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ABSTRACT Blade imbalance fault caused by the marine organisms is considered as the most important fault
in marine current turbines. Therefore, it is important to detect the fault accurately and quickly to mitigate its
effect, minimize the downtime, and maximize the productivity. Imbalance fault detection methods using
generator stator current signals have attracted attentions due to their low cost, operability and stability
compared to the ones using vibration analysis. However, it is difficult to extract the fault signature and
automatically detect the imbalance fault under different flow velocity conditions. In this paper, a wavelet
threshold denoising-based imbalance fault detection method using the stator current is proposed. The signal
is analyzed through three consecutive steps: the parameters offline setting based on wavelet threshold
denoising, the Hilbert transform method and the Principle Component Analysis-based detection method.
With this approach, the imbalance fault can be detected automatically. The imbalance fault detection is
assessed under different flow velocity conditions and validated using an experimental platform. The results
are promising with false alarm and false negative rates less than 1% and 5% respectively when using Q
statistic. Moreover, the experimental results show that the proposedmethod has good stability under different
flow velocity conditions.

INDEX TERMS Hilbert transform, imbalance fault, marine current turbine, principle component analysis,
wavelet.

I. INTRODUCTION
In recent years, with the increasing energy consumption
around the world and the sharp increase of environmental pol-
lution, marine energy has attracted more and more attention
around the world due to its high energy density, predictability
and relative stability [1]–[3]. Marine current power gener-
ation is becoming more attractive and competitive [4], [5],
and its technology has made great progress [6], as proved
by the number of projects using marine current turbines
(MCTs) [7]. It is foreseeable that MCTs will become more
and more important in power supply systems [8]. However,

The associate editor coordinating the review of this manuscript and
approving it for publication was Ruqiang Yan.

the seabed environment is complex andMCTs installed under
the sea will be considered as artificial reefs and attract a
variety of marine organisms which will lead to imbalance
faults [9], [10]. The imbalance faults will affect the operation
of the system, which not only degrades the performance of
MCTs, but may also significantly damage its structure [11].
In addition, the MCT installed under water is affected by
many factors such as attachments, surges, turbulence, etc.
And it is difficult to extract the imbalance fault signature [12].
To improve both the safety and reliability of MCT systems,
it is necessary to find an effective technology to complete the
imbalance fault detection in MCTs [13].

To detect the imbalance fault, methods using sensors are
proposed and good detection results are obtained [14], [15].

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 29815

https://orcid.org/0000-0001-5300-0192
https://orcid.org/0000-0002-7525-8466
https://orcid.org/0000-0002-1461-2003
https://orcid.org/0000-0002-2031-4088
https://orcid.org/0000-0002-4844-508X
https://orcid.org/0000-0002-4421-6175


Z. Li et al.: Wavelet Threshold Denoising-Based Imbalance Fault Detection Method for MCTs

However, the fault detection using stator current signals has
many advantages because it costs less and does not need
to consider sensors faults [16]. To reduce the interferences
caused by turbulence and waves, different methods are pro-
posed. The empirical mode decomposition (EMD) method
is used to decompose the stator current signal into different
intrinsic mode functions (IMFs) and extract the IMF contain-
ing the fault signature to detect the imbalance fault [17]–[19].
In [20] and [21], the moving average filter method is used to
filter the interference in the signal. All these methods con-
tribute to the denoising of the stator current signal measured
from the MCT system and the imbalance fault detection.
However, for the strategies using EMD, there are still some
problems such as the end effect and the modal confusion [22];
for the strategies using themoving average filter method, only
the high frequency signals can be filtered. As reported in [23],
the wavelet transform method is used to preprocess the raw
signal, reduce the interference components and extract the
useful information to detect the fault. However, it is diffi-
cult for these methods using wavelet transform to set the
appropriate parameters in practical application. In order to
decrease the data dimensions and automatically detect the
fault, the Principle Component Analysis (PCA) is used in [24]
and [25]. With this method, a standard model in healthy state
can be built, and the fault can be detected automatically.
However, the PCA method could not be directly applied to
the imbalance fault detection because data preprocessing is
required.

All of the above methods have made great contributions
to the fault detection, but the continuously changing flow
velocity has not been fully considered. The fault character-
istic frequency is not constant and changes with the flow
velocity [26], [27], which will lead to different fault char-
acteristic frequencies at different times. However, the main
objective of the existing imbalance fault detection methods is
to highlight the fault characteristic frequency, which means
that the stability of these methods needs to be improved under
different flow velocity conditions.

A. PAPER CONTRIBUTIONS
To reduce the interference and detect the imbalance fault
under different flow velocity conditions, a wavelet threshold
denoising-based imbalance fault detection method for MCTs
is proposed. The proposed approach contains three parts:
the parameters offline setting based on wavelet threshold
denoising, the Hilbert transform (HT) method and the PCA-
based detection method. With this method, the imbalance
fault of MCTs can be detected automatically. The experi-
mental results indicate that the proposed method gives good
detection results under different flow velocity conditions.
Table 1 shows the advantages of the proposed method com-
pared with some of the present methods.

B. PAPER STRUCTURE
The structure of this paper is as follows. In Section 2,
the problem in the imbalance fault detection is described.

TABLE 1. The advantages of the proposed method compared with
present methods.

FIGURE 1. The effect of blade imbalance in an MCT [20].

In Section 3, the proposed wavelet threshold denoising-based
imbalance fault detection method is introduced. In Section 4,
experimental results are given to verify the effectiveness of
the proposed method. Finally, conclusion in Section 5 closes
the paper.

II. PROBLEM DESCRIPTION
This paper mainly considers the direct-drive permanent mag-
net synchronous generator (PMSG) MCT which is gain-
ing more and more acceptances. The motion equation of a
direct-drive PMSG MCT can be expressed as follows [20]:

J
dωr (t)
dt

= Tt (t)− Te (t)− Dωr (t) (1)

ωr (t) = 2π fr (t) (2)

where J denotes the total inertia constant, ωr denotes the
angular speed of the shaft, dωr (t) /dt denotes the angular
acceleration, Tt and Te are the turbine torque and the gen-
erator torque, respectively. D denotes the damping coeffi-
cient, fr denotes the shaft rotating frequency (1P frequency)
which changes with the flow velocity. If an imbalance fault
happens, an excitation will appear in the frequency domain
of the angular speed signal with the same frequency as 1P
frequency [26]. Therefore, the shaft rotating frequency fr can
be used as the fault signature.

When an imbalance fault occurs on a blade, its mass
distribution will be different from the others. An equivalent
imbalance mass will occur and induce a vibration in the shaft
rotating speed. As shown in Fig. 1, m denotes the equivalent
imbalance mass, and ru denotes the distance between the
imbalance mass and the shaft. Both m and ru can affect the
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torque on the shaft, and the torque distortion caused by a
bigger m and a smaller ru may be equal to that caused by
a smaller m and a bigger ru. To analyze the imbalance fault,
ru is set constant in this paper.

In a direct-drive PMSG MCT, the stator current can be
expressed as:

is (t) = Is cos(pωrt + γ ) (3)

where Is is the current amplitude, p is the number of pole
pairs, γ is the initial angle. In this case, the stator current
frequency is fe = (pωr) / (2π). The fe is given as follows:

fe (t) = pfr (t) (4)

The fault information in the shaft rotation frequency can be
transferred to the instantaneous frequency of the stator current
signal. Therefore, it is difficult to find the fault information in
time domain. Fig. 2 shows the stator current signals recorded
from anMCT in different health states. Fig. 2(a) is the current
signal in the healthy state and Fig. 2(b) is in the imbalance
fault state. In time domain, the stator signals in different
health states are almost the same.

FIGURE 2. The stator current signals of the MCT in different health states.

With the instantaneous frequency, the imbalance fault sig-
nature can be extracted, which means that the fault can be
detected in time-frequency domain (the instantaneous fre-
quencies in different health states are shown in Section 4).

The imbalance fault signature comes from the torque dis-
tortion on the turbine [27]. However, in marine environment,
the turbulence and waves will bring interferences to the stator
current signal [28]. In recent years, researchers have pro-
posed some methods or strategies to reduce the interference
and extract the imbalance fault signature. The methods pro-
posed in [18] and [26] use the EMD to decompose the raw
signal into IMFs. The EMD method can reduce the interfer-
ence information, which is caused by environmental factors.

And the imbalance fault can be detected in one of the IMFs.
The method in [20] uses the moving average filter which
can be regarded as a low-pass filter to reduce the interfer-
ence information and can get a good denoising performance.
However, these methods do not consider the influences of
different flow velocity conditions. And the imbalance fault
is detected by searching the fault peak near the fault char-
acteristic frequency, which means that the detection results
will be influenced by the shaft rotation frequency. In actual
MCT systems, the flow velocity is always changing [29],
which means that the shaft rotation frequency takes on dif-
ferent values over time. The fault characteristic frequencies
in the same fault state under different flow velocity condi-
tions are shown in Fig. 3. It can be observed that the fault
characteristic frequencies are different under different flow
velocity conditions. Therefore, it is difficult to set a detection
limit to automatically detect the imbalance fault. Moreover,
the interferences caused by the turbulence and waves changes
with the flow velocity. When using EMD, the relevant IMF
selection is tricky under different flow velocity conditions.
For the moving average filter method, it can only filter out
the high frequency signals, but cannot extract the signal in
specific frequency band. Therefore, the stability of the meth-
ods mentioned above under different flow velocity conditions
needs to be improved.

FIGURE 3. The MCT’s fault characteristic frequencies in imbalance fault
state under different flow velocity conditions.

III. THE WAVELET THRESHOLD DENOISING-BASED
IMBALANCE FAULT DETECTION METHOD
To address the problems mentioned above, a wavelet thresh-
old denoising-based imbalance fault detection method for
MCTs is proposed. It is composed of three parts: the param-
eters offline setting based on wavelet threshold denoising,
the HT method and the PCA-based detection method. The
proposed method can automatically detect the imbalance
fault and has good stability under different flow velocity
conditions. Moreover, anyone of the three-phase stator cur-
rent signals can be used in this method. This means that
if one of the three-phase stator current signals cannot be
used due to some other faults, this method can still detect
the imbalance fault. It makes this approach attractive for
implementation [30].
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A. PARAMETERS OFFLINE SETTING BASED ON WAVELET
THRESHOLD DENOISING
To reduce the interference in the stator current signal under
different flow velocity conditions, the wavelet threshold
denoising method is used. As it is difficult to choose the
parameters of the method using wavelet decomposition [31],
an offline parameters’ setting is proposed.

In the application of fault detection for MCTs, the acquired
signals are usually non stationary. In the signal, there may be
some peaks or abrupt parts caused by the interference which
can be regarded as noise. The wavelet threshold denoising
method can be used to preprocess the signal and reduce the
interference. The signal model of the stator current is as
follows:

x (n) = y (n)+ e (n) , n = 1, 2, · · · ,N (5)

where x(n) denotes the signal with noise,N denotes the length
of the signal, y(n) denotes the signal without noise, e(n)
represents the noise. In discrete wavelet transform (DWT),
x(n) is processed through a series of filters with different
characteristic frequencies.

By thresholding the wavelet coefficients which represent
the noise, the interference in the signal can be reduced. The
process of the wavelet threshold denoising is as follows:

a) Set the wavelet basis and the number of decomposition
levels.

b) Use DWT to decompose the signal.
c) Use the thresholding function and the calculated thresh-

old to get the filtered wavelet coefficients.
d) Reconstruct the signal with the approximated and fil-

tered wavelet coefficients.
In the wavelet threshold denoising method, the number

of decomposition levels, the wavelet basis function and the
threshold selection function are important factors which can
influence the denoising performance [32]. To set suitable
parameters, an offline method with two steps is proposed: the
setting of the number of decomposition levels, and the setting
of the wavelet basis function and the threshold selection
function. This method is implemented offline with historical
data of the MCT in healthy state.

1) SETTING OF THE NUMBER OF DECOMPOSITION LEVELS
The frequency range after wavelet decomposition is related to
the sampling frequency Fs of the historical data x (n). If the
number of the decomposition levels is j, the corresponding
bandwidth of the smallest band is Bj = Fs/2j+1. In the actual
imbalance fault detection of MCTs, usually only the first
or second harmonic of the electrical signal is needed [26].
Therefore, to achieve better fault detection, the bandwidth of
the smallest band should satisfy:

Bj ≥ 2f (6)

where f denotes the average frequency of the stator current.
Substitute Bj in (6), the number of decomposition levels can
be represented as j ≤ log2 [Fs/ (4f )]. To make the useful

information clear and minimize the calculation time of the
wavelet decomposition process, the number of decomposi-
tion levels is set as:

j =
⌊
log2

(
Fs
4f

)⌋
(7)

where b∗c indicates that the ∗ is rounded down.

2) SETTING OF THE WAVELET BASIS FUNCTION AND THE
THRESHOLD SELECTION FUNCTION
To set the wavelet basis function and the threshold selection
function, different parameters are used in the offline setting
method to denoise the historical data x(n). Four wavelet
basis functions (Haar, Db4, Coif4, Sym4) and four threshold
selection functions (sqtwolog, rigrsure, heursure, minimaxi)
are used in this paper. In order to evaluate the denoising
performance of different parameter groups, the signal to noise
ratio (SNR), the mean square error (MSE) and the correlation
coefficient (CORR) are used in this paper [33].

The SNR is a traditional parameter which can reflect the
ratio of signal to noise. The amount of the noise removed
can be reflected by this parameter. The SNRi of the denoising
result with the ith (i = 1, 2, 3, · · · , I , I denotes the total
number of the parameter groups) parameter group can be
defined as:

SNRi = 10 log10

(
1
N

∑N
n=1 Y

2
i (n)

1
N

∑N
n=1 [x (n)− Yi (n)]

2

)
(8)

where Yi(n) is the denoising results with the ith parameter
group. Therefore, the smaller the SNR is, the larger the
noise is removed. The MSE can reflect the error between the
original and the denoised signals. It can be defined as follows:

MSEi =
1
N

∑N

n=1
(x (n)− Yi (n))2 (9)

where MSEi indicates the MSE of the denoising result with
the ith parameter group. The smaller the MSE is, the more
similar the denoised signal is to the original one. TheCORR is
a criterion which can reflect the correlation of signals before
and after denoising. The CORRi of the denoising result with
the ith parameter group can be defined as follows:

CORRi=

∑N
n=1 (x (n)−x)

(
Yi (n)−Y i

)√∑N
n=1 (x (n)−x)

2
√∑N

n=1
(
Yi (n)−Y i

)2 (10)

where x and Y i are the averages of x (n) and Yi (n), respec-
tively. By using these three criteria, the denoising perfor-
mance can be measured. The best denoising result should sat-
isfy these following conditions: the smallest SNR, the small-
est MSE and the largest CORR. The suitable parameter group
is set by comparing the denoising performance of different
parameter groups. The suitable parameter group correspond-
ing to each kind of evaluation criteria can be determined by:

[Msnr, isnr] = min (SNRi) (11)

[Mmse, imse] = min (MSEi) (12)
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[Mcorr, icorr] = max (CORRi) (13)

whereMsnr,Mmse andMcorr denote the best values of different
evaluation criteria. In practical, the denoising results may
not satisfy the above conditions at the same time (the isnrth,
the imseth and the icorrth parameter groups may not be the
same group). Therefore, in this proposed method, the param-
eter group satisfying as many optimal conditions as possible
is set.

There are three situations in the relationship between isnr,
imse and icorr. When isnr, imse and icorr are all different,
the icorrth parameter group is selected to ensure that there is
enough useful information in the denoised signal. When two
of isnr, imse and icorr are the same (assuming the value is a), the
ath parameter group is selected. When isnr, imse and icorr are
all the same (assuming the value is b), the bth parameter group
is selected. All the situations are summarized in Table 2.

TABLE 2. Parameter group setting rules.

B. HILBERT TRANSFORM
After the parameters offline setting based on wavelet thresh-
old denoising, the HT is used [34]. By using the HT,
the stator current signal is transformed from time domain
to time-frequency domain. The HT of the denoised stator
current Y (t), denoted by h(t), can be defined as:

h (t) = H [Y (t)] =
1
π

∫
∞

−∞

Y (t)
t − τ

dτ (14)

The HT is actually the convolution of Y (t) with 1/t . The
complex conjugate pair formed by Y (t) and h (t) can be
given as:

z (t) = Y (t)+ jh (t) = A (t) ejφ(t) (15)

In this case, the amplitudeA(t) and the phaseφ (t) are given
respectively by:

A (t) = |z (t) | =
√
Y 2 (t)+ h2 (t) (16)

φ (t) = arctan
[
h (t)
Y (t)

]
(17)

The instantaneous frequency of Y (t) can be computed by:

fe (t) =
1
2π

dφ (t)
dt

(18)

The estimated stator current instantaneous frequency fe can
be used as the imbalance fault signature. After the frequency
domain analysis, the frequency domain signal s(k) (where k
is the number of the frequency bands) of fe can be used to
detect the imbalance fault in MCTs.

C. PCA-BASED DETECTION
To reduce data dimensions and automatically detect the
imbalance fault inMCTs, a PCA-based detectionmethod [35]
is used in this paper. By using PCA, the dimensions of the
frequency domain signal are reduced and the reference model
influenced by the turbulence and waves is established. Then,
the statistics and the control limits are calculated.

The PCA-based detection method consists of three parts:

1) DATA NORMALIZATION
Before building the PCAmodel, the frequency domain signal
s (k) is preprocessed. Compose all the signals s (k) obtained
under different flow velocity conditions into matrix S ∈ Rq×k

(q is the number of samples). Normalize the S by z-score
method:

S∗ =
S− S
√
Var (S)

(19)

where S and Var(S) are the mean and variance of S,
respectively.

2) DATA MATRIX MODEL
The normalized data set S∗ can be expressed as:

S∗ = TPT (20)

where matrix T = [t1, t2, · · · , tk ] ∈ Rq×k contains the
transformed variables, t i ∈ Rq are the principal components
(PCs), matrix P =

[
p1, p2, · · · , pk

]
∈ Rk×k contains the

orthogonal vectors pi ∈ Rk . C is a covariance matrix and it
can be expressed as follows:

C = S∗TS∗/ (q− 1) = P3PT (21)

where PPT
= PTP = Ik , the diagonal matrix

3 = diag {λ1, λ2, · · · , λk} (λ1 ≥ λ2 ≥ · · · ≥ λk) contains
the eigenvalues corresponding to the k PCs, Ik is the identity
matrix. To reduce the computation, the number of PCs (l)
need to be smaller. To choose the l, Cumulative Percent Vari-
ance (CPV) is used in this paper and it can be computed as:

CPV (l) =

∑l
i=1 λi∑k
i=1 λi

× 100% (22)

Then the matrix S∗ can be expressed as:

S∗ = TP =
[
T̂ T̃

] [
P̂P̃
]T

(23)

where matrices T̂ ∈ Rq×l and T̃ ∈ Rq×(k−l) contain l
retained PCs and k − l PCs, respectively. Matrices P̂ ∈ Rq×l
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and P̃ ∈ Rq×(k−l) contain l retained eigenvectors and k − l
eigenvectors respectively. Then (23) can be expressed as:

S∗ = T̂ P̂
T
+ T̃ P̃

T

= S∗P̂P̃
T
+ S∗

(
Ik − P̂P̃

T
)

= Ŝ∗ + S̃∗ (24)

where Ŝ∗ represents the projection of S∗ in the principal
subspace, and S̃∗ in the residual subspace.

3) SAMPLE STATISTICS AND CONTROL LIMIT
In the constructed PCAmodel, the interferences caused by the
turbulence and waves are considered. To detect the imbalance
fault in MCTs, two fault detection indices are used in this
paper: the T2 statistic and the Q statistic [36]. The T2 statistic
represents the changes in the principal subspace, and the Q
statistic represents the changes in the residual subspace. T2

statistic and Q statistic can be expressed as:

T 2
= ||S∗||22 = S∗TP3−1PTS∗ ≤ T2

α (25)

Q = ||S̃∗||22 ≤ δ
2
α (26)

where T2
α and δ2α are the limits for the T2 statistic and Q

statistic, respectively. If the statistic exceeds its upper limit,
it is assumed that a fault has occurred.

D. THE PROPOSED IMBALANCE FAULT DETECTION
METHOD
The proposed imbalance fault detectionmethod is done in two
parts: offline training part and online detecting part. In the
offline training part, using the historical data of the healthy
MCT’s stator current, the parameters of the wavelet threshold
denoising method are set and the healthy MCT reference
model is established. In the online detecting part, the former
parameters are used to reduce the interference in the newly
measured stator current signal. And after the HT and PCA,
the data is projected into the reference model space, where
the statistical fault indices can be computed in the principal
or the residual subspace, to make the decision. The flowchart
in Fig. 4 summarizes the procedure.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. EXPERIMENTAL PLATFORM
To evaluate the effectiveness and stability of the proposed
fault detection method under different flow velocity condi-
tions, the experimental platform [18] (Fig. 5) with a 230 W
direct-drive PMSG prototype (8 pole pairs) is used. As shown
in Fig. 5(a), the MCT operates in a circulating flume which
uses a pump motor to generate controllable flow. And this
experimental platform can simulate the water environment
affected by turbulence and waves. As shown in Fig. 5(b),
the data acquisition and status monitoring system of the
experimental platform can collect andmonitor the three phase
currents, voltages and flow velocity signals. The sampling
frequency of the data acquisition system is 1 kHz. The blade
imbalance fault is emulated by attaching winding ropes on the

FIGURE 4. The flowchart of the proposed imbalance fault detection
method.

FIGURE 5. The MCT experimental platform.

FIGURE 6. The imbalance fault setting of the MCT.

blade (illustrated in Fig. 6). With the experimental platform,
an MCT working in the underwater environment affected by
turbulence and waves can be simulated.

B. IMBALANCE FAULT DETECTION RESULTS AND
ANALYSIS
1) DETECTION RESULTS AND ANALYSIS UNDER THE SAME
FLOW VELOCITY CONDITION
The methods in [18], [26] and [27] mainly rely on searching
the fault peak near the fault characteristic frequency to detect
the imbalance fault. It is needed to manually decide whether
there is an imbalance fault. To show the advantages of the
proposed method, the experiments in different health states
under the same flow velocity condition are carried out.
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FIGURE 7. The estimated instantaneous frequencies in different health
states after using the wavelet threshold denoising and HT.

In the experiment, 150 sets of the healthy stator current
signals and 100 sets of the imbalance fault stator current
signals under the same flow velocity conditions (1.0 m/s) are
collected. The length of each set of data is 3000. 50 sets of
healthy current signals were randomly selected to form the
offline training data set (the data set size is 50∗3000). The
remaining data forms the online test data set (the data set
size is 200∗3000).
The frequency of the historical healthy stator current data

measured from the monitoring system is around 11.7 Hz
(the 1P frequency is around 1.5 Hz). With the proposed
offline parameters setting method, the number of wavelet
decomposition levels j is set to be 4. Coif4 and rigrsure
are chosen as the wavelet basis function and the threshold
selection function, respectively. With the wavelet threshold
denoising and HT, the instantaneous frequency can be esti-
mated (shown in Fig. 7). It can be seen from Fig. 7 that
the vibration amplitude of the instantaneous frequency in the
imbalance fault state is much larger than that in the healthy
state. Therefore, the imbalance fault can be detected in time-
frequency domain.

After the frequency domain analysis of the instantaneous
frequency signals, the frequency domain signals are taken as
inputs to the PCA for offline training. With PCA, a reference
model is established. In the PCA modeling, the contribution
rate of PCs is set to be 95%. The imbalance fault can be
detected by comparing the statistics with the control limits
calculated during the offline training. The detection results
with T2 statistic and Q statistic using the proposedmethod are
shown in Fig. 8.With the Q statistic, the proposedmethod can
get good imbalance fault detection results. The false alarm
rate is 5.5% and the rate of missed detection is 0%. With
the proposed method, the imbalance fault can be detected
automatically.

2) DETECTION RESULTS AND ANALYSIS UNDER DIFFERENT
FLOW VELOCITY CONDITIONS
To verify the stability of the proposed method under different
flow velocity conditions, 150 sets of the healthy stator current
signals and 100 sets of the imbalance fault stator current
signals under different flow velocity conditions (1.0 m/s, 1.1
m/s, 1.2 m/s, 1.3 m/s, 1.4 m/s) are collected. The length

FIGURE 8. Experimental fault detection results of the proposed method
under the same flow velocity condition.

FIGURE 9. Experimental fault detection results of the method without
denoising under different flow velocity conditions.

of each set of data is 3000. 50 sets of healthy current sig-
nals under different flow velocity conditions were randomly
selected to form the offline training data set (the data set size
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TABLE 3. The flow velocity conditions and health states of samples.

TABLE 4. Experimental fault detection results under 95% control limit.

FIGURE 10. Experimental fault detection results of the method using
EMD under different flow velocity conditions.

is 250∗3000). The remaining data forms the online test data
set (the data set size is 1000∗3000).
The frequency range of the historical healthy stator current

data measured from the monitoring system is 10-16 Hz (the
range of 1P frequency is 1.25-2 Hz). With the proposed
offline parameters setting method, the number of wavelet
decomposition levels j is set to be 4. Coif4 and rigrsure are
chosen as the wavelet basis function and the threshold selec-
tion function, respectively. In the PCA modeling, the contri-
bution rate of PCs is set to be 95%. Three other methods are
compared with the proposed method: one method without

FIGURE 11. Experimental fault detection results of the method using
moving average filter under different flow velocity conditions.

denoising, one method using EMD and the last one using
moving average filter. To show the advantages of the pro-
posed method, the methods mentioned above are identical
except the denoising part.

Fig. 9, 10, 11 and 12 compare the detection results under
different flow velocity conditions with four different meth-
ods: the method without denoising, the method using EMD,
the method using moving average filter and the proposed
method (the first 500 samples in healthy state and the last
500 samples in fault state. The flow velocity conditions and
health states of samples are shown in Table 3). Table 4 shows

29822 VOLUME 8, 2020



Z. Li et al.: Wavelet Threshold Denoising-Based Imbalance Fault Detection Method for MCTs

FIGURE 12. Experimental fault detection results of the proposed method
under different flow velocity conditions.

the numerical results. Fig. 9 shows the imbalance fault detec-
tion results with T2 statistic and Q statistic using the method
without denoising. From Fig. 9, the detection performance
is not satisfactory with regard to fault detection expectations,
and both the false negative rate and the false alarm rate are too
high. Fig. 10 shows the imbalance fault detection results with
T2 statistic and Q statistic with the method using EMD. The
experimental results show that the false alarm rate of T2 statis-
tic gets lower, but the false negative rate is too high for the
fault detection. Fig. 11 shows the imbalance fault detection
results with the method using moving average filter. The false
alarm rate of T2 statistic can approximately meet the require-
ment of fault detection, but the false negative rate is still too
high. Fig. 12 shows the imbalance fault detection results with
the proposed method. The fault detection performances using
T2 statistic are not good. In fact, despite a low false alarm
rate, the number of non-detected samples is too high to be
acceptable. However, the results with the Q statistic are much
better and meet the usual requirements of fault detection.
The false alarm rate is less than 1% (where 5% is generally
acceptable) and the rate of missed detection is less than 5%.
The experimental results show that the proposed method has
better stability than the existing methods mentioned above.

V. CONCLUSION
In this paper, a non-intrusive method using the generator’s
stator current is proposed to detect the imbalance fault in

marine current turbines. At first, to deal with the interferences
caused by turbulence and waves under different flow velocity
conditions, the wavelet threshold denoising is applied. Sec-
ond, the stator current signal in time domain is transformed
to time-frequency domain by Hilbert transform. Finally, Prin-
ciple Component Analysis is used and the imbalance fault
is detected by the computation of statistics indices in the
principal and residual subspaces. The proposed method can
automatically detect the imbalance fault and has good sta-
bility under different flow velocity conditions. The experi-
mental results under different flow velocity conditions with
Q statistic have shown satisfactory imbalance fault detection
with false alarm and false negative rates less than 1% and 5%
respectively.

REFERENCES
[1] Z. Ren, Y. Wang, H. Li, X. Liu, Y. Wen, and W. Li, ‘‘A coordinated

planning method for micrositing of tidal current turbines and collector
system optimization in tidal current farms,’’ IEEE Trans. Power Syst.,
vol. 34, no. 1, pp. 292–302, Jan. 2019.

[2] Y. Dai, Z. Ren, K. Wang, W. Li, Z. Li, and W. Yan, ‘‘Optimal sizing and
arrangement of tidal current farm,’’ IEEE Trans. Sustain. Energy, vol. 9,
no. 1, pp. 168–177, Jan. 2018.

[3] O. A. L. Brutto, M. R. Barakat, S. S. Guillou, J. Thiebot, and H. Gualous,
‘‘Influence of the wake effect on electrical dynamics of commercial tidal
farms: application to the alderney race (France),’’ IEEE Trans. Sustain.
Energy, vol. 9, no. 1, pp. 321–332, Jan. 2018.

[4] M. R. Barakat, B. Tala-Ighil, H. Chaoui, H. Gualous, Y. Slamani, and
D. Hissel, ‘‘Energetic macroscopic representation of a marine current tur-
bine systemwith loss minimization control,’’ IEEE Trans. Sustain. Energy,
vol. 9, no. 1, pp. 106–117, Jan. 2018.

[5] S. B. Chabane, M. Alamir, M. Fiacchini, R. Riah, T. Kovaltchouk, and
S. Bacha, ‘‘Electricity grid connection of a tidal farm: An active power
control framework constrained to grid code requirements,’’ IEEE Trans.
Sustain. Energy, vol. 9, no. 4, pp. 1948–1956, Oct. 2018.

[6] Z. Li, N. Maki, T. Ida, M. Miki, and M. Izumi, ‘‘Comparative study of
1-MW PM and HTS synchronous generators for marine current turbine,’’
IEEE Trans. Appl. Supercond., vol. 28, no. 4, pp. 1–5, Jun. 2018.

[7] H.-T. Pham, J.-M. Bourgeot, andM. Benbouzid, ‘‘Fault-tolerant finite con-
trol set-model predictive control for marine current turbine applications,’’
IET Renew. Power Gener., vol. 12, no. 4, pp. 415–421, Mar. 2018.

[8] Z. Ren, H. Li, W. Li, X. Zhao, Y. Sun, T. Li, and F. Jiang, ‘‘Reliability
evaluation of tidal current farm integrated generation systems considering
wake effects,’’ IEEE Access, vol. 6, pp. 52616–52624, 2018.

[9] W. Li, H. Zhou, H. Liu, Y. Lin, and Q. Xu, ‘‘Review on the blade design
technologies of tidal current turbine,’’ Renew. Sustain. Energy Rev., vol. 63,
pp. 414–422, Sep. 2016.

[10] H. Titah-Benbouzid and M. Benbouzid, ‘‘Biofouling issue on marine
renewable energy converters: A state of the art review on impacts and
prevention,’’ Int. J. Energy Convers., vol. 5, no. 3, p. 67, Jul. 2017.

[11] X. Sheng, S. Wan, L. Cheng, and Y. Li, ‘‘Blade aerodynamic asymmetry
fault analysis and diagnosis of wind turbines with doubly fed induc-
tion generator,’’ J. Mech. Sci. Technol., vol. 31, no. 10, pp. 5011–5020,
Oct. 2017.

[12] M. Zhang, T. Wang, and T. Tang, ‘‘A multi-mode process monitoring
method based on mode-correlation PCA for marine current turbine,’’ in
Proc. IEEE 11th Int. Symp. Diag. Electr. Machines, Power Electron.
Drives (SDEMPED), Aug. 2017, pp. 286–291.

[13] H. Chen, T. Tang, N. Ait-Ahmed,M. E. H. Benbouzid,M.Machmoum, and
M. E.-H. Zaim, ‘‘Attraction, challenge and current status of marine current
energy,’’ IEEE Access, vol. 6, pp. 12665–12685, 2018.

[14] D. Zhang, L. Qian, B. Mao, C. Huang, B. Huang, and Y. Si, ‘‘A data-
driven design for fault detection of wind turbines using random forests and
XGboost,’’ IEEE Access, vol. 6, pp. 21020–21031, 2018.

[15] G. Jiang, P. Xie, H. He, and J. Yan, ‘‘Wind turbine fault detection using
a denoising autoencoder with temporal information,’’ IEEE/ASME Trans.
Mechatronics, vol. 23, no. 1, pp. 89–100, Feb. 2018.

VOLUME 8, 2020 29823



Z. Li et al.: Wavelet Threshold Denoising-Based Imbalance Fault Detection Method for MCTs

[16] T. Wang, J. Qi, H. Xu, Y. Wang, L. Liu, and D. Gao, ‘‘Fault diagnosis
method based on FFT-RPCA-SVM for cascaded-multilevel inverter,’’ ISA
Trans., vol. 60, pp. 156–163, Jan. 2016.

[17] H. Malik and S. Mishra, ‘‘Artificial neural network and empirical mode
decomposition based imbalance fault diagnosis of wind turbine using
TurbSim, FAST and Simulink,’’ IET Renew. Power Gener., vol. 11, no. 6,
pp. 889–902, May 2017.

[18] M. Zhang, T. Wang, and T. Tang, ‘‘An imbalance fault detection method
based on data normalization and EMD for marine current turbines,’’ ISA
Trans., vol. 68, pp. 302–312, May 2017.

[19] H. Malik and S. Mishra, ‘‘Proximal support vector machine (PSVM) based
imbalance fault diagnosis of wind turbine using generator current signals,’’
Energy Procedia, vol. 90, pp. 593–603, Dec. 2016.

[20] M. Zhang, T. Wang, T. Tang, M. Benbouzid, and D. Diallo, ‘‘Imbalance
fault detection of marine current turbine under condition of wave and
turbulence,’’ in Proc. 42nd Annu. Conf. IEEE Ind. Electron. Soc. (IECON),
Oct. 2016, pp. 6353–6358.

[21] S. Golestan, M. Ramezani, J. M. Guerrero, and M. Monfared, ‘‘dq-frame
cascaded delayed signal cancellation- based PLL: Analysis, design, and
comparison with moving average filter-based PLL,’’ IEEE Trans. Power
Electron., vol. 30, no. 3, pp. 1618–1632, Mar. 2015.

[22] Y. Amirat, M. Benbouzid, T. Wang, K. Bacha, and G. Feld, ‘‘EEMD-based
notch filter for induction machine bearing faults detection,’’ Appl. Acoust.,
vol. 133, pp. 202–209, Apr. 2018.

[23] W. Fan, Q. Zhou, J. Li, and Z. Zhu, ‘‘A wavelet-based statistical approach
formonitoring and diagnosis of compound faults with application to rolling
bearings,’’ IEEE Trans. Autom. Sci. Eng., vol. 15, no. 4, pp. 1563–1572,
Oct. 2018.

[24] Z. Geng, J. Chen, and Y. Han, ‘‘Energy efficiency prediction based on
PCA-FRBFmodel: A case study of ethylene industries,’’ IEEE Trans. Syst.,
Man, Cybern., Syst., vol. 47, no. 8, pp. 1763–1773, Aug. 2017.

[25] M. Rafferty, X. Liu, D. M. Laverty, and S. Mcloone, ‘‘Real-time
multiple event detection and classification using moving window
PCA,’’ IEEE Trans. Smart Grid, vol. 7, no. 5, pp. 2537–2548,
Sep. 2016.

[26] X. Gong and W. Qiao, ‘‘Imbalance fault detection of direct-drive wind
turbines using generator current signals,’’ IEEE Trans. Energy Convers.,
vol. 27, no. 2, pp. 468–476, Jun. 2012.

[27] M. Zhang, T. Wang, T. Tang, Z. Liu, and C. Claramunt, ‘‘A synchronous
sampling based harmonic analysis strategy for marine current turbine mon-
itoring system under strong interference conditions,’’ Energies, vol. 12,
no. 11, p. 2117, Jun. 2019.

[28] H. Chen, N. Ait-Ahmed, M. Machmoum, and M. E.-H. Zaim, ‘‘Modeling
and vector control of marine current energy conversion system based on
doubly salient permanent magnet generator,’’ IEEE Trans. Sustain. Energy,
vol. 7, no. 1, pp. 409–418, Jan. 2016.

[29] H.-T. Pham, J.-M. Bourgeot, and M. E. H. Benbouzid, ‘‘Comparative
investigations of sensor fault-tolerant control strategies performance for
marine current turbine applications,’’ IEEE J. Ocean. Eng., vol. 43, no. 4,
pp. 1024–1036, Oct. 2018.

[30] X. Gong and W. Qiao, ‘‘Bearing fault diagnosis for direct-drive wind
turbines via current-demodulated signals,’’ IEEE Trans. Ind. Electron.,
vol. 60, no. 8, pp. 3419–3428, Apr. 2013.

[31] Z. Liu, Z. He, W. Guo, and Z. Tang, ‘‘A hybrid fault diagnosis method
based on second generation wavelet de-noising and local mean decom-
position for rotating machinery,’’ ISA Trans., vol. 61, pp. 211–220,
Mar. 2016.

[32] A. Bhandari, D. Kumar, A. Kumar, and G. Singh, ‘‘Optimal sub-band
adaptive thresholding based edge preserved satellite image denoising using
adaptive differential evolution algorithm,’’ Neurocomputing, vol. 174,
pp. 698–721, Jan. 2016.

[33] H.-T. Chiang, Y.-Y. Hsieh, S.-W. Fu, K.-H. Hung, Y. Tsao, and S.-Y. Chien,
‘‘Noise reduction in ECG signals using fully convolutional denoising
autoencoders,’’ IEEE Access, vol. 7, pp. 60806–60813, 2019.

[34] E. Elbouchikhi, V. Choqueuse, Y. Amirat, M. El Hachemi Benbouzid,
and S. Turri, ‘‘An efficient Hilbert–Huang transform-based bearing faults
detection in induction machines,’’ IEEE Trans. Energy Convers., vol. 32,
no. 2, pp. 401–413, Jun. 2017.

[35] M. Z. Sheriff, M. Mansouri, M. N. Karim, H. Nounou, and M. Nounou,
‘‘Fault detection using multiscale PCA-based moving window GLRT,’’
J. Process Control, vol. 54, pp. 47–64, Jun. 2017.

[36] M. Mansouri, M. Z. Sheriff, and R. Baklouti, ‘‘Statistical fault detection of
chemical process-comparative studies,’’ J. Chem. Eng. Process Technol.,
vol. 7, no. 1, pp. 282–291, 2016.

ZHICHAO LI received the B.S. degree in ship elec-
tronic and electrical engineering from Shanghai
Maritime University, Shanghai, China, in 2017,
where he is currently pursuing the M.S. degree in
electric engineering.

TIANZHEN WANG (Senior Member, IEEE) was
born in Qingdao, China, in 1978. She received
the B.S. degree in industrial automation from the
Shandong University of Technology, Shandong,
China, in 2001, and the Ph.D. degree in power elec-
tronics and power drive from Shanghai Maritime
University, Shanghai, China, in 2006.

Since 2016, she has been both a Research Affil-
iate and Doctoral Supervisor of the Institut de
Recherche Dupuy de Lôme (IRDL) with the Uni-

versity of Brest, and a Professor and Doctoral Supervisor with the Depart-
ment of Electrical and Automation, Shanghai Maritime University. She is
a Full Professor with Shanghai Maritime University. Her research interests
include fault diagnosis, and fault tolerant control methods and its applications
in inverters, wind power generators, and ocean current machine.

Prof. Tianzhen awards and honors include a Committee Member of
fault diagnosis and safety on the Technical Process Specialized Committee,
and the Cognitive Computing and System Specialized Committee China
Automation Society.

YIDE WANG (Senior Member, IEEE) received
the B.S. degree in electrical engineering from
the Beijing University of Posts and Telecom-
munications, Beijing, China, in 1985, and the
M.S. and Ph.D. degrees in signal processing
and telecommunications from the University of
Rennes, France, in 1986 and 1989, respec-
tively. His research interests include array signal
processing, spectral analysis, and mobile wireless
communication systems.

YASSINE AMIRAT (Senior Member, IEEE) was
born in Annaba, Algeria, in 1970. He received
the B.Sc. and M.Sc. degrees in electrical engi-
neering from the University of Annaba, Annaba,
in 1994 and 1997, respectively, and the Ph.D.
degree in wind turbine condition monitoring from
the University of Brest, Brest, France, in 2011.

Hewas a Lecturer with AnnabaUniversity, from
2000 to 2010. He is currently an Associate Pro-
fessor of electrical engineering with ISEN, Brest.

He is also an Affiliated Member of the CNRS, UMR, Institut de Recherche
Dupuy de Lôme(IRDL). His main research interests include electrical
machines faults detection and diagnosis, fault tolerant control, and signal
processing and statistics for power systems monitoring. He is also interested
in renewable energy applications such as wind turbines, marine current
turbines, and hybrid generation systems.

29824 VOLUME 8, 2020



Z. Li et al.: Wavelet Threshold Denoising-Based Imbalance Fault Detection Method for MCTs

MOHAMED BENBOUZID (Fellow, IEEE)
received the B.Sc. degree in electrical engineering
from the University of Batna, Batna, Algeria,
in 1990, and the M.Sc. and Ph.D. degrees in elec-
trical and computer engineering from the National
Polytechnic Institute of Grenoble, Grenoble,
France, in 1991 and 1994, respectively, and the
Habilitation à Diriger des Recherches degree from
the University of Picardie Jules Verne, Amiens,
France, in 2000.

After receiving the Ph.D. degree, he joined the Professional Institute of
Amiens, University of Picardie Jules Verne, where he was an Associate Pro-
fessor of electrical and computer engineering. Since September 2004, he has
been with the University of Brest, Brest, France, where he is currently a Full
Professor of electrical engineering. He is also a Distinguished Professor and
a 1000 Talent Expert with Shanghai Maritime University, Shanghai, China.
His main research interests and experience include analysis, design, and
control of electric machines, variable-speed drives for traction, propulsion,
and renewable energy applications, and fault diagnosis of electric machines.

Prof. Benbouzid has been elevated as an IEEE Fellow for his contributions
to diagnosis and fault-tolerant control of electric machines and drives. He is
also a Fellow of the IET. He is the Editor-in-Chief of the International
Journal on Energy Conversion and Applied Sciences (MDPI), a section on
electrical, electronics, and communications engineering. He is a Subject
Editor of the IET Renewable Power Generation. He is also an Associate
Editor of the IEEE TRANSACTIONS ON ENERGY CONVERSION.

DEMBA DIALLO (Senior Member, IEEE)
received the M.Sc. and Ph.D. degrees in electrical
and computer engineering from the National Poly-
technic Institute of Grenoble, France, in 1990 and
1993, respectively. He is currently a Full Professor
with University Paris-Sud and the Director of the
French National Research Network on Electrical
Engineering. He is with the Group of Electrical
Engineering Paris, France. His current areas of
research include fault diagnosis, fault tolerant con-

trol, and energy management. The applications of his research are related
to more electrified transportation systems and microgrids with renewable
energies.

VOLUME 8, 2020 29825


