step since they rely on a few evaluations of the right hand side.
However, they are limited by a Courant-Friedrichs-Lewy (CFL) stability condition (see [22] for a review on
the different stability conditions of an ocean model):

(2)
c∆t

∆x
≤ Cste,

where ∆t and ∆x are the temporal and spatial discretization steps.
c∆t

∆x
is the Courant number where c is

a characteristic velocity which corresponds in the shallow water model to c =
√
gH where H is the mean

total depth [20]. In the context of ocean models, Forward-Backward schemes are considered in [34] and
Runge-Kutta integrators in [11, 36] among others.

An alternative is to use implicit schemes, the simplest one being the Euler Backward scheme. This family
of time integrators are potentially A-stable and allow much greater time steps than explicit schemes. The
price to pay is the solution of a linear or non-linear system. Another drawback of implicit schemes is linked
to the accuracy. Indeed, large time steps, more precisely the use of large Courant numbers, can reduce the
accuracy which translates into dispersion and possibly dissipation errors.

More recently, interest has grown in the use of exponential integrators to solve partial differential equations
of the form

(3)
dX

dt
= F(X, t).

The function F is split into linear and non linear parts: F(X, t) = LX + N (X, t). The linear part L can
be fixed once or updated using the Jacobian at the current time tn: L = JactnF leading to the Rosenbrock
formulation.
A review of these schemes is available in [17] in a general framework. The main property of this class of
integrators is exact solution of linear equations, i.e. when N = 0. A consequence is A-stability: these schemes
are not constrained by a CFL condition. Dissipation and dispersion properties depend only on the spatial
discretization. The main issue is the need for the computation of matrix exponentials. This can be done using
factorization methods or with polynomial approximation but it is generally expensive and ill-conditioned. A
classical review is [26]. Advances in the application of Krylov methods [8, 15] for performing this computation
have brought more interest in these methods.

• The most common class of methods are the Exponential Runge-Kutta integrators (ERK) relying on
the formula

(4) X(t) = exp (tL)X(0) +

∫ t

0

exp ((t− τ)L)N (X(τ)) dτ,

to solve autonomous PDEs (i.e. when the right hand side N does not depend explicitly on time).
The order of the ERK integrators depends on the quadrature rule to compute the right hand side
of (4) (see A.3). They have been used to solve shallow water equations on a rotating sphere in the
context of atmosphere modeling in [6, 9] where it is shown that these methods are as accurate as
explicit Runge-Kutta methods but allow the use of much larger time steps. In all of these articles,
the accuracy is analyzed on the classical set of test cases [37] for which no time dependent analytical
solution is available. Although the results are encouraging, they do not allow a precise estimate
of accuracy and analysis of errors. A multi-step exponential integrator is considered in [14] in a
similar context. This integrator requires an efficient algorithm for computing a linear combination of
exponential functions, in particular the phipm algorithm developed by [27]).
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In [13], ERK integrators are compared to implicit time schemes for a three-dimensional Boussinesq
thermal convection system. These methods are found to be more accurate than implicit schemes but
also more expensive.
These integrators have also been considered in [7] to solve tracer equations in an ocean model. Two
methods are compared to compute the exponential part. The first is based on scaling and squaring
with a Padé approximation. It is the faster method but matrix exponentials have to be stored in
memory. The second way relies on computing matrix exponentials at each time step using Krylov
methods. In that case, the matrix exponentials do not have to be stored and can be updated when
necessary at the price of a larger computational cost per time step.
In [29], exponential integrators are considered for the solution of multi-layer shallow water equations.
The spatial discretization is performed with mimetic elements leading to skew-symmetric matrices
and exponential functions are computed thanks to skew-Lanczos methods. To obtain a computational
cost smaller than a fourth order Runge Kutta scheme (RK4) it seems however necessary to consider
dramatically larger time steps ∆t and to accept a larger error than RK4.
ERK integrators provide a way to solve autonomous equations. We denote by ERKc (see A.3 and [18])
the ERK integrators corrected for the solution of non-autonomous systems. The order of accuracy of
ERKc is the same as the equivalent ERK integrators. The computational cost is the same but they
require an approximation of the time derivative of the right hand side.

• To avoid quadrature in the integral part of (4), we can proceed to the following change of variable:

(5) V (t) = exp((tn − t)L)X(t)

in (3) and use an explicit scheme for the equation satisfied by V :

(6) V ′(t) = exp((tn − t)L)N (exp((t− tn)L)V (t), t) .

Equation (6) can be solved with any time integration scheme. When Runge-Kutta integrators are
considered, this corresponds to Lawson integrators.
These exponential integrators are called Linearly Exact Runge-Kutta integrators (LERK) in the
following. They are used in [28] to solve the Korteweg-de Vries equation. The results show that the
expected order of accuracy is attained but the computational cost is not considered.
Energy conservation properties are studied in [2] on a set of PDEs with damping/driving forces.
LERK schemes are shown to be still accurate on non-linear PDEs such as the Korteweg-de Vries
equation. The error is numerically investigated.
It is easy to build a high order accurate LERK integrator by considering a high order Runge-Kutta
method on (6). Unfortunately, the computation of many matrix exponentials is then required and
LERK integrators are expected to be expensive.

• To reduce the computational cost, it is possible to consider a splitting between linear and non linear
parts. As an example, Lie splitting consists of two steps. First, compute X∗ the solution of the linear
equation at time tn +∆t with Xn as initial condition:

(7)


dX

dt
= LX

X(0) = Xn,

using the matrix exponential. This step is denoted by Sl,∆t: X∗ = Sl,∆tX
n. The second step is to

solve the non linear part, starting from X∗:

(8)


dX

dt
= N (X, t)

X(0) = X∗,

using an explicit scheme such as the fourth order Runge-Kutta (RK4) scheme. The solver for this non
linear part is denoted Snl,∆t and Xn+1 = Snl,∆tX

∗ = Snl,∆t ◦ Sl,∆tX
n. Only one matrix exponential

is required for the computation of Sl,∆t. Each equation is solved with a highly accurate scheme. Lie
splitting will be denoted S1ERK4. To increase the accuracy of the non-linear integration, especially
when the non-linear term has a high temporal frequency, we can consider substepping in time (Ns
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sub-steps) for the computation of Snl,∆t. Lie splitting becomes
(
Snl,∆t/Ns

)Ns ◦ Sl,∆t and will be
denoted subS1ERK4. Due to splitting errors, the resulting scheme is only first order accurate.
More accurate methods are based on Strang splitting given by relations Sl,∆t/2 ◦ Snl,∆t ◦ Sl,∆t/2 (de-

noted by S2ERK4) and Sl,∆t/2 ◦
(
Snl,∆t/Ns

)Ns ◦ Sl,∆t/2 (denoted by subS2ERK4 for the substepping
version). These schemes are second order accurate and require the computation of two matrix ex-
ponentials but the number of matrix exponentials required can be reduced to one by combining two
time iterations.
Integrators relying on splitting methods have been used in [19] to capture shocks appearing in shallow
water equations, however exponential methods were not used.
This class of exponential integrators is thus expected to be cheaper than other high order unsplit
exponential integrators but splitting errors should reduce the accuracy.

Properties of the exponential integrators considered are summarized in Table 1. The notation P/Q for a
given scheme means that the order accuracy is P and the number of required matrix exponentials is Q.
Two cases are distinguished:

• The first case (left column) corresponds to a non linear part N (X, t) depending on X and not just on
time t. In their Rosenbrock formulation, ERKc methods benefit from an updated linear part thanks
to the Jacobian and gain one order of accuracy without increasing the computational cost. LERK
integrators are higher order accurate but suffer from the number of matrix exponentials occurring
(5 exponentials for LERK3, 7 for LERK4). LERK3 is more expensive than ERK2c while the order
of accuracy is the same as in the Rosenbrock case. Splitting methods have a computational cost
corresponding to their accuracy: n-th order methods have n matrix exponentials to compute per
time step. Splitting errors are the limiting factor on accuracy.

• The second case (right column) is devoted to a specific type of equations in which the non linear
term depends only on time N (X, t) = N (t). In this configuration, ERKc automatically benefit
from the advantages of the Rosenbrock case and are more accurate with the same number of matrix
exponentials to compute.
LERK methods are less expensive than in the first case due to simplifications occurring in the
algorithm (see A.4): they require less matrix exponentials. Furthermore, if N (t) is in the kernel
of L, some exponentials are easily computed (i.e. exp (∆tL)N (t) = N (t)) and this significantly
reduces their computational cost. It does not impact the accuracy. Splitting based integrators gain
in accuracy when N (t) ∈ Ker(L) because splitting errors cancel but the number of exponentials is
the same as other configurations.

X′(t) = F(X, t) X′(t) = LX+N (t)
fixed linear part L Rosenbrock N (t) /∈ Ker(L) N (t) ∈ Ker(L)

L = JacnF
ERK1c 1/1 2/1 2/1 2/1
ERK2c 2/2 3/2 3/2 3/2
LERK1 1/1 1/1 1/1 1/1
LERK3 3/5 3/5 3/3 3/1
LERK4 4/7 4/7 4/3 4/1
S1ERK4 1/1 1/1 1/1 4/1

subS1ERK4 1/1 1/1 1/1 4/1
S2ERK4 2/2 2/2 2/2 4/2

subS2ERK4 2/2 2/2 2/2 4/2
Table 1. Properties of exponential integrators: order of accuracy/number of matrix expo-
nentials for one time step. ERK are a specific case of ERKc for autonomous PDEs.



COMPARISON OF TIME INTEGRATION SCHEMES FOR THE SHALLOW WATER EQUATIONS 5

In the following, we will consider linearized equations around a steady state (h̄, 0) where h̄ is a positive
constant fluid height. The system of linearized shallow water equations (LSWE) is given by

(9)


∂h′

∂t
+ h̄

∂u′

∂x
= 0

∂u′

∂t
+ g

∂h′

∂x
= f(t, x)

where (h′, u′) are small perturbations around the resting steady state (h̄, 0). This linear system is a good
model for the nonlinear equations. Indeed, in atmospheric or oceanic cases, the models are usually weakly
nonlinear therefore most of the relevant behavior is captured by (9) through an appropriate choice of f(t, x).

The characteristic velocity of (9) is c =
√
gh̄. In the following, we will drop the ′ to simplify notations.

Some exponential integrators are specially adapted for linear problems such as (9) (see quadrature rules
in [17]). These time integrators are not considered in this article because they are not suitable for nonlinear
problems, which are the ultimate goal.

The purpose of this paper is to compare various time schemes for linearized shallow water equations.
This includes explicit Runge-Kutta, Kinnmark-Gray and Forward-Backward schemes, implicit θ-schemes
and exponential integrators. The stability constraints associated to each of these scheme are first recalled.
Then the accuracy is studied and we are particularly interested in how the frequency of the forcing term f in
(9) affects the time integration schemes. In addition since the global behavior of the scheme is also dependent
on the spatial discretization, we study second and fourth order spatial schemes, both of them on a staggered
grid.

This paper is organized as follows. In section 2, we present the spatial discretizations on a staggered grid
and recall their properties, in particular in terms of phase errors. Section 3 is devoted to the description of
the Krylov subspace method used to compute matrix functions. The different time integration schemes are
then considered. Beside stability and accuracy issues, we analyze, in section 4, spatio-temporal dissipation
and dispersion properties according to the spatial discretizations. The numerical schemes are implemented
and tested on different cases, according to different specifications of the forcing term f(t, x) in section 5.

2. Second and fourth order centered spatial schemes on a staggered grid

Equations (9) are solved using the method of lines. The first step is the discretization in space. We
consider two centered finite difference order operators, second (C2) and fourth (C4) order accurate, on a
staggered grid, a one-dimensional version of the C-grid in the Arakawa classification (see [1]).
On the one hand, the C4 scheme is more accurate than C2 but on the other hand, the spectral radius of
the fourth order operator is greater than the second order operator. This will have implications on stability
constraints and thus on the computational cost of the spatio-temporal schemes.

Two staggered grids are considered for the space discretization of (9): one for h and another one for u. The
h-grid is an offset of the u-grid. We define two sets of points: (xi)0≤i≤N−1 ∈ RN and (xi+1/2)0≤i≤N−1 ∈ RN

with

(10)


xi := i∆x

xi+1/2 := xi +
∆x

2
=

(
i+

1

2

)
∆x.

The mesh size is ∆x = d/N , N ∈ N∗ (see Figure 1). Centered schemes discretized on this staggered grid are
known to have a smaller phase error than their equivalent on a non-staggered A-grid (see [3]).
The velocity h is estimated on (xi)0≤i≤N−1 and u is computed on (xi+1/2)0≤i≤N−1:

(11)

{
h(·, xi) ≈ hi with 0 ≤ i ≤ N − 1,

u(·, xi+1/2) ≈ ui+1/2 with 0 ≤ i ≤ N − 1.

At this step, vectors u ∈ RN and h ∈ RN are functions of time.
The expressions of the second and fourth order finite difference (FD) operators are given below:
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∆x

•
x0 = 0

×
x1/2

•
x1

×
x3/2

•
x2

. . .

. . .
•

xN−2

×
xN−3/2

•
xN−1

×
xN−1/2 = d− ∆x

2

Figure 1. Staggered grid representing (xi)0≤i≤N−1 ∈ RN and (xi+1/2)0≤i≤N−1 ∈ RN .

• Order 2 FD Operators (C2):

(12)


∂u

∂x i
≈ δxui :=

ui+1/2 − ui−1/2

∆x
∂h

∂x i+1/2
≈ δxhi+1/2 :=

hi+1 − hi
∆x

• Order 4 FD Operators (C4):

(13)


∂u

∂x i
≈ δxui :=

9

8

ui+1/2 − ui−1/2

∆x
− 1

8

ui+3/2 − ui−3/2

3∆x
∂h

∂x i+1/2
≈ δxhi+1/2 :=

9

8

hi+1 − hi
∆x

− 1

8

hi+2 − hi−1

3∆x

The phase error induced by the space discretization is extracted from λx the eigenvalues of the difference
operators δx. A simple Fourier analysis gives us the phase error:

(14) eΦ :=
arg exp (λx(θ))

θ
with the normalized wave number θ = k∆x. Values of eΦ for the C2 and C4 schemes are given in Table 2
and plotted on Figure 2. As expected, higher order space operator C4 leads to a better accuracy than the
C2 operator.

Space operator Phase error

C2
sin(θ/2)

θ/2

C4
(13− cos θ) sin(θ/2)

6θ
Table 2. Numerical phase error for second and fourth order centered approximations on a
staggered grid. The normalized wave number is θ = k∆x.
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Figure 2. Numerical phase error for second and fourth order centered approximations on
a staggered grid. The normalized wave number is θ = k∆x.

3. Krylov method for matrix exponential: algorithm and stopping criterion

The computation of exponential integrators involve several matrix vector product functions φk(A)b (see
Appendix A.3). The functions φk used in our numerical schemes are:

(15)



φ0(z) = exp(z)

φ1(z) =
exp(z)− 1

z

φ2(z) =
exp(z)− 1− z

z2
,

φ3(z) =
exp(z)− 1− z − z2/2

z3
,

where the φk(z) functions are extended to 0 by 1/k! .
The problem is solved thanks to Krylov methods [16, 27, 32] which are based on the projection of the matrix
A onto a Krylov subspace using Arnoldi’s algorithm. The φk(A)b products are then approximated in this
subspace.

3.1. Arnoldi’s method for Krylov subspaces. Krylov subspaces Km(A, b) are defined by

(16) Km(A, b) = Span(b, Ab,A2b, · · · , Am−1b).

An upper Hessenberg matrix Hm ∈ Mm(R) and a matrix Vm are built using Algorithm 1. The coefficients
of Hm are (hi,j)1≤i,j≤m and the columns of Vm are the vectors (vi)1≤i≤m.

Algorithm 1 : Arnoldi Gram-Schmidt

1: Let v1 = b/∥b∥2
2: for j = 1, · · · ,m do
3: wj = Avj ,
4: for i = 1, · · · , j do
5: hi,j = vTi · wj ,
6: wj = wj − hi,jvi,
7: end for
8: hj+1,j = ∥wj∥2
9: if hj+1,j = 0, then

10: break
11: else vj+1 = wj/hj+1,j .
12: end for
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Matrices Hm and Vm satisfy the following equality [32]:

(17) V T
mAVm = Hm.

The computational cost of the Arnoldi Gram-Schmidt algorithm is O(m2n) where n is the size of A (see
[32]).

3.2. Computing matrix function product. As mentioned in [29], the use of exponential integrators
requires efficient computation of the product φk(A)b with A a matrix and b a vector. Indeed, for large
matrices A, φk(A) cannot be saved once and for all because it is dense a priori and therefore storage costs
would be prohibitive.
The first step is to build Hm and Vm related to the Krylov subspace Km(A, b) using Algorithm 1. Then, the
product φk(A)b is approximated by

(18) φk(A)b ≈ xm = ∥b∥2Vmφk(Hm)e1.

The global algorithm is given by:

Algorithm 2 : Krylov methods for φk(A)b

1: for m = 1, · · · , until convergence do
2: Build Hm and Vm linked to Km(A, b) using Algorithm 1,
3: xm = ∥b∥2Vmφk(Hm)e1.
4: end for

Line 2 in Algorithm 2 should be considered as an update of matrices Hm and Vm to avoid redundant
calculations.
Furthermore, φk(Hm) is computed using a high order Padé approximant. The error between the Padé
approximant and the exact value of φk(Hm) is linked to the norm of Hm, and thus scaling and squaring
methods are used (see [26, 35]).

3.2.1. Stopping criterion. A stopping criterion is given in the exponential case (i.e. k = 0) in [31]. It is
adapted and used for a general φk in [27]. Following ideas given in these papers, we use the error formula

(19) φk(A)b− xm = ∥b∥2hm+1,m

( ∞∑
i=k+1

Ai−k+1vm+1e
T
mφi(Hm)

)
e1.

The norm of the first term of this series

(20) ∥b∥2 · |hm+1,m|∥vm+1e
T
mφk+1(Hm)e1∥2

provides a good error estimate which we will use as a stopping criterion in our experiments. From a practical
point of view, to avoid computing two functions: φk(Hm) (for the approximation) and φk+1(Hm) (for the
stopping criterion), we use the equality (56). In [31], author suggests to consider more terms of the series for
the stopping criterion but this has not been necessary in our numerical experiments.

To assess the relevancy of the stopping criterion, we plot the relative error and the value of the stopping
criterion

(21) ∥b∥2 · ∥hm+1,mvm+1e
T
mφk+1(Hm)e1∥2

at each step of a Krylov iteration which computes φ1(∆tL)b where L is defined by

(22) L =

[
0 −h̄δx

−gδx 0

]
,

X = [h, u]T ∈ R2N . The vector b ∈ R2N is randomized to contain all frequencies. Results are given in
Figures 3 and 4 for respectively the second and fourth order discretizations. Behaviors were similar for other
functions φk tested.
As expected, the value of the stopping criterion is close to the relative error whatever the Courant number
chosen. It is generally slightly larger. As can be seen in Figures 3 and 4, the number of iterations increases
with the Courant number. This was expected due to the theorem 4.3 in [31]: a larger Courant number
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increases the spectral radius and the a priori error bound. C4 operator is slightly slower to converge than
C2 for the same reason. Furthermore, there is a threshold after which the error drops exponentially.
That is why the change of the tolerance, as soon as it is sufficiently small, does not impact significantly the
computational cost.

Figure 3. Relative error and stopping criterion for the Krylov estimation of φ1(∆tL)b with
b ∈ R2N a random vector. There are N = 500 grid points. The fluid thickness is h̄ = 100
meters. The time step ∆t is such that the Courant number is equal to 5 (left panel), 25
(center panel) and 100 (right panel). Second order (C2) discretization.

Figure 4. Relative error and stopping criterion for the Krylov estimation of φ1(∆tL)b with
b ∈ R2N a random vector. There are N = 500 grid points. The fluid thickness is h̄ = 100
meters. The time step ∆t is such that the Courant number is equal to 5 (left panel), 25
(center panel) and 100 (right panel). Fourth order (C4) discretization

3.2.2. Influence of Courant number and discretization parameter on Krylov method. In [31] (theorem 4.2), it
is proved the error for a Krylov approximation of the matrix exponential is

(23) ∥x− xm∥2 ≤ 2∥b∥2
ρ(A)meρ(A)

m!

where xm is the Krylov approximation of x = eAb and ρ(A) is the spectral radius of A. This result is true
whatever the matrix A and the vector b are.

Using A = ∆tL, where L is given by (22), ρ(A) is proportional to
c∆t

∆x
. Thus, fixing tolerance, m is expected

to depend mainly on the Courant number
c∆t

∆x
.
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To check this result, we determine the number of Krylov iterations m required to to compute φ0(∆tL)b
with a stopping criterion smaller than 10−10. As in the previous experiment, b is a randomized vector. We
consider different grid parameters N and Courant numbers c∆t/∆x. The results are summarized in Table 3.

Grid parameter N
c∆t

∆x
= 5

c∆t

∆x
= 25

c∆t

∆x
= 100

c∆t

∆x
= 200

c∆t

∆x
= 500

c∆t

∆x
= 1000

200 32 92 217 217 219 221
500 32 92 286 509 563 565
1000 32 92 286 532 1143 1176
2000 33 92 286 534 1256 2307
5000 33 94 288 534 1258 2448
10000 34 94 288 536 1260 2450

Table 3. Dimension of Km(∆tL, b) to compute φ0(∆tL)b such that stopping criterion’s
(21) is smaller than 10−10. The vector b ∈ R2N is a random vector. The space discretization is C4.

For a fixed Courant number c∆t/∆x, it is remarkable that m is constant while N increases. For this
reason, the value m should be small compared to N for thin grids (i.e. large value N). For coarse grids, the
value m seems to be at worst m ≈ N where as the Krylov approximation is applied on a 2N × 2N matrix.
Furthermore, as expected, the Krylov dimension m required increases with the Courant number. Similar
results are obtained for all φk function considered in our experiments.

Due to these results, we will focus on the number of matrix products Lb (and of right hand side evaluations)
occurring as a significant part of the computational cost.
In our experiments, we will consider N = 500 because the number of linear parts occurring does not depend
significantly on N and this value is representative of the behaviors for the considered methods.
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4. Properties of time integration schemes

We here consider various time integration schemes, combined with the previous spatial discretization
operators to solve LSWE (9). The detailed formulations of the time schemes are given in Appendix A.
Notations used are given in Table 4.

Time integrators:
FB Forward-Backward.
RK(n) Runge-Kutta integrator (n)-th order accurate.
RK-KG(2,6) RK - Kinnmark-Grey 2-nd order accurate with 6 steps.
IE Implicit Euler.
CN Crank-Nicholson.
THETA θ-scheme with θ = 0.51.
ERK(n) Exponential RK Integrator with (n) steps for autonomous system.
ERK(n)c Exponential RK Integrator with (n) steps for non-autonomous system.
LERK(n) Linearly Exact Runge-Kutta (n)-th order accurate.
S(p)ERK(n) Splitting (p)-th order accurate coupled with RK(n).
subS(p)ERK(n) Splitting (p)-th order accurate coupled with RK(n) with sub-steps.

Table 4. Time integration schemes used in this paper.

The stability condition is one of the main property of a numerical scheme. Consider a one step time integration
scheme to solve (9) (with f(t, x) = 0). There exists a matrix G ∈ M2N (R) such that:

(24) Xn+1 = GXn,

where Xn = [hn, un]T ∈ R2N . For example, for some schemes presented in Appendix A, matrix G is given
by:

• Forward-Backward:

G = Id+∆tLFB where LFB =

[
0 −h̄δx

−gδx ∆tgh̄(δx)
2

]
.

• RK3:

(25) G = Id +∆tL+
1

2
(∆tL)2 +

1

6
(∆tL)3,

• RK4:

(26) G = Id +∆tL+
1

2
(∆tL)2 +

1

6
(∆tL)3 +

1

24
(∆tL)4,

• RK-KG(2,6):

(27) G = Id +∆tL+
1

2
(∆tL)2 +

1

6
(∆tL)3 +

1

24
(∆tL)4 +

1

180
(∆tL)5 +

1

1080
(∆tL)6,

• θ-scheme:

(28) G = (Id− θ∆tL)−1 · (Id + (1− θ)∆tL),

• Exponential Integrator:

(29) G = exp (∆tL) .

where the matrix L has been defined by (22). Note that LFB is a small perturbation of L.
A time scheme is stable if and only if ∥Xn+1∥2 ≤ ∥Xn∥2, or equivalently Sp(G) ⊂ D(0, 1) in C. In Table 5,
we summarize the maximum Courant numbers c∆t/∆x required to maintain stability using different explicit
schemes. The RK-KG(2,6) scheme has the largest stability limit while the RK3 scheme has a stronger stability
constraint.
Whatever the time scheme considered, the second order discretization allows for a time step larger than the
one for the fourth order discretization, the ratio between the two is about 1/0.86.
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Scheme RK-KG(2,6) RK4 RK3 FB

C2 2
√
6 ≈ 2.45

√
2 ≈ 1.41

√
3

2
≈ 0.86 1

C4
48
√
376742901

443749
≈ 2.10 48 ·

√
283

443749
≈ 1.21 12 ·

√
1698

443749
≈ 0.74 24 ·

√
566

443749
≈ 0.86

Table 5. Stability criterion for centered spatial discretization of second and fourth order
schemes (C2 or C4) and for different explicit time schemes. To ensure stability, the Courant

number c∆t/∆x (where c =
√
gh̄) must be smaller than the given value.

The stability constraint has to be associated to the computational cost. Using explicit methods, it is
mainly given by the number of right hand side evaluations of (9). In Table 6, we compute the maximum
Courant number divided by the number of right hand side evaluations. The greater the value is, cheaper
the method is. The Forward-Backward scheme is the cheapest among the explicit time schemes but also the
least accurate.The Runge Kutta integrator RK4 is more accurate and less expensive than RK3. RK-KG(2,6)
has the largest computational cost per time iteration but has a good stability. Among the Runge-Kutta
integrators considered, it is the least expensive to reach final time. Unfortunately, this integrator is only
second order accurate.

Scheme RK-KG(2,6) RK4 RK3 FB

C2

√
6

6
≈ 0.41

√
2

4
≈ 0.35

√
3

6
≈ 0.29 1

C4
8
√
376742901

443749
≈ 0.35 12 ·

√
283

443749
≈ 0.30 4 ·

√
1698

443749
≈ 0.25 24 ·

√
566

443749
≈ 0.86

Table 6. Maximum Courant number c∆t/∆x divided by the number of right hand side
evaluation and for C2 and C4 spatial discretizations and for different explicit time scheme.

Dissipation and dispersion are the ability of a numerical scheme to keep unchanged the shape and velocity
of a simple wave. It is measured by the dissipation map:

(λ, θ) 7→ |ζ(λ, θ)|
and the dispersion map:

(λ, θ) 7→ arg ζ(λ, θ)

λθ
where λ = c∆t/∆x is the Courant number, θ = k∆x is the normalized wave number and ζ(λ, θ) is the
eigenvalue of G associated to frequency k.
A perfect scheme would have each of these functions equal to one, and a good scheme stays close to one.
When the dissipation map is larger than 1, the numerical scheme is unstable. A dispersion map far from 1
(at a given wave number) indicates a phase delay or advance.

The spatio-temporal dissipation and dispersion errors curves are plotted for different Courant number
c∆t/∆x in Figure 5 for the second order scheme (C2) and Figure 6 for the fourth order scheme (C4).
Implicit time schemes and exponential integrators are unconditionally stable and thus allow for Courant
number much larger.
The dissipation and dispersion errors of implicit schemes (with θ > 0.5) increase with the Courant number.
The Crank-Nicholson scheme (θ = 0.5) does not dissipate but disperses (not plotted). In practice, dissipation
can be needed to attenuate parasitic waves corresponding to ±1 mode, that is why it is generally preferable
to use the θ-scheme with a value of θ slightly larger than 0.5. We use θ = 0.51 here. Conversely, exponential
integrators do not dissipate. FB does not dissipate (when stable). Note that the FB / C2 scheme is exact
(no dissipation and no dispersion errors) when the Courant number is equal to 1, the largest value of allowed
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Courant number. This error cancellation does not occur for the FB/C4 scheme. Exponential integrators
dispersion properties do not depend on the Courant number since the only error comes from the spatial
discretization.

Figure 5. Left panel: dissipation map, Right panel: dispersion map using different time
integrators and C2 space scheme. Three Courant numbers c∆t/∆x are considered: 0.25,
0.75, 1 and 5. When c∆t/∆x = 5, explicit integrators are not stable.
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Figure 6. Left panel: dissipation map, Right panel: dispersion map using different time
integrators and C4 space scheme. Three Courant numbers c∆t/∆x are considered: 0.25,
0.75, 0.85 and 5. When c∆t/∆x = 5, explicit integrators are not stable.

5. Numerical results

To assess the performance of each scheme, we consider several test cases for the linearized shallow water
equations (9). Both the accuracy and stability are evaluated. As mentioned before, exponential integrators
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and implicit time schemes are A-stable allowing the use of large time steps. Implicit methods require the
solution of a linear system which is done using a conjugate gradient method (the linear system to solve is
reduced to a smaller symmetric system as detailed in A.2).

Consider (9) initialized with (h0(x), u0(x)). The analytic solution is well known whatever the function f .
The height h is given by the formula

h(t, x) =
1

2

√
h̄

g

[
u0(x− ct)− u0(x+ ct) +

√
g

h̄
(h0(x− ct) + h0(x+ ct))

]
+ . . .

· · ·+ 1

2

∫ t

0

(f(τ, x− c(t− τ))− f(τ, x+ c(t− τ))) dτ(30)

and the velocity u is

u(t, x) =
1

2

[
u0(x− ct) + u0(x+ ct) +

√
g

h̄
(h0(x− ct)− h0(x+ ct))

]
+ . . .

· · ·+ 1

2

∫ t

0

(f(τ, x− c(t− τ)) + f(τ, x+ c(t− τ))) dτ(31)

with the characteristic velocity c =
√
gh̄.

Three source functions f will be considered:

• The first is f ≡ 0, resulting in a simple homogeneous linear equation. Obviously, exponential inte-
grators are exact in this case and the only error comes from the spatial discretization. The accuracy
of the explicit schemes is a function of their order. Finally implicit integrators may suffer from poor
dissipation and dispersion properties when used in combination with a large time step.

• In the second test case, the forcing function f is non zero but depends only on time. Its frequency
is given by a parameter ω. Large ω values imply rapid variations of the exact solution. In this
context, the choice of the time step ∆t is crucial to maintain an accurate numerical solution. LERK
and splitting integrators benefit from the fact the source function N (t) is in the kernel of L. LERK
integrators have a reduced computational cost because only one exponential has to be compute at
each time step. Splitting methods benefit from error cancellation and become fourth order accurate
when used in conjunction with the RK4 scheme.

• In the third test case, more general, f depends both on time and space. Most of the advantages
of the preceding simplified cases disappear. Splitting based methods have limited order of accuracy.
Additionally, LERK integrators are more expensive because N (t) /∈ Ker(L) if f depends on space
(see Appendix A.3).

In all test cases, we consider a domain length d = 500000 meters and gravity g = 9.81m · s−2. Initial states
(h0, u0) are given by:

(32)

h0(x) = hm · exp

(
−
(
x− 0.5 · d

σ

)2
)

u0(x) = 0

where σ = d/10 and hm = 1m is the maximum of h0.
Functions h0 and u0 are chosen such that the numerical solution does not correspond to an eigenvalue of L.
Indeed, if Xn is an eigenvalue of L, then the Krylov method to compute φk(∆tL)Xn converges in a single
iteration.
Two oceanic configurations will be considered: a shallow ocean (h̄ = 100m) and a deep ocean (h̄ = 4000m).
The change of depth impacts the value of the propagation speed c and thus of the Courant number. The ratio
between the two thicknesses is 4000/100 = 40 and results in a ratio of the Courant numbers

√
4000/

√
100 ≈

6.32.
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Relative errors are computed at time tn for h using

(33) eh =

√√√√√√√ d

N
·

1

Nt

Nt∑
n=1

∥hn − h(tn)∥2L2([0,d])

∥h∥2L2([0,Tf ]×[0,d])

and for u by

(34) eu =

√√√√√√√ d

N
·

1

Nt

Nt∑
n=1

∥un − u(tn)∥2L2([0,d])

∥u∥2L2([0,Tf ]×[0,d])

where h (resp. u) is the numerical approximate of h (resp. u). N is the number of spatial grid points chosen
to be equal to N = 500 in our experiments. It leads to ∆x = 1000 meters. Nt is the number of time iterations
to reach the final time T = Nt∆t.

5.1. No forcing Case. Consider (9) without source term. More precisely, f is

(35) f(t, x) = 0 for all x ∈ [0, d], t ≥ 0.

Then, (9) is a linear autonomous equation. In this particular case, there are only space discretization errors
when exponential integrators are used. That is why it is sufficient to consider ERK1 exponential integrators,
indeed, all exponential differencing schemes are equivalent.
At each time t ≥ 0, the solution is

(36)


h(t, x) =

1

2
(h0(x− ct) + h0(x+ ct))

u(t, x) =
1

2

√
g

h̄
(u0(x− ct)− u0(x+ ct))

where c =
√
gh̄.

Visualisation of dissipation/dispersion errors of the unconditionally stable schemes. In Figure 7, we plot the
numerical solution h at times t = 1 hour, t = 10 hours and t = 40 hours. The ocean is shallow (h̄ = 100
meters). The spatial operator is fourth order accurate. The time step is ∆t = 300s and corresponds to a
Courant number c∆t/∆x = 9.4. In this high resolution case, the solution is spatially well resolved and most
of the errors come from the time stepping algorithm.
We observe the dissipation of the solution computed with Backward Euler and the dispersion using Crank-
Nicolson. The curves associated to θ-scheme (θ = 0.51) show less dispersion error than the Crank-Nicolson
scheme at the price of a slightly larger dissipation. As expected, exponential integrators are accurate, the
numerical solution is visually not distinguishable from the exact solution. Results shown in Figure 7 were
obtained with the C4 scheme but similar conclusions are obtained using a second order accurate scheme (C2).

Accuracy / Computational cost. We here compare the error in h and u for the different time schemes, and
the associated number of right hand side evaluations. According to experiment done in section 3.2.2, the
computational costs are assumed to be directly linked to the number of right hand side evaluations. For
exponential integrators and implicit schemes, these calls arise from the matrix-vector products of the Krylov
and conjugate gradient methods.
For each explicit scheme, only one time step size is considered. It corresponds to a value close to their maxi-
mum allowed values: it minimizes the number of total calls required to achieve the final time of integration.
The time steps ∆t considered for explicit time schemes are given in Table 7.
For the implicit and exponential integrators, which are unconditionally stable, we consider values given in
Table 8, along with the corresponding Courant numbers.
Results are plotted in Figure 8 using second order spatial discretization C2, and in Figure 9 for the fourth
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Figure 7. Linear test case. Numerical solutions h computed using C4 spatial operators and
h̄ = 100 meters. ∆t = 300s (c∆t/∆x = 9.4). Top left panel: solution at t = 1h. Top right
panel: solution at t = 10h. Bottom panel: solution at t = 40h.

Shallow - C2 Shallow - C4 Deep - C2 Deep - C4

FB 31.9 27.3 5.0 4.3
RK3 27.6 23.6 4.3 3.7
RK4 45.1 38.7 7.1 6.1

RK-KG(2,6) 78.2 67.0 12.3 10.6
Table 7. Time steps ∆t considered for explicit time integrators FB, RK3, RK4 and RK-
KG(2,6). These time steps are close to the maximum value allowed to ensure stability.

∆t 100 600 1200 3600 5400

Shallow ocean c∆t/∆x 3.13 18.79 37.58 112.76 169.13
Deep ocean c∆t/∆x 19.81 118.85 273.71 713.12 1069.69

Table 8. Time steps ∆t used for implicit and exponential integrators and associated
Courant numbers c∆t/∆x in case of a shallow ocean (h̄ = 100 meters) and a deep ocean
(h̄ = 4000 meters).

order accurate operator C4. What is plotted are the relative errors as a function of the number of right hand
side evaluations. Each symbol corresponds to a value obtained with the times steps of Table 8.

As mentioned before, the explicit Forward Backward scheme along with the C2 discretization takes ad-
vantage of very good dissipation and dispersion properties when Courant number is close to 1 (see Figure 5).
This is not true using C4 operators for which only limited accuracy is achieved. But its cost, in comparison
with RK3, RK4 and RK-KG(2,6) schemes, is much lower. The Forward Backward scheme is thus a good
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Figure 8. Linear test case. Relative error as a function of the number of right hand side
(RHS) evaluations (which is itself given by the choice of the time step). The period of
integration is T = 6 hours. On the top panels, we consider the shallow ocean h̄ = 100 meters;
on the bottom panels, the deep ocean with h̄ = 4000 meters. The spatial discretization
scheme is C2.

Figure 9. Linear test case. Same plots as Figure 8 with C4 spatial operators.

alternative, when compared to any other schemes (either explicit or implicit) when accuracy is not the factor
limiting the choice of the time step. RK-KG(2,6) has a computational cost slightly smaller than RK4 while
accuracy is similar.
As expected, the implicit schemes (Implicit Euler and θ-scheme) lead to low accuracy, except when the
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Courant number is moderated (e.g. for the shallow ocean and for a time step of ∆t = 100). They can only
be used when accuracy is not a required property.
The exponential integrator (here the EXP scheme) is the most accurate scheme since they are no time in-
tegration errors in this linear case. It is also the cheapest one for the deep ocean case where the stability
condition of explicit schemes is more restrictive.

Computational cost. To explore the sensitivity of the ERK1 scheme to the discretization order and to the
Courant number, the numbers of RHS evaluations with different ocean thicknesses and spatial operators are
given in Table 9. As previously mentioned, we focus on the number of RHS evaluations shown on Table 9 as

Shallow ocan Deep ocean

C2 2584 10204
C4 2746 11649

Table 9. Linear test case. Number of RHS evaluations to reach T = 6 hours with ERK1
and ∆t = 100s.

an important part of the computational cost.
ERK1 is 1.06 times more expensive using C4 instead of C2 in the shallow ocean case and 1.14 times in the

deep ocean case. With the same change (C4 instead of C2), explicit time integration schemes are 1.16 more
costly due to change in CFL conditions (see Table 7). Thus, ERK1 is as impacted as explicit time schemes
by an increase of the spatial discretization order.
As already mentioned, the deep ocean configuration instead of shallow ocean leads a Courant number approx-
imately ≈ 6.32 times greater than the shallow ocean configuration. Explicit schemes have thus to reduce their
time step by a corresponding factor and are 6.32 more expensive than for the shallow ocean case. ERK1/C2
in the deep ocean case has 4.24 times more RHS than for shallow ocean. The ratio is 3.93 for ERK1/C4.
Thus the increase of the Courant number, has less impact on the exponential integrators than on the explicit
time integration schemes.

For this test case, we conclude that exponential integrators are the most efficient time integration schemes
when accuracy is required. It is obviously related to the fact the integration formula is exact in the linear
case since no quadrature is involved. Implicit time schemes are not accurate due to their dissipation and
dissipation properties.
In the next subsections, we evaluate the impact of having a non zero forcing term.

5.2. Time dependent forcing test case. We consider here the time dependent forcing case: f is given
by f(t) = K sin(ωt), K = 1 · 10−5m · s−2. It does not depend on x. According to (30) and (31), the exact
solution is

(37)


h(t, x) =

1

2
[h0(x− ct) + h0(x+ ct)]

u(t, x) =
1

2

√
g

h̄
[h0(x− ct)− h0(x+ ct)] +

K

ω
(1− cosωt) .

Error as a function of the frequency ω. The source term f is Tp-periodic with Tp = 2π/ω. In Figure 10, we
plot the values eh(ω)/eh(ω = 0) and eu(ω)/eu(ω = 0) in the case of a shallow ocean for the second and fourth
order spatial discretizations. eh(ω) (resp. eu(ω)) is given by (33) (resp. (34)). It represents the variation of
error in comparison with the error without a source term (ω = 0) as in the previous subsection.
For all the unconditionally stable schemes, the time step is here fixed to ∆t = 600 seconds and corresponds
to a Courant number equal to 18.31. With this choice of time step, the number of RHS of the exponential
integrators are smaller or equal to those using RK3 or RK4. Time steps for the explicit time schemes are as
in the previous subsection (see Table 7). We specify that subS1ERK4 and subS2ERK4 have Ns(∆t) sub-time
steps where

(38) Ns(∆t) = max

{
N ∈ N∗ s.t.

√
gh̄∆t/N

∆x
≤ KRK4

}
,



20 MATTHIEU BRACHET, LAURENT DEBREU, AND CHRISTOPHER ELDRED

where KRK4 is the stability constraint of the RK4 schemes (see Table 5). Then, in this simulation with C2
(resp. C4) and shallow ocean, we have ∆t/Ns = 42.86s, Ns = 14 (resp. 37.5s, Ns = 16) which is slightly
lower than ∆tRK4 = 45.1s (resp. 38.7s).

Figure 10. Time dependent source term test case. We plot the relative error on h and
u using different time schemes and values of ω. Top panel: C2 spatial scheme, Bottom
panel: C4 spatial scheme. Parameters are h̄ = 100 meters, tmax = 6 hours. A-stable time
schemes are using ∆t = 600 seconds. Explicit time schemes are using time steps close to the
maximum allowed (see Table 7).

The error for h does not depend significantly on ω because the source function does not impact the exact
h(x, t) solution. Conversely, it strongly impacts the velocity u(x, t). Errors are related to the temporal
resolution Tp/∆t: the number of time steps per period. Its value, for ∆t = 600s and for different frequencies,
are given in Table 10.

Frequency ω Tp/∆t

10−5 1047.2
10−4 104.7
10−3 10.5

Table 10. Time dependent source term test case. Temporal resolution Tp/∆t with Tp =
2π/ω. The time step is ∆t = 600 seconds.

For a frequency less or equal to ω = 10−4s−1, the number of time steps per period is large (≥ 100). For
the case ω = 10−3s−1, the number of time step is reduced to 10 and this will obviously have an impact on
the results accuracy. Due to the smaller used time steps, the temporal resolution is significantly higher for
the explicit integrators which should not be impacted by the temporal variation of the forcing term.

In Figure 10, S1ERK4, S2ERK4, LERK4 curves are not distinguishable, just as subS1ERK4, suS2ERK4
and RK4 curves. Looking at the fourth order C4 spatial scheme (bottom panel), low order exponential inte-
grators (LERK1 and ERK1c) are strongly impacted by increased frequencies. This is due to the low precision
for the source term. Schemes with higher order of accuracy (ERK2c, LERK3 and LERK4) significantly im-
prove accuracy even if the error is still increasing with the frequency.
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As mentioned before, in this specific case where the source term does not depend on space, there is no
splitting error. Then, splitting time schemes subS1ERK4 and subS2ERK4 are all fourth order accurate and
values eh(ω)/eh(0) and eu(ω)/eu(0) remain small whatever the value ω. They are impacted at the same level
as RK4 thanks to good representation of source term f , fourth order accuracy and small time steps.

Implicit time schemes (IE and CN) are not sensitive to the frequencies ω, but this just reinforces the fact
that even when ω is zero, the error is already large (see previous paragraph).
Explicit time schemes (FB, RK3, RK4 and RK-KG(2,6)) are, as expected, accurate whatever the frequency.
These conclusions are less visible with the second order C2 scheme due to larger, dominating, spatial errors
but they are still true.

Accuracy/Computational cost. To analyze the computational cost versus the errors, Figures 11 and 12 show
plots of relative errors according to the number of right hand side evaluations. The chosen frequency is here
ω = 10−4s−1. Greater time steps are considered for A-stable time integrators. For shallow ocean case, the
time steps are ∆t ∈ {40, 150, 600, 3600, 5400} while they are ∆t ∈ {10, 50, 150, 600, 900} for the deep ocean
case to leading similar Courant numbers for the two cases.
Results, with the second order C2 scheme, are plotted in Figure 11. Spatial errors are larger than time errors
as in the no forcing test case seen in section 5.1. Methods with a low order of accuracy (ERKc and LERK1)
are the only ones whose time error is visible. Other exponential integrators (high order LERK and splitting
methods), when used with larger time steps ∆t, are as accurate and cheaper than RK3 and RK4.
As illustration, in case of deep ocean, 9000 RHS evaluations are necessary for the exponential integrators to
produce an error less than 10−3 while 17000 RHS evaluations are at necessary for RK3, 14000 for RK4 and
12000 for RK-KG(2,6).
FB is accurate and cheap, but this is again a special case due to the use of C2 space operator.

Figure 11. Time source term test case. Relative errors related to the number of right
hand side called to reach t = 6hours. Top panels: shallow ocean (h̄ = 100 meters) with
∆t ∈ {40, 150, 600, 3600, 5400} for A-stable schemes. Bottom panels: deep ocean (h̄ = 4000
meters) with ∆t ∈ {10, 50, 150, 600, 900} for A-stable schemes. Explicit time steps are given
in Table 7. For both, C2 spatial discretization is used.

Figure 12 shows the results obtained with the fourth order accurate C4 scheme.
On the computational cost side, ERK1c, LERK and SERK4, when used with large time steps, are less costly
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than Runge-Kutta schemes.
Here, the spatial error is reduced and time errors become visible. In shallow ocean, errors are large except
for splitting exponential integrators. When ocean is deep, high order LERK and splitting integrators benefit
from their high accuracy and are more accurate than RK4. More precisely, 10000 RHS evaluations are
necessary to reach an error smaller than 10−5 with high order exponential integrators LERK3, LERK4,
SERK4 and subSERK4, 12000 RHS evaluations with ERK1c and 17000 RHS evaluations with ERK2c. To
compare, at least 17000 RHS evaluations are needed with RK3 and 14000 with RK4. LERK1 have an error
larger than 10−5 whatever the time step considered. For both cases (C2 and C4), LERK3 and LERK4 are

Figure 12. Time source term test case. Same than Figure 11 with C4 space operators.
Explicit time steps are given in Table 7.

cheap considering the number of matrix exponentials occurring. In addition, splitting errors cancel out. As
mentioned in the introduction of this section, this was expected due to the temporal only dependency of the
source term.
The next section considers the case of a spatio-temporal varying source term.

5.3. Time and space dependent forcing test case. The preceding time dependent only forcing case
favored the use of splitting exponential integrators schemes (SERK4 ans subSERK4) and of high order
accurate LERK schemes. As we pointed it out, this was a consequence of the particularity of this case: there
is no splitting error when the source term depends on time only and in addition the computational cost of
the LERK schemes is greatly reduced.
In a more realistic context, we consider here the case when f depends both on time and space:

(39) f(t, x) = K sinωt cos kx.

At each time t ≥ 0 and for all x ∈ R, the exact water height h and velocity u are given by:

(40) h(t, x) =
1

2
(h0(x− ct) + h0(x+ ct)) +

√
h̄

g
K

ω sin(kct)− ck sin(ωt)

ω2 − c2k2
sin(kx),

and

(41) u(t, x) =
1

2

√
g

h̄
(h0(x− ct)− h0(x+ ct)) +Kω

cos(kct)− cos(ωt)

ω2 − c2k2
cos(kx).
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We choose k = 4π/d ≈ 2.51 · 10−5m−1 and ω = 10−4s−1. It corresponds to a period Tp = 2π/ω ≈ 62832s.
The constant K is set to K = 1 · 10−5m · s−2.

Visualization of h and error. The numerical solution h and the relative error are plotted on Figure 13 using
different time schemes and C4 spatial discretization in the shallow ocean case. Results are less accurate
with C2 but the analysis is similar. The time step is still ∆t = 600s for unconditionally stable schemes,
corresponding to a Courant number of c∆t/∆x ≈ 18.79. The time steps used for explicit schemes are
∆tRK-KG(2,6) = 60s (c∆t/∆x ≈ 1.88), ∆tRK4 = 30s (c∆t/∆x ≈ 0.94), ∆tRK3 = 20s and ∆tFB = 20s
(c∆t/∆x ≈ 0.63). The time steps of explicit time schemes are smaller than in Table 7 but this ensures the
final time of integration is exactly the same than that of unconditionnally stable schemes.
The relative errors in Figure 13 are computed using the following formula:

(42)
hnj − h(tn, xj)

maxj |h(tn, xj)|
.

As in the previous cases, the accuracy of implicit time schemes is low, either due to dissipation or dispersion

Figure 13. Spatio-temporal source term test case. Numerical solution h computed using
fourth order C4 spatial discretization with h̄ = 100m (shallow ocean). First plot (top left):
solution h at t = 10 hours. Three next plots: relative errors on h. A-stable schemes
have ∆t = 600s, Explicit schemes time steps ∆tRK4 = 30s, ∆tFB = ∆tRK3 = 20s and
∆tRK-KG(2,6) = 60s.

errors. Figure 13 does not include relative errors for the implicit schemes (IE, CN and θ-scheme (θ = 0.51))
since they are order of magnitude larger than for the other schemes.
The FB scheme is, as before, the least accurate among the explicit schemes. RK3, RK4 and RK-KG(2,6)
have good accuracy which is not affected by the spatio-temporal variability of the source term.
All the exponential integrators are also accurate except LERK1 and splitting methods due to their low
order of accuracy and/or their splitting errors. ERK1c performs better but is the least accurate exponential
integrators among LERK3, LERK4 and ERKc.

Evolution of the computational cost with the time steps. In Table 11, we give the number of right hand side
evaluations to reach t = 2 hours using the C4 spatial discretization scheme and different time schemes. For
unconditionally stable schemes, the three columns of Table 11 corresponds to increasing values of the time
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∆t = 300s ∆t = 600s ∆t = 3600s
c∆t/∆x = 9.39 c∆t/∆x = 18.79 c∆t/∆x = 112.75

IE 3933 2805 672
CN 2538 2457 533

θ = 0.51 2564 2478 533

ERK1c 597 555 499
ERK2c 1090 963 615

LERK1 772 683 573
LERK3 1924 1557 769
LERK4 1924 1557 769

subS1ERK4 748 671 571
subS2ERK4 912 748 596

RK-KG(2,6) (∆t = 67.0s) 644
RK4 (∆t = 38.7s) 744
RK3 (∆t = 23.6s) 915
FB (∆t = 27.3s) 263

Table 11. Spatio-temporal source term test case. Number of right hand side evaluations to
reach t = 2 hours using C4 space operators in a shallow ocean. In the first row, the values
of the time step used for all the unconditionally stable schemes is indicated.

step ∆t = 300s, ∆t = 600s and ∆t = 3600s. The values obtained for explicit time schemes, implicit time
schemes and exponential integrators are compared.

Exponential integrators computational costs are linked to the number of matrix exponentials involved.
ERK1c, LERK1 and subS1ERK4 require the computation of one matrix exponential, ERK2c and subS2ERK4
require two matrix exponentials and LERK3 and LERK4 require three matrix exponentials per time step. In
Table 11, we see that low order exponential methods ERK1c, LERK1 and subS1ERK4 computational cost
does not reduce significantly using ∆t = 3600s instead of ∆t = 600s (and thus taking a smaller number of
time steps to reach t = 2 hours).
Conversely ERK2c, LERK3 and LERK4 computational costs are reduced by increasing the time step. This
decrease in cost seems related to the low computational cost of the first exponential matrices (when we
compute Ki, see (70) and (72)) compared to the last exponential. As an illustration, we give in Table
12, the computational cost for each step of LERK3 and LERK4 with C4. In particular, the computations
of Ki have approximately the same cost whatever the time step. An explanation for this is the fact that

LERK3 LERK4
∆t 600 3600 600 3600

K1 0 0 0 0
K2 35 48 35 48
K3 35 48 - -
K4 - - 35 48

Xn+1 56 286 56 286
Table 12. Spatio-temporal source term test case. Mean value of the number of right hand
side evaluations to compute each step to reach t = 2 hours using C4 space operators in a
shallow ocean.

computing exp(−∆tL)N (t) is easier than computing exp(−∆tL)(Xn + · · · ) due to the frequencies included
in N . Indeed, N (t) is simply given by a trigonometric function while Xn+ · · · contain frequencies due to the
initial functions (h0, u0). Then, computing exp(−∆tL)N (t) is less impacted by changes of ∆t than computing
the final step. Furthermore, LERK3 and LERK4 have exactly the same computational cost because they
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differ only in one exponential matrix when N (X, t) = N (t) (see Appendix A.4) and this difference does not
impact significantly the convergence of Krylov methods.
When ∆t is larger than 600s, ERKc, LERK1, subS1ERK4 and subS2ERK4 are cheaper than explicit Runge
Kutta time schemes.

Accuracy/Computational cost. As in the previous test cases, we consider the error evolution according to the
number of right hand side evaluations. Errors in h and u are computed with equations (33) and (34). Results
are plotted in Figure 14 (C2) and Figure 15 (C4). The used time steps are the same as before. They are
given in Table 7 for explicit integrators.
The results lead us to the following remarks:

• Since splitting errors do not cancel, we see the lower accuracy of splitting exponential integrators
(S1ERK4 and S2ERK4). This is the case even when smaller sub-time steps are used for the non
linear part (subS1ERK4 and subS2ERK4 schemes). The S1ERK4 (resp. S2ERK4) scheme is not
distinguishable from the subS1ERK4 (resp. subS2ERK4) scheme.
However, computational costs are the same as those of ERKc time schemes which have the same
number of exponential matrices per time step.

• High order linearly exact integrators are more expensive. This is because the right hand side is no
longer in the kernel of the linear part. Then, the number of calls of the right hand side is impacted
by the number of exponential of matrices occurring in LERK3 and LERK4.
LERK1 is poorly accurate.

• Since only two exponential matrices are required for ERK2c and one for ERK1c, these integrators
are among the cheapest. ERKc methods represent a good compromise between computational cost
and accuracy (corner bottom left on plots).

Figure 14. Space time source term test case. Same as Figure 11. C2 spatial discretization.

ERK1c, with ∆t = 600seconds, is more accurate and less expensive than RK4. It was the opposite in the
time dependant forcing test case. However, the reduction in error is not significant and considering all the
test cases RK4 and ERK1c have an error of the same magnitude.
As shown above in Table 11, for larger time steps, ERK1c become even cheaper than RK4, at the price of a
reduced accuracy.
In these experiments, ERK1c seems to be a good compromise between accuracy and computational cost.
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Figure 15. Space time source term test case. Same as Figure 12. C4 spatial discretization.

Exponential integrators are more adapted to deep ocean where stability constraints are important. For
example, RK4 is a better compromise of accuracy/computational cost than ERK1c with shallow water while
it is the contrary for deep ocean.
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6. Conclusion

In this paper, we analyzed a number of time integration schemes for the solution of the linearized shallow
water equations (9).

• Explicit time schemes: Runge-Kutta methods and Forward-Backward scheme. These integrators are
cheaper per time step but a large number of time iterations are required to reach final time. A
Kinnmark-Gray scheme is considered and benefit from a large stability for an explicit integrator.

• Implicit time schemes, in the set of θ-schemes. In particular, we consider the case θ = 0.51, θ = 1
(Backward Euler) and θ = 0.5 (Crank-Nicholson). They are unconditionally stable, the time step
is chosen as large as desired. Unfortunately, implicit time schemes suffer dramatically from poor
dissipation and dispersion properties when used with large Courant numbers.

• Exponential Integrators: Exponential Runge-Kutta integrators, Linearly exact integrators, Splitting
scheme are exact for linear autonomous equations. They are unconditionally stable. Dissipation and
dispersion properties depend only on the space discretization.

The spatial discretization was done on a staggered grid either with second order accurate (C2) scheme or
with a fourth order accurate (C4) scheme. As it is known, explicit time schemes have more restrictive CFL
conditions using C4 than C2. Furthermore, Krylov methods and conjugate gradient converge more slowly
when a high order accurate spatial discretization is used. This is due to the larger spectral radius of matrices.

Exponential integrators have better dissipation and dispersion properties related solely to the spatial
discretization. These properties do not depend on Courant number. For this reason, at the same Courant
number, exponential integrators are always more accurate than implicit integrators in our experiments.
Whatever the time integrator considered, large Courant number are not appropriate to compute accurately
a solution that changes quickly.

Various exponential integrators have been analyzed in particular with respect to the spatio-temporal
variability of the forcing term on the right hand side of the equations. Among them, high order accurate
linearly exact Runge-Kutta integrators are the most accurate. However they are expensive since they involve
a large number of matrix exponentials. To this respect, Exponential Runge-Kutta integrators and splitting
exponential integrators are cheaper. Splitting exponential integrators suffer splitting error when the source
term is space dependent. Splitting exponential integrators have been introduced in order to capture the
high temporal variability of the forcing. However when the forcing is also space dependent, splitting errors
limit the accuracy of these schemes. Exponential Runge-Kutta integrators are a good compromise between
accuracy and computational cost. We have shown that they are able to be as accurate as the explicit RK4
scheme and at a potentially lower cost.

The main difficulty using exponential integrators is to compute efficiently matrix exponentials. That is the
equivalent to solving a system for implicit integrators. For them, there exist a large body of methods allowing
reduction of the computational cost. Some of them have recently been adapted to exponential integrators:
as an example we mention domain decomposition [4, 23], preconditioning [24, 12] and parallel approximation
[33]. We hope to use the same kind of methods to reduce the computational cost of exponential integrators
for hyperbolic PDEs in future work.
Another possible issue is due to memory storage. The Arnoldi Gram Schmidt algorithm requires storage of
O((m + 1)N) values. This is prohibitive when the grid is thin (thus N is large) but it is possible to reduce
this value using the incomplete orthogonalization process [32]. The present analysis should be continued with
this in mind.
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Appendix A. Time integrators

Consider the ordinary differential equation

(43)
dX

dt
= F(X, t).

We call autonomous the case such that F does not depend on time, F(X, t) = F(X).
Equation (43) can be split into a linear and a non linear part:

(44) F(X, t) = LX +N (X, t)

where L is a fixed matrix or is adapted at each time step to be JacXnF .
In the context of (9), the function N (X, t) does not depend on X, more precisely:

(45)
dX

dt
= LX +N (t).

Single step time integration is to compute Xn+1 ≈ X(tn+1) starting from Xn ≈ X(tn). The values (tn)n are
defined by tn = n∆t, where ∆t > 0 is the time step. In the following, we recall some time integrators.

A.1. Explicit Time Schemes. Explicit Runge Kutta integrators are widely used to solve differential equa-
tions. In this section, we consider two Runge-Kutta methods respectively third and fourth order accurate
and also a simple Forward Backward scheme.

A.1.1. Kinnmark-Gray’s second order integrator. Kinnmark-Gray’s integrators are Runge-Kutta schemes
for which stability is preferred over accuracy. The following KG integrator is denoted RK-KG(2,6). This
integrator was suggested by Andrew Steyer, from Sandia National Laboratories, in a personal communication.
It is second order accurate.

(46)



K1 = F (Xn, tn)

K2 = F
(
Xn +

∆t

6
K1, t

n +
∆t

6

)
K3 = F

(
Xn +

2∆t

15
K2, t

n +
2∆t

15

)
K4 = F

(
Xn +

∆t

4
K3, t

n +
∆t

4

)
K5 = F

(
Xn +

∆t

3
K4, t

n +
∆t

3

)
K6 = F

(
Xn +

∆t

2
K5, t

n +
∆t

2

)
Xn+1 = Xn +∆tK6.

At each time step, F is evaluated six times.

A.1.2. Ralston’s third order integrator. Ralston’s third order integrator (see [30]) is a third order accurate
explicit Runge-Kutta integrator. We called it RK3 in this article. It is given by

(47)



K1 = F (Xn, tn)

K2 = F
(
Xn +

∆t

2
K1, t

n +
∆t

2

)
K3 = F

(
Xn +

3∆t

4
K2, t

n +
3∆t

4

)
Xn+1 = Xn +

∆t

9
(2K1 + 3K2 + 4K3) .

At each time step, F is evaluated three times.
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A.1.3. Fourth order Runge-Kutta integrator. An alternative to RK3 is the fourth order accurate explicit
Runge-Kutta integrator (RK4).
It is given by the following steps:

(48)



K1 = F (Xn, tn)

K2 = F
(
Xn +

∆t

2
K1, t

n +
∆t

2

)
K3 = F

(
Xn +

∆t

2
K2, t

n +
∆t

2

)
K4 = F (Xn +∆tK3, t

n +∆t)

Xn+1 = Xn +
∆t

6
(K1 + 2K2 + 2K3 +K4) .

This time scheme is more accurate than RK3 but the right hand side part is evaluated one time more (4
instead of 3).

A.1.4. Forward-Backward time scheme. The Forward-Backward (FB) time scheme is a well known time inte-
grator for linearized shallow water equation (9) (see [34] and references therein). It has a small computational
cost per iteration: the right hand side is evaluated only once per time iteration.
The scheme is given by

(49)

{
hn+1
i+1/2 = hni+1/2 −∆th̄δxu

n
i+1/2

un+1
i = uni −∆tgδxh

n+1
i+1/2

where δx is a finite difference operators for the first order spatial derivative.

A.2. Implicit Time Scheme. Implicit time schemes allow us to use greater time steps (without CFL
restriction).
An example of one step implicit integrator is the θ-scheme given by

(50)
Xn+1 −Xn

∆t
= θF(Xn+1, tn+1) + (1− θ)F(Xn, tn)

where θ ∈ [0, 1]. As soon as θ ̸= 0, a linear system has to be solved at each time step, this can be done using
Newton’s algorithm or a linear solver in the case of linear equation.
In the context of (45), the scheme is

(51) (Id− θ∆tL)Xn+1 = Xn −∆t
(
θN (tn+1) + (1− θ)N (tn) + (1− θ)LXn

)
.

The θ-scheme is first order accurate if θ ̸= 1/2 and second order accurate if θ = 1/2. In the case θ = 0
(resp. θ = 1), it corresponds to an Forward Euler scheme (resp. Backward Euler, IE). The Crank-Nicholson
scheme (CN) corresponds to θ = 1/2 and for this value of θ, the scheme is neutral (no dissipation). In the
numerical experiments we performed, to add a small dissipation and stay close to CN, we also consider the
case θ = 0.51.
The θ-scheme is unconditionally stable as soon as θ ≥ 1/2.

If applied to (9) with the finite difference approximation C2 or C4, the system to solve can be rewritten
as

(52) (Id−∆t2gh̄δ2x)(h
n+1 − hn) = −∆th̄δxu

n + θ∆t2h̄gδ2xh̄
n −∆t2h̄θδxF̄

where F̄ is the vector with F̄j = θf(tn+1, xj) + (1− θ)f(tn, xj) for all 0 ≤ j ≤ N − 1.
Computing hn+1, un+1 is updated

(53) un+1 = un −∆t
(
gθδx(h

n+1 − hn) + F̄ − gδxh
n
)
.

In practice, the system (52) is solved using the conjugate gradient method.
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A.3. Exponential Runge-Kutta Integrators. Exponential Runge-Kutta Integrators (ERK) are an al-
ternative to implicit schemes to solve stiff problems and keep stability. These allow to overcome the CFL
condition as for implicit schemes but with a higher accuracy. We refer to [17] for a review.

We start by considering an autonomous system:

(54)
dX

dt
= F(X).

The function X : t 7→ X(t) satisfies

(55) X(tn +∆t) = exp (∆tL)X(tn) +

∫ tn

0

exp ((∆t− τ)L)N (X(tn + τ)) dτ

Various quadrature rules for the integral lead to different ERK integrators. They depend on matrix functions
of the set (φk)k defined by

(56)


φk+1(z) =

φk(z)− φk(0)

z
φk(0) = 1/k!

φ0(z) = exp(z).

ERK integrators are A-stable and exact for linear equations. In the following, we present different kind of
exponential Runge-Kutta integrators.

A.3.1. Exponential Euler integrator. The simplest numerical method is to considerN (X(tn + τ)) ≈ N (X(tn))
in the integral part of (55). It leads to the exponential Euler integrator (ERK1):

(57) Xn+1 = exp (∆tL)Xn +∆tφ1 (∆tL)N (Xn)

The function φ1 is φ1(z) =
ez−1

z and extends by φ1(0) = 1.
The ERK1 exponential operator is first order accurate when L is fixed once for all. If L contains the full
linear part (see Rosenbrock exponential integrators [18]):

(58) L = Ln = JacXnF ,

it is second order accurate. Here, JacXnF is the Jacobian matrix and may be required to be updated at each
time step. Considering (56), ERK1 is written

(59) Xn+1 = Xn +∆tφ1(∆tL)F(Xn).

These allow to compute only one matrix function instead of two in (57).

A.3.2. Second order exponential Runge-Kutta integrator. A more accurate scheme is ERK2:

(60)

{
an = Xn +∆tφ1(∆tL)F(Xn)

Xn+1 = Xn + 2∆tφ3 (∆tL) (N (an)−N (Xn)) .

The function φ3 is

(61)

φ3(z) =
ez − 1− z − z2/2

z3
if z ̸= 0

φ3(0) = 1/6.

Two matrix functions are required in (60). ERK2 is second order accurate in general but if L is given by
(58), it is third order accurate.
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A.3.3. Non autonomous system. In case of non autonomous equation, the previous exponential integrators
must be adapted.
The time scheme (59) can be used to solve this set of problems assumingN (X(tn + τ), tn + τ) ≈ N (X(tn), tn)
but parasitic waves are occur and accuracy is poor.

In [18], a modification of (59) and (60) is described to solve autonomous problems.
ERK1 is modified into

(62) Xn+1 = Xn +∆tF (Xn, tn) + ∆t2φ2 (∆tL)

[
LF(Xn, tn) +

∂F
∂t

(Xn, tn)

]
with φ2(z) = (ez − 1− z)/z2 and φ2(0) = 1/2.
The higher order version (60) becomes

(63)


an = Xn +∆tF (Xn, tn) + ∆t2φ2 (∆tL)

[
LF(Xn, tn) +

∂F
∂t

(Xn, tn)

]
Xn+1 = an + 2∆tφ3(∆tL)

[
F(an, tn +∆t)−F(Xn, tn)− L(an −Xn)−∆t

∂F
∂t

(Xn, tn)

]
.

We denote these schemes ERK1c and ERK2c.
Time integrators (62) and (63) are respectively accurate order 1 and 2. They are A − stable and exact if
F(X, t) = LX.
If L contains a full linear part as in a Rosenbrock exponential integrator (see (58)), ERK1c is second order
accurate and ERK2c is third order accurate.

A.4. Linearly exact Runge-Kutta methods. Linearly exact Runge-Kutta methods, also called Integrat-
ing Factor methods, were described first in [21]. A review of these methods is given in [5, 25] and reference
therein.
In the following, we call these methods LERK for Linearly Exact Runge-Kutta methods.

Consider the change of variable

(64) V (t) = exp((tn − t)L)X(t)

in equation (45). Then, V is solution of

(65) V ′(t) = exp ((tn − t)L)N (exp ((t− tn)L)V (t), t)

where N (X, t) = F(X, t)− LX, in our case N (X, t) = N (t).
At this step, it is sufficient to apply an explicit time scheme on (65). If L = 0, LERK coincide with an
explicit time scheme. If N (t) is in the kernel of L then exp(αL)N (t) can be computed thanks to a single
iteration of a Krylov method:

(66) exp(αL)N (t) = N (t) ∈ K1 (L,N (t)) .

where K1 is the Krylov subspace defined in 3. This significantly reduces the computational cost of these
integrators.
Different examples of LERK are given in the following subsections.

A.4.1. Linearly Exact Runge Kutta order 1. A LERK integrator first order accurate is obtained using the For-
ward Euler scheme. The Forward Euler scheme is not stable when applied directly on (9) but the exponential
part stabilizes it. It is given by the formula

(67) Xn+1 = exp (∆tL) [Xn +∆tN (Xn, tn)] .

This scheme is called LERK1. In the case of (45), it is written:

(68) Xn+1 = exp (∆tL) [Xn +∆tN (tn)] .

One exponential is required per time step.
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A.4.2. Linearly Exact RK3. Applying the RK3 time scheme (47) on (65), we obtain a third order LERK
integrator:

(69)



K1 = N (Xn, tn)

K2 = exp

(
−∆t

2
L

)
N
(
exp

(
∆t

2
L

)(
Xn +

∆t

2
K1

)
, tn +

∆t

2

)
K3 = exp

(
−3∆t

4
L

)
N
(
exp

(
3∆t

4
L

)(
Xn +

∆t

2
K2

)
, tn +

3∆t

4

)
Xn+1 = exp (∆tL)

[
Xn +

∆t

9
(2K1 + 3K2 + 4K3)

]
.

This scheme will be called LERK3 in the following. It contains five matrix exponentials.
In the case of (45) where N (X, t) = N (t), LERK3 takes the following form:

(70)



K1 = N (tn)

K2 = exp

(
−∆t

2
L

)
N
(
tn +

∆t

2

)
K3 = exp

(
−3∆t

4
L

)
N
(
tn +

3∆t

4

)
Xn+1 = exp (∆tL)

[
Xn +

∆t

9
(2K1 + 3K2 + 4K3)

]
.

LERK3 contains five matrix exponentials while ERK2c contains 2 matrix functions φ1 and φ3. As a conse-
quence, LERK3 should be more expensive than ERK2c. If N (X, t) = N (t), then LERK3 contains only three
matrix exponentials.

A.4.3. Linearly Exact RK4. Considering fourth order Runge-Kutta (48) applied to (65), we obtain a fourth
order accurate LERK time stepping. This scheme will be called LERK4 and is given by:

(71)



K1 = N (Xn, tn)

K2 = exp

(
−∆t

2
L

)
N
(
exp

(
∆t

2
L

)(
Xn +

∆t

2
K1

)
, tn +

∆t

2

)
K3 = exp

(
−∆t

2
L

)
N
(
exp

(
∆t

2
L

)(
Xn +

∆t

2
K2

)
, tn +

∆t

2

)
K4 = exp (−∆tL)N (exp (∆tL) (Xn +∆tK3) , t

n +∆t)

Xn+1 = exp (∆tL)

[
Xn +

∆t

6
(K1 + 2K2 + 2K3 +K4)

]
.

In this time integrator, seven matrix exponentials are called at each time step. It is the most expensive
time integrator considered here. In the case of (45) where N (X, t) = N (t), LERK4 is less expensive and is
simplified into:

(72)



K1 = N (tn)

K2 = exp

(
−∆t

2
L

)
N
(
tn +

∆t

2

)
K4 = exp (−∆tL)N (tn +∆t)

Xn+1 = exp (∆tL)

[
Xn +

∆t

6
(K1 + 4K2 +K4)

]
because K2 = K3. LERK4 is a fourth order scheme.
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A.5. Splitting Exponential Integrators. A possibility to reduce the computational cost is to consider a
time splitting scheme. By separating the linear part and non linear part, we consider two equations to be
solved: a linear equation (we denote by Sl,∆t the solver) which can be solved using an exponential integrator
and a non linear equation (denoting the solver Snl,∆t) which can be solved using an explicit time scheme and
potentially with a smaller time step in order to increase the accuracy.
Stability is then ensured by the exponential part (exact in time) and accuracy is ensured by the explicit
scheme. By using this method a splitting error occurs. The choice of the splitting is thus important (see [19]
and reference therein).
Two splittings are considered here: Lie and Strang. We use a RK4 scheme for the non linear part and
exponential integrator for the linear part.

A.5.1. Lie splitting. Lie splitting is based on first solving the non linear equation and using its solution as
an initial condition for the linear equation. The method can be represented by Sl,∆t ◦ Snl,∆t. The scheme is
then :

(73)



K1 = N (Xn, tn)

K2 = N
(
Xn +

∆t

2
K1, t

n +
∆t

2

)
K3 = N

(
Xn +

∆t

2
K2, t

n +
∆t

2

)
K4 = N (Xn +∆tK3, t

n +∆t)

X∗ = Xn +
∆t

6
(K1 + 2K2 + 2K3 +K4)

Xn+1 = exp (∆tL)X∗.

The non linear equation is solved with a fourth order accurate method and the linear equation is exactly
solved. However, due to the splitting, the final scheme is first order accurate and one exponential function is
used at each time step. We will denote this time scheme S1ERK4.
In the particular case where the non linear term in (44) depends only on time, the splitting error cancels and
the scheme is 4-th order accurate.

Sub-time steps can be considered in the RK4 part to solve the non-linear part. We denote by subS1ERK4
this variant of the method:

(74) Sl,∆t ◦
(
Snl,∆t/Ns

)Ns
.

The number of substeps Ns is chosen to lead to a time step satisfying the RK4 stability constraint:

(75) Ns = max

{
N⋆ ∈ N s.t.

c∆t/N

∆x
≤ KRK4

}

where KRK4 is the RK4 stability constraint (see Table 5).
The time integrator subS1ERK4 suffers from splitting error as S1ERK4. It is first order accurate. Again,
it is fourth order accurate if N (X, t) depends only on time. A more accurate scheme is based on Strang
Splitting.



COMPARISON OF TIME INTEGRATION SCHEMES FOR THE SHALLOW WATER EQUATIONS 35

A.5.2. Strang splitting. Strang splitting writes Sl,∆t/2 ◦ Snl,∆t ◦ Sl,∆t/2. The corresponding algorithm is

(76)



X∗ = exp

(
∆t

2
L

)
Xn

K1 = N (X∗, tn)

K2 = N
(
X∗ +

∆t

2
K1, t

n +
∆t

2

)
K3 = N

(
X∗ +

∆t

2
K2, t

n +
∆t

2

)
K4 = N (X∗ +∆tK3, t

n +∆t)

Xn+1 = exp

(
∆t

2
L

)[
X∗ +

∆t

6
(K1 + 2K2 + 2K3 +K4)

]
.

We call this scheme S2ERK4. It is second order accurate and two matrix exponentials are required at each
time step.

As with subS1ERK4, it is possible to increase accuracy on the non linear equation by considering Ns

sub-time steps. The integrator is subS2ERK4 and is given by

(77) Sl,∆t/2 ◦
(
Snl,∆t/Ns

)Ns ◦ Sl,∆t/2

As in Lie splitting, the time scheme are 4-th order accurate when non linear part satisfies N (X, t) ∈ Ker(L)
(for example when N (X, t) depends only on time). It is second order accurate in general. The number Ns

of substeps is chosen using (75).
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