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Abstract

Flow thinning (FT) is a traffic protection mechanism for communication networks with variable link
capacities, for example wireless networks. With FT, end-to-end traffic demands use dedicated logical
tunnels, for example MPLS tunnels, whose nominal capacity is subject to thinning in order to follow
fluctuations in link capacities availability. Moreover, instantaneous traffic of each demand is throttled at
its originating node accordingly to the current total capacity available on the demands dedicated tunnels
so that the network is always capable of carrying the admitted traffic. In this paper we deal with efficient,
implementable versions of FT, referred to as AFT (affine FT) and QFT (quadratic FT). By deriving
appropriate link availability state and path generation algorithms, we show how real-life network dimen-
sioning problems for AFT/QFT can be efficiently treated using a proper characterization of the network
link availability states. Results of a numerical study illustrate tractability of the cost minimization
problems, and assess efficiency of AFT/QFT as compared with other protection mechanisms.

keywords: robust optimization, uncertainty polytopes, multicommodity flows, traffic protection,
variable link capacity, affine and quadratic routing, FSO

1 Introduction

Flow thinning (FT), a concept introduced in [16], is a traffic protection mechanism designed for communi-
cation networks with variable capacity of links. In a typical state of such a network, only a subset of links
is fully available while on the remaining links only a fraction of their nominal (i.e., maximum) capacity is
usable. Each end-to-end traffic demand is assigned a set of logical tunnels whose total capacity is dedicated
to carry the demand’s traffic. The nominal (i.e., maximum) capacity of the tunnels supported by the nominal
(maximum) link capacity, is subject to state-dependent thinning in order to consider variable capacity of
the links, fluctuating below the maximum. In effect, the capacity available on the tunnels is also fluctuating
below their nominal capacity levels. Thus, since the instantaneous traffic sent between the demand’s end
nodes is adapted to the current total capacity available on its dedicated tunnels, the network is always
capable of carrying the admitted traffic.

FT is relevant, among other applications, for FSO (free space optics) wireless mesh networks utilizing
MPLS tunnels. FSO communications is undoubtedly a promising solution to provide connectivity in areas
where deployment of a wired infrastructure is hardly feasible. However, it often faces the problem of time-
varying link capacity due to weather disruptions (such as a heavy rainfall) leading to a substantial or even a
complete degradation of the capacity available on wireless optical links. Therefore, one of the major issues
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in the design of FSO architectures is to assure network resilience defined as the ability of the network to
guarantee an acceptable level of service in the face of various faults and challenges for normal operation [22].

The current paper presents an optimization model for network dimensioning for two implementable
versions of FT: affine flow thinning (AFT) [16], and quadratic flow thinning (QFT) [20]. With AFT, the
capacity of each tunnel is adjusted according to an optimized, tunnel-specific affine flow thinning function,
whose arguments are the fractions of currently available link capacities (in relation to the maximum link
capacities) on a pre-specified, tunnel-dependent subset of links. With QFT, additional quadratic terms in
the flow thinning functions are allowed on top of the affine ones. The main novelty of the presented model is
characterization of the link availability states by means of the so called state polytope (an object called the
uncertainty polytope in robust optimization [7]) instead of a limited list of preselected states. This feature
makes it possible to dimension AFT/QFT networks for representative sets of states that can be met during
network operation.

In general, dimensioning of FT (and AFT and QFT) networks is not an easy task because of non-
compactness of the related linear programming formulations. Roughly speaking, in such formulations there
is a subset of columns (i.e., variables) that corresponds to the flows of the tunnels in different link availability
states, and a subset of rows (i.e., constraints) that corresponds to link availability states. Both sets grow
exponentially with the size of the network graph; in effect, the formulations must be treated by both column
generation (called path generation in our case, see [1, 14]) and row generation (called state generation in our
case, see [6]). So far, the issue of non-compactness in question has been solved only in the path generation
aspect (see [16] for FT, [18] for AFT, and [20] for QFT). Introducing the state polytope allows for applying,
on top of path generation, a systematic algorithm for state generation.

Our previous work, which is extended in this paper, can be summarized as follows:

• The general version of the flow thinning mechanism was introduced in [16], together with a complete
presentation of the FT optimization model with a predefined list of (link availability) states, including
path generation based on a specific, non-standard pricing problem.

• The concept of affine flow thinning was also introduced in [16], but path generation for the AFT
modification of FT was not considered there. This was done, through formulating specific pricing
problems for a variety of versions of AFT, in paper [17] and its extended version [18], providing a
complete solution algorithm for the basic AFT optimization problem with a predefined list of states.

• In fact, the notion of state polytope was introduced in [16] as well, where a (pretty complicated)
optimization linear programming formulation for AFT involving state polytopes for link availability
states modeling was derived. However, that formulation, based on dual theory, assumed a predefined
list of paths and has never been extended with path generation because of complexity of the related
pricing problems.

• Quadratic flow thinning and its various versions were introduced [20] together with an optimization
model including path generation.

• The concept of state polytope introduced in [16] was used in an optimization model for the so called
global rerouting (a benchmark routing mechanism assuming unrestricted reconfiguration of flows in
case of a network failure) presented in paper [8] (and in its extended version [12]). The solution
algorithm is iterative and based on Benders’ decomposition [5] with dual feasibility tests involving
binary variables. Since global rerouting can be modelled by means of link-flows, no path generation
was considered there.

The presented paper, together with its conference predecessor [19], introduces an original optimization
model for affine and quadratic flow thinning based on path and state generation. Its contribution consists
in extending the previous work in the following aspects:

• Although for link availability state description the current model uses state polytopes introduced in
[16], and already used for iterative state generation in [12], now the feasibility tests are formulated as
linear programs and not as mixed-integer programs as in [12]. This increases efficiency of the current
model.
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• With respect to the AFT model involving state polytopes described in [16], the current model is
enriched with path generation and thanks to that solves the AFT optimization problem taking into
account all possible paths.

• The QFT mechanism is added to the optimization model.

With respect to its conference version [19], the current paper contains the following new elements:

• Precise formulation of the feasibility tests for state generation.

• Quadratic flow thinning (on top of AFT considered in [19]).

• An example illustrating the idea of AFT and QFT.

• Enriched discussion on applicability of the proposed approach.

• Numerical study involving a realistic-network example.

The rest of the paper is organized as follows. After introducing basic notation (Section 2), in Section 3
we formulate the basic optimization problem for FT, i.e., the most general version of flow thinning, and its
modification for AFT. Then, in Section 4, we describe the notion of state polytope, and then, in Section 5, our
optimization procedure for the AFT problem is presented. Next, in Section 6 we generalize the optimization
procedure for QFT, and after that, in Section 7, we discuss advantages of AFT/QFT in the practical context.
Numerical results illustrating the efficiency of the procedure and cost effectiveness of the optimized networks
are presented in Section 8. Finally, after Section 9 that concludes the paper and discusses directions of future
work, feasibility tests for state generation are formulated in Appendix A.

2 Notation

The (undirected) network graph G = (V, E) is composed of the set of nodes V and the set of links E , where
each link represents an undirected pair {v, w} of nodes for some v, w ∈ V, v 6= w.

The maximum (called also nominal) capacity of link e ∈ E is denoted by y0e , and its unit capacity cost
by ξ(e); hence the cost of the network is given by C =

∑
e∈E ξ(e)y

0
e . The capacity of links is variable, and

typically not all links reach their maximum capacity simultaneously. Thus, at any time instant, nominal
link capacities y0e , e ∈ E , are usually available only for a subset of links, and the remaining links have the
available capacity reduced. To consider this, we specify a set S (called the state-list) of (link availability)
states. Each state s ∈ S is characterized by the link availability ratios α(e, s) (0 ≤ α(e, s) ≤ 1), e ∈ E , and,
by definition, the capacity of link e available in state s is equal to yse := α(e, s)y0e . In the following, we will
also use the symmetric notion of link degradation ratio β(e, s) := 1 − α(e, s). The subset of states s in S
for which a particular link e ∈ E is not fully available (α(e, s) < 1) will be denoted by S(e); symmetrically,
the subset of links in E that are not fully available in state s ∈ S will be denoted by E(s). The nominal
link capacities, described by the vector y0 := (y0e , e ∈ E), are optimization (decision) variables that are
non-negative and continuous, i.e., non-negative real numbers (in the following the set of real numbers will
be denoted by R, and the set of non-negative real numbers by R+).

Traffic demands are represented by set D. Each demand d ∈ D is characterized by an undirected pair
{o(d), t(d)} composed of the demand’s end (origin/destination) nodes, and given traffic volumes h(d, s), s ∈ S,
to be realized in the considered set of link availability states. Traffic volumes and link capacities are expressed
in the same units. Each demand d is assigned a set of admissible paths P(d) (called the path-list) composed
of selected elementary paths between o(d) and t(d). Paths in P(d), used to realize the demand (traffic)
volumes, are assigned nominal (path-)flows x0dp, p ∈ P(d). The value x0dp specifies the (reference) nominal
capacity, expressed in the same units as link capacity and demand volume, reserved for demand d on the
tunnel realized on path p ∈ P(d). The set of all admissible paths is denoted by P :=

⋃
d∈D P(d). The

maximum path-lists, i.e., path-lists P(d) containing all the elementary paths between o(d) and t(d), will be
denoted by P̂(d), d ∈ D, with P̂ :=

⋃
d∈D P̂(d). Note that since we assume elementary paths, the paths can

be identified with the sets of links they traverse – the set of links composing path p ∈ P(d) will be denoted by
E(d, p). The sets of admissible paths P(d) are parameters in the considered problem formulations, although
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we require that all possible elementary paths can be used if this is necessary to achieve the optimum. In
the following we will also make use of the sets of paths R(d, e) := {p ∈ P(d) : e ∈ E(d, p)}, d ∈ D, e ∈ E .
Certainly, R(d, e) ⊆ P(d) and R(d, e) is the set of all those paths in P(d) that traverse link e.

In general, not all nominal path-flows x0dp, d ∈ D, p ∈ P(d), can be realized when the network is in
state s ∈ S, as the available link capacity ys := (yse , e ∈ E) is decreased with respect to the nominal link
capacity y0. To account for that, the nominal flows must be thinned (decreased) to fit the reduced link
capacity. Still, the thinned flows must be sufficient to carry the assumed demand volumes h(d, s), d ∈ D.
The thinned nominal path-flows for state s ∈ S are denoted by xsdp, d ∈ D, p ∈ P(d). These flows are
reserved on the admissible paths for the duration of the state. As only thinning of nominal flows is allowed,
the inequality xsdp ≤ x0dp must hold for each path and each state. Clearly, the link loads induced by the
nominal flows cannot exceed the nominal link capacity. Moreover, in each state the link loads induced by the
flows thinned for that state cannot exceed the currently available link capacity. The path-flows, described by
vectors x0 := (x0dp, d ∈ D, p ∈ P(d)) and xs := (xsdp, d ∈ D, p ∈ P(d)), s ∈ S, are non-negative continuous
optimization variables.

Observe that (following [9]) in our notation (with some obvious exceptions) the objects that are given and
fixed (for example problem parameters) are indexed using brackets, like in h(d, s),P(d), etc., while variables
are indexed using subscripts and superscripts, like y0e , x

s
dp, etc.

To end this section we note that considerations of this paper are applicable to networks with directed
links and/or demands as well. Since we are using path-flows rather than link-flows, the direction of links is
taken into account when predefining (or generating) paths. The (meaningful) cases are modeled as follows.

1. Undirected links and undirected demands: as discussed above.

2. Directed links (i.e., arcs) and directed demands: paths are directed and each path p ∈ P(d) starts at
its originating node o(d), then traverses a number of arcs according to their directions, and ends at its
terminating node t(d).

3. Bi-directed (full-duplex) links and directed demands: as above assuming each bi-directed link is sub-
stituted by two oppositely directed arcs with the same capacity.

4. Undirected links and directed demands: undirected paths are used for directed demands.

3 Optimization problem for a given list of states

Let path-list P =
⋃

d∈D P(d) and state-list S be given. Below we formulate two versions of the basic
optimization problem considered in this paper, one for the general version of flow thinning (FT), and one
for its affine version (AFT).

3.1 Problem formulation for FT

The basic optimization problem for FT (referred to as FTOP) is represented by the following linear pro-
gramming (LP) formulation involving non-negative real-valued variables y0, x0, xs (s ∈ S).

Problem FTOP(P,S): C(P,S) = min
∑

e∈E ξ(e)y
0
e (1a)∑

d∈D
∑

p∈R(d,e) x
0
dp ≤ y0e , e ∈ E (1b)∑

p∈P(d) x
s
dp ≥ h(d, s), d ∈ D, s ∈ S (1c)∑

d∈D
∑

p∈R(d,e) x
s
dp ≤ α(e, s)y0e , e ∈ E , s ∈ S(e) (1d)

xsdp ≤ x0dp, d ∈ D, p ∈ P(d), s ∈ S (1e)

y0e ∈ R+, e ∈ E ; x0dp ∈ R+, d ∈ D, p ∈ P(d); xsdp ∈ R+, d ∈ D, p ∈ P(d), s ∈ S.
(1f)

Objective (1a) minimizes the cost of links. The first capacity constraint (1b) does not allow the nominal link
loads (i.e., the loads induced by the nominal flows) to exceed the nominal link capacities. Next, the demand
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constraint (1c) ensures that in each state s ∈ S, the thinned nominal flows are sufficient to realize the volume
of each demand d ∈ D assumed for this state. Then, the second capacity constraint (1d) does not allow the
capacity of each link e ∈ E available in each state s ∈ S(e) to be exceeded (recall that S(e) denotes the set
of states in which α(e, s) < 1). Finally, inequalities (1e) ensure that in case of link degradations the nominal
flows are actually thinned. Note that constraint (1d) is, for each link e ∈ E , written down only for s ∈ S(e),
and not for all s ∈ S. This is because for any state s ∈ S \S(e) (in which the capacity of the considered link
e is fully available, α(e, s) = 1) constraint (1d) is implied by (1b) and (1e).

Note that formulation (1) is non-compact as the number of flow variables x0, xs (s ∈ S) and the number
of constraints (1e) grows exponentially with the size of the network, even if the number of states in S is
polynomial. In fact, FTOP is NP-hard. A path generation algorithm for FTOP based on an appropriate
pricing problem, was investigated in depth in [16].

We mention here that FT can be considered as a generalization of the Demand-Wise Shared Protection
(DWSP) strategy [10, 25] devised for multiple total link failures (multiple total link failures are sometimes
called shared risk link groups – SRLG). In fact, FT mechanism is a non-trivial extension of DWSP, since
thinning in the SRLG case (where link availability ratios are binary) is automatic: the affected tunnels are
entirely lost and non-affected tunnels are preserved. Since the network dimensioning problem for DWSP
is NP-hard (as shown in [24]), the problem is NP-hard also for FT, and hence, most likely, for the AFT
variant of FT considered in the remaining part of this paper.

3.2 Problem formulation for AFT

The general version of FT considered in the previous section is hardly implementable in the network, mainly
because of potential difficulties in on-line state recognition at the tunnel origins and undefined flow thinning
values in the states not included in S. These disadvantages of FT are eliminated when an affine version of
FT, i.e., AFT, is applied. A disadvantage of AFT as compared with FT are increased link capacities (and
hence the network cost C) required to protect traffic in the states with decreased link availability. We will
discuss these issues in more detail in Section 7.

The basic optimization problem for AFT (referred to as AFTOP) formulated below as an LP problem
involves real-valued variables y0, x0, xs (s ∈ S) (as FTOP) and, additionally, non-negative real-valued vari-
ables z, where z := (zedp, d ∈ D, p ∈ P(d), e ∈ E) that specify the coefficients (called affine coefficients in the
following) of the affine flow-thinning formulae.

Problem AFTOP(P,S): C(P,S) = min
∑

e∈E ξ(e)y
0
e (2a)∑

d∈D
∑

p∈R(d,e) x
0
dp ≤ y0e , e ∈ E (2b)∑

p∈P(d) x
s
dp ≥ h(d, s), d ∈ D, s ∈ S (2c)∑

d∈D
∑

p∈R(d,e) x
s
dp ≤ α(e, s)y0e , e ∈ E , s ∈ S(e) (2d)

xsdp = x0dp −
∑

e∈E(d,p) β(e, s)zedp, d ∈ D, p ∈ P(d), s ∈ S (2e)

y0e ∈ R+, e ∈ E ; x0dp ∈ R+, d ∈ D, p ∈ P(d); xsdp ∈ R+, d ∈ D, p ∈ P(d), s ∈ S
(2f)

zedp ∈ R+, d ∈ D, p ∈ P(d), e ∈ E . (2g)

Interpretation of (2a)-(2d) is the same as interpretation of their counterparts in formulation (1), while
equalities (2e) define the state-dependent flows through the affine formula. Note that the form of equations
(2e) ensures, due to nonnegativity of the variables z, that the nominal flows x0 are actually thinned (or not
changed) in any state in S. Note that formulation (2) requires path generation as well – this issue will be
discussed in Section 5.2.

v w t
β = 1

4
β = 1

2

Figure 1: A simple network.
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Example 1: In order to illustrate the idea of affine flow thinning, consider the simple network shown in
Figure 1 with two links (link e = 1 between nodes v and w, and link e = 2 between nodes w and t, both
of nominal capacity equal to 1) and only one demand (demand d = 1 between nodes v and t with only one
path p = 1 in P(d) composed of both links). We assume two states in the state-list S (S = {1, 2}), each
consisting of degradation of a single link: in state s = 1, link e = 1 is degraded with ratio β(1, 1) = 1

2 (and
β(2, 1) = 0), while in state s = 2, link e = 2 is degraded with ratio β(2, 2) = 1

4 (and β(1, 2) = 0). Now let us
fix the affine coefficients by putting ze = 1, e = 1, 2, and specify the affine thinning formula resulting from
(2e):

xs = x0 − β(1, s)− β(2, s), s ∈ S. (3)

Note that in (3) the subscripts d, p in x0 and xs are skipped as there is only one demand (d = 1) with only
one path (p = 1). Assuming the maximum admissible nominal flow x0 which is equal to 1 (as the nominal
capacity of both links is 1) we get

x1 = 1− β(1, 1)− β(2, 1) = 1− 1

2
− 0 =

1

2
and x2 = 1− β(1, 2)− β(2, 2) = 1− 0− 1

4
=

3

4
.

For both states these are maximum admissible path-flows and for s = 1, 2 they realize the demand volumes
h(1) = 1

2 and h(2) = 3
4 , respectively (clearly, these flows are achievable with FT as well). Hence, in this

particular case, AFT is as efficient as FT.
To end this example, observe that above the nominal flow x0 serves merely as a reference flow that is

thinned in each of the two states. However, if we add the so called full-availability state s = 0 with both
links fully available (β(1, 0) = β(2, 0) = 0), then the flow for this state calculated according to the above
defined AFT formula is feasible (and equal to the nominal flow x0) so that in state s = 0 the demand volume
h(0) = 1 is realized. It is important to note here that in general the full-availability state does not have to be
considered, and even if it is, the nominal flows do not have to be equal to the their counterparts calculated
for this state (but clearly, by definition, cannot be smaller). �

In essence, formulae (2e) amount to restricting allowable flow decisions xsdp by enforcing them to follow
an affine decision rule [3], and in this way overcome the aforementioned difficulties of FT. This is because the
flow decisions are now entirely determined by fixed (optimized) values of decision variables x0dp and zedp and
depend only on the values of the degradation ratios β(e, s) in a given state s. In fact, AFT optimization can
be viewed as a two-stage approach. First, we solve formulation (2) to determine optimal values for x0dp and
zedp. Next, for each path p ∈ P(d), we use these values to adjust the actual path-flow in real time, depending
on the current status of the path, i.e., on the current (state-dependent) values of the degradation ratios
of the links along the given path. Importantly, the current values of the degradation ratios along a given
path can be efficiently signalled back to its originating node (i.e., with low delay) so that the path-flows are
adjusted on-line. Moreover, the affine functions are applicable, through formula (2e), to the link availability
states that were not incorporated in the AFTOP formulation.

4 State polytope

So far the link availability states have been provided through a predefined explicit list S, which means that the
number of some constraints and decision variables in both FTOP and AFTOP are proportional to the number
of states. Therefore, the list cannot be too large, in particular its size should not grow exponentially with the
number of links; otherwise the resulting formulations would contain an excessive number of constraints and
variables. This is a well-known drawback of optimization problems under uncertainty where many scenarios
are used to represent the possible values taken by the uncertain parameters. In stochastic programming,
this difficulty is alleviated by sampling relevant subset of scenarios, obtaining solutions that are good enough
with high probability. In this work we have no probability associated with the states, so we rather follow
the robust optimization paradigm [4] and replace our explicit list of states by their convex hull, which we
call the state polytope in what follows. Considering the convex hull does not further restrict the problem,
as one readily verifies that a solution is feasible for a set of states if, and only if, it is feasible for all states in
their convex hull (for a formal proof see, e.g., [2]). It turns out that the state polytope enables considering
potentially exponentially many different states in a compact manner.
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The state polytope is constructed as follows. Consider a set of indices K := {1, 2 . . . ,K} (where K ≥ 1)
and a given sequence of integers N := (N(1), N(2), . . . , N(K)) such that

1 ≤ N(k) ≤ |E|, k ∈ K, and
∑

k∈KN(k) ≥ |E|. (4)

As explained below, each index k in K will define a particular type of a link that determines an availability
ratio a(k) and a coefficient b(k) used for reducing demand traffic volumes.

Now let B(N) be the set of all binary vectors u := (uke , e ∈ E , k ∈ K) fulfilling the conditions:∑
k∈K u

k
e = 1, e ∈ E (5a)∑

e∈E u
k
e ≤ N(k), k ∈ K. (5b)

The so defined set B(N) will be called the set of state patterns, and its elements state patterns. Due to
condition (5a), each state pattern u ∈ B(N) determines the unique link types: link e is of type k if, and only
if, uke = 1. Note that condition (5a) implies also that

∑
k∈K U

k = |E|, where Uk :=
∑

e∈E u
k
e is the number

of links of type in k in u, and that the upper bounds on Uk imposed by (5b) are valid due to the second
condition in (4).

Each type k in K is associated with two numbers, a(k) and b(k), specified by the two following (given)
sequences:

1 = a(1) > a(2) > . . . > a(K − 1) > a(K) ≥ 0 (6a)

0 = b(1) ≤ b(2) ≤ . . . ≤ b(K) < 1. (6b)

The quantities introduced in (6a) represent possible values for link availability ratios with a(1) representing
full link availability, and a(K) the total loss of link’s capacity. Coefficients b(k) introduced in (6b), in turn,
are called reduction coefficients, and used to define demand reduction ratios. Certainly, in a given state
pattern, links of type k are characterized by the values of a(k) and b(k).

For a given state pattern u in B(N) its demand (volume) reduction ratio is defined as follows:

B(u) := 1−
∑

k∈K b(k)Uk. (7)

Demand reduction ratios are used to make the demand volumes state-dependent. For that we will assume
a given vector H := (H(d) ≥ 0, d ∈ D) of reference demand volumes and treat each value H(d)B(u) as the
(reduced) volume of demand d ∈ D in the state corresponding to pattern u ∈ B(N). The rational behind this
definition is that for each k ∈ K, the reduction is proportional to coefficients b(k) (b(k) are non-decreasing
with the link degradation ratio increase, since, due to (6), link degradation ratios 1− a(k) increase with k,
and b(k) do not decrease with k), and to the number of links Uk of type k in pattern u. Note that in order
to fulfil the requirement 0 ≤ B(u) ≤ 1, the quantities b(k) must fulfil the technical condition:∑K

k=k(0) b(k)N(k) + b(k(0)− 1)(|E| −
∑K

k=k(0)N(k)) ≤ 1 (8)

where k(0) is the smallest index for which∑K
k=k(0)N(k) = |E| or (9a)∑K
k=k(0)N(k) < |E| and

∑K
k=k(0)−1N(k) > |E|. (9b)

Next, consider the following vectors α(u) := (α(e, u), e ∈ E) and h(u) := (h(d, u), d ∈ D) for u ∈ B(N),
where:

α(e, u) :=
∑

k∈K a(k)uke , e ∈ E (10a)

h(d, u) := H(d)B(u)), d ∈ D (10b)

where B(u) are defined by (7).
For a given setting of parameters

• N – the vector of upper bounds on the number of links of a given type fulfilling (4)
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• a – the vector of link availability ratios fulfilling (6a)

• b – the vector of traffic reduction coefficients fulfilling (6b) and (8)-(9))

• H – vector of reference demand volumes

we define the set of states B̂(N, a, b,H) := {s(u) : u ∈ B(N)} determined by the set of state patterns
B(N), where each state s(u) is characterized by link availability coefficients α(u) and demand volumes h(u)
specified in (10a) and (10b), respectively. Note again that due to (8)-(9), for each d ∈ D it holds that
0 ≤ h(d, u) ≤ H(d) for all u ∈ B(N). In fact, the demand volumes in vector H are thinned uniformly,
according to B(u) – a measure of the ratio of the amount of unavailable capacity.

As discussed in the Electronic Companion of [16], the so defined set of states B̂(N, a, b,H) := {s(u) : u ∈
B(N)}, can be used to model a variety of particular state-lists, for example all combinations of simultaneous
degradations of at most N(1) links degraded to availability ratio a(1), at most N(2) links degraded to
availability ratio a(2), and at most N(3) links degraded to availability ratio a(3).

Now let us consider the state polytope Q(N) in the |E||K|-dimensional space defined by conditions (5)

but this time imposed on real-valued vectors u with non-negative components, i.e., on u ∈ R|E||K|+ , rather

than on binary vectors u ∈ {0, 1}|E||K|. Observe that the vertices of polytope Q(N) are binary since the
coefficient matrix specifying constraints (5) is identical to the one of the assignment problem, and the latter
matrix is known to be totally unimodular [13]. Thus, Q(N) = conv(B(N)), that is Q(N) is the convex hull
of B(N). Therefore the following property, showing that Q(N) becomes crucial when solving of AFTOP for

a state-list specified by B̂(N, a, b,H), holds:

Property 1: Optimization of any linear objective function over B(N) (which is a binary program) can be
solved as a linear program with the same objective function over Q(N): an optimal vertex solution of the
latter is an optimal solution of the former.

The notion of the state polytope was introduced in [16] under the name uncertainty polytope, as it is a
variant of the budgeted uncertainty polytope described in [7], a well-known object in robust network design
and other linear problems assuming uncertainty.

5 Solving AFTOP for a state polytope

Suppose we wish to solve AFTOP for the state-list defined by B̂(N, a, b,H), i.e., for all states of the form
s(u), u ∈ B(N). Below we will show how this can be achieved through an iterative algorithm based on the
state and path generation algorithms.

5.1 Feasibility tests and state generation algorithm

Consider a given state-list S being a sub-list of B̂(N, a, b,H), and let y0(S), x0(S), z(S) be a feasible solution
of problem (2) for S (note that flows xs(S) are determined by x0(S) and z(S) through equations (2e)).

Clearly, in order to see whether this solution is feasible for all states in B̂(N, a, b,H) we need to check if the
constraints

h(d, u)−
∑

p∈P(d)
(
x0dp(S)−

∑
e∈E(d,p) β(e, u)zedp(S)

)
≤ 0, d ∈ D (11a)∑

d∈D
∑

p∈R(d,e)

(
x0dp(S)−

∑
e∈E(d,p) β(e, u)zedp(S)

)
− α(e, u)y0e(S) ≤ 0, e ∈ E (11b)

−
(
x0dp(S)−

∑
e∈E(d,p) β(e, u)zedp(S)

)
≤ 0, d ∈ D, p ∈ P(d) (11c)

(corresponding to appropriate constraints in (2)) are satisfied for each u ∈ B(N).
This can be done for each of the constraints (11a)-(11c) separately, by formulating a corresponding

binary program of maximizing the left hand of the appropriate inequality in (11) over B(N), where β(e, u) =
1− α(e, u), and α(e, u) and h(d, u) expressed with u as follows (cf. (7) and (10)):

α(e, u) :=
∑

k∈K a(k)uke , e ∈ E (12a)
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h(d, u) := H(d)
(
1−

∑
k∈K b(k)

∑
e∈E u

k
e

)
, d ∈ D (12b)

The so described feasibility tests can be written in a concise form as follows:

T (d) = maxu∈B(N)

{
h(d, u)−

∑
p∈P(d) xdp(u)

}
, d ∈ D (13a)

T (e) = maxu∈B(N)

{∑
d∈D

∑
p∈R(d,e) xdp(u)− α(e, u)y0e(S)

}
, e ∈ E (13b)

T (d, p) = maxu∈B(N)

{
− xdp(u)

}
, d ∈ D, p ∈ P(d) (13c)

where xdp(u) := x0dp(S)−
∑

e∈E(d,p) β(e, u)zedp(S) for d ∈ D, p ∈ P(d), u ∈ B(N).

Let u∗ denote an optimal solution for a considered test. Clearly, if for some d ∈ D, the value T (d)
obtained from the first test is positive, then

∑
p∈P(d) xdp(u∗) < h(d, u∗), that is demand d is not satisfied by

the considered feasible solution y0(S), x0(S), z(S) of AFTOP(P,S). The same holds when T (e) > 0 (then∑
d∈D

∑
p∈R(d,e) xdp(u∗) > α(e, u∗)y0e(S)) or T (d, p) > 0 (then xdp(u∗) < 0).

Thus, if the condition

maxd∈D T (d) > 0 or maxe∈E T (e) > 0 or maxd∈D, p∈P(d) T (d, p) > 0 (14)

holds, then the solution y0(S), x0(S), z(S) is infeasible for the set of states B̂(N, a, b,H) (and vice versa).
It is of outmost importance that, by Property 1 stated by the end of Section 4, the feasibility tests (13)

can be made linear programs since the set of feasible solutions, i.e., B(N) can simply be substituted with
Q(N). The appropriate LP formulations are given in Appendix A.

The algorithm for solving AFTOP (for fixed path-list P) by state generation based on the introduced
feasibility tests is given below. The algorithm requires an initial state-list, for example a reasonable subset
of B̂(N, a, b,H). However, if we wish to consider some states outside B̂(N, a, b,H), then we simply put them
on the initial list.

State generation algorithm – SGA(P)

Step 1: Define an initial state-list S.

Step 2: Solve AFTOP(P,S); let y0(S), x0(S), z(S) be its optimal solution.

Step 3: Solve tests (13); put u(d) := argmax T (d), d ∈ D; u(e) := argmax T (e), e ∈ E ; u(d, p) := argmax T (d, p), d ∈
D, p ∈ P(d).

Step 4: For all d ∈ D, e ∈ E , p ∈ P(d), define:

S ′(d) := {s(u(d))} if T (d) > 0 (and S ′(d) = ∅, otherwise)

S ′(e) := {s(u(e))} if T (e) > 0 (and S ′(e) = ∅, otherwise)

S ′(d, p) := {s(u(d, p))} if T (d, p) > 0 (and S ′(d, p) = ∅, otherwise)

S ′ :=
⋃

d∈D S ′(d) ∪
⋃

e∈E S ′(e) ∪
⋃

d∈D,p∈P(d) S ′(d, p).

If S ′ = ∅ then stop. Otherwise, put S := S ∪ S ′ and go to Step 2.

Note that, by definition, all elements of S ′ are different and so are all states in S. When the algorithm stops,
the current vectors y0(S), x0(S), z(S) computed in Step 2 form an optimal solution of AFTOP(P,S), where

S contains all the states from B̂(N, a, b,H) and the states from the initial state-list outside B̂(N, a, b,H) (if
any).

5.2 Pricing problems and path generation algorithm

Let the state-list S be fixed. Recall that AFTOP(P,S) assumes that the path-lists P(d), d ∈ D, are
predefined, and contain only a subset of the set P̂(d) of all paths that are available for each demand d in
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the network graph G (the number of paths in P̂(d) grows exponentially with the size of G). Thus, finding
a true optimum of AFTOP (for a given list of states S) requires path generation. A path generation (PG)
algorithm to solve the full version of AFTOP that takes all paths in P̂ into consideration was presented
and discussed in our previous paper [18]. It was shown there how to derive a pricing problem based on the
problem dual to (2) for a fixed state-list S:

Problem DAFTOP(P): W (P) = max
∑

d∈D
∑

s∈S h(d, s)λsd (15a)

π0
e +

∑
s∈S(e) α(e, s)πs

e ≤ ξ(e), e ∈ E (15b)∑
s∈S ϕ

s
dp ≤

∑
e∈E(d,p) π

0
e , d ∈ D, p ∈ P(d) (15c)

λsd ≤ ϕs
dp +

∑
e∈E(d,p)∩E(s) π

s
e , s ∈ S, d ∈ D, p ∈ P(d) (15d)∑

s∈S β(e, s)ϕs
dp ≥ 0, d ∈ D, p ∈ P(d), e ∈ E(d, p) (15e)

π0
e ∈ R+, e ∈ E ; πs

e ∈ R+, e ∈ E , s ∈ S; λsd ∈ R+, d ∈ D, s ∈ S
(15f)

ϕs
dp ∈ R, d ∈ D, p ∈ P(d), s ∈ S. (15g)

Note that the dual variables (specified in (15f) and (15g)) correspond to the following primal constraints in
AFTOP: π0

e to (2b), πs
e to (2d), λsd to (2c), and ϕs

dp to (2e).

Let λ := (λsd, d ∈ D, s ∈ S), π := (π0
e , e ∈ E ; π0

e , e ∈ E , s ∈ S), ϕ := (ϕs
dp, d ∈ D, p ∈ P(d), s ∈ S), and

let D(P) denote the dual polyhedron specified by (15b)-(15g) projected onto the (λ, π) space.
Now let λ∗, π∗ be an optimal solution of DAFTOP(P). The pricing problem for AFTOP(P,S), in the

following referred to as PP(P, λ∗, π∗, d), consists in finding, for a given demand d ∈ D, a path q(d) ∈ P̂(d)
(if any) such that:

� when constraints (15c)-(15e) for the new path q(d) are added to the dual problem, then the dual
solution (λ∗, π∗) is separated from the dual polyhedron D(P ∪ {q(d)})

� q(d) maximizes, over all paths in P̂(d), the sum of violations (denoted by W (d)) of the new constraints
by current λ∗, π∗ (f(d) = 0 means that no constraints are violated).

A somewhat complicated derivation of the so described pricing problem and the resulting (binary) formulation
of PP(P, λ∗, π∗, d) are omitted here as they were already presented in detail in Section 4 of [18] (see also
formulation (17) in [20]).

The algorithm for solving AFTOP (for fixed S) by path generation is given below. The algorithm requires
an initial path-list, for example a minimal list P of simple paths for which AFTOP(P,S) is feasible.

Path generation algorithm – PGA(S)

Step 1: Define initial path-lists P(d), d ∈ D, and put P :=
⋃

d∈D P(d).

Step 2: Solve the dual problem DAFTOP(P) given by (15) to obtain optimal dual variables λ∗, π∗.

Step 3: Solve the pricing problem PP(P, λ∗, π∗, d) for each d ∈ D; if W (d) > 0 then add the resulting path
q(d) to the path-list P(d). If for no demand a path has been added, then stop: the resulting path-lists
are sufficient to solve AFTOP(P̂,S) to optimality. Otherwise, go to Step 2.

5.3 Full iterative procedure for solving AFTOP

In order to find the true minimum of AFTOP (when all paths are considered) for a given state polytope

B̂(N, a, b,H), we need to combine the state generation algorithm (SGA) with the path generation algorithm
(PGA). The resulting iterative procedure, referred to as the SGA+PGA algorithm, is as follows.

SGA+PGA algorithm
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Step 1: Define initial path-lists P(d), d ∈ D, P :=
⋃

d∈D P(d), and an initial state-list S.

Step 2: Apply PGA(S); in consequence, path-lists P(d), d ∈ D, are in general extended.

Step 3: Apply SGA(P); in consequence, state-list S is in general extended. If the state-list has not been
extended, then stop.

Step 4: Apply PGA(S); If no path-list has been extended, then stop; otherwise, go to Step 3.

The above algorithm will always stop after a finite number of steps since in each iteration at least one path
and one state are added, and the number of paths and states are finite. Moreover, although both the number
of paths and the number of states grow exponentially with the size of the network, a polynomial number
of iterations can be expected, just like when using the simplex algorithm for non-compact linear problems.
Effectiveness of the SGA+PGA algorithm, which is the most important result of the current paper, will be
illustrated in Section 8.

6 Extension of affine FT to quadratic FT

The simple affine formula (2e) suffers from conservatism since it restricts the flow decisions to very simple
functions of the link degradation ratios, namely, affine functions. This is done mainly for tractability reasons
as the affine formulae are easy to embed into the optimization algorithms described in the previous section. It
is, however, natural to consider more general formulae that offer less conservative solutions (by offering more
flexibility) while remaining tractable. One of the options here, called quadratic flow thinning, is discussed
below.

With quadratic flow thinning the simple flow defining formula (2e) used in the AFT case is extended
with quadratic terms involving link degradation ratios β:

xsdp = x0dp −
∑

e∈E(d,p) β(e, s)zedp +
∑
{e,e′}∈E|2|(d,p) β(e, s)β(e′, s)zee

′

dp , d ∈ D, p ∈ P(d), s ∈ S (16)

where E |2|(d, p) denotes the family of all 2-element subsets of E(d, p). As for AFTOP, we assume zedp ≥
0, zee

′

dp ≥ 0, d ∈ D, p ∈ P(d), {e, e′} ∈ E |2|(d, p). In consequence, the optimization problem for QFT, abbrevi-
ated with QFTOP(P,S), is obtained from AFTOP by using equality (16) in (2e), and adding constraint (1e)
from FTOP. This additional constraint is necessary because in (16) the quadratic terms with non-negative
coefficients zee

′

dp are added to x0dp . As AFTOP, this problem requires path generation.

Example 2: In order to illustrate the motivation behind introducing the quadratic terms to the affine flow
thinning formula let us come back to Example 1 examined in Section 3.2 (and, for that matter, also in
[20]). In this case, assuming the affine coefficients z1 = z2 = 1 and the nominal flow x0 = 1 as before, and
introducing the quadratic coefficient z12 = 1, we extend the AFT formula (3) to the following QFT formula:

xs = 1− β(1, s)− β(2, s) + β(1, s)β(2, s), s ∈ S. (17)

Now let us consider a third state, s = 3, on top of s = 1 and s = 2. The resulting state list S = {1, 2, 3} is
described in the first three columns of Table 1, where the link degradation ratios for a particular state s ∈ S
are specified in column 2 (for link e = 1) and in column 3 (for link e = 2). Observe that for the first two
states the AFT formula (3) and the QFT formula (17) give the same values of the thinned flows x1, x2, since
in both cases in the quadratic term one of degradation ratios is equal to 0. However, in state s = 3 (with
both links simultaneously degraded) the flow determined with the AFT formula (i.e., x3 = 1

4 ) is strictly
smaller than the flow achieved with the QFT formula (i.e., x3 = 3

8 ). This shows that using the quadratic
term is advantageous from the viewpoint of traffic efficiency. Yet, the maximum flow x3 = 1

2 achieved with
FT is still larger.

Finally, observe that the full-availability state s = 0 considered in Example 1 is taken into account by
the above QFT formula as well. �

As illustrated above, adding the quadratic terms makes the use of flow thinning formula more effective in
terms of traffic handling (this issue is further addressed in Section 8). However, allowing for quadratic terms
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Table 1: Path-flows for AFT and QFT

s β(1, s) β(2, s) AFT: xs QFT: xs FT: xs

1 1
4 0 3

4
3
4

3
4

2 0 1
2

1
2

1
2

1
2

3 1
4

1
2

1
4

3
8

1
2

in the thinning formula does not come without a price because it makes both the feasibility tests (13) and
the pricing problem for path generation more computationally demanding. As far as the feasibility tests are
concerned, the reason is that now the objective functions of the tests contain bi-linearities. More precisely,
since the path-flows for a given point u ∈ Q(N) are expressed as

xdp(u) = x0dp(S)−
∑

e∈E(d,p) β(e, u)zedp(S) +
∑
{e,e′}∈E|2|(d,p) β(e, u)β(e′, u)zee

′

dp (S),

products of the optimization variables composing vector u (of the form ukeu
k′

e′ ) will appear since

β(e, u) = 1−
∑

k∈K a(k)uke and β(e′, u) = 1−
∑

k′∈K a(k′)uk
′

e′ ,

and because of that

β(e, u)β(e′, u) = (1−
∑

k∈K a(k)uke)(1−
∑

k′∈K a(k′)uk
′

e′ ) =

= 1−
∑

k∈K a(k)uke −
∑

k′∈K a(k′)uk
′

e′ +
∑

k,k′∈K a(k)a(k′)ukeu
k′

e′ .

Using the above formulae, the linear (bi-linear) formulations of the feasibility tests (13) adjusted for QFT can
be easily obtained from formulations (19)-(21) presented in Appendix A. In the so obtained adjustments,
auxiliary variables xdp can be moved to the respective objective functions; in effect, the adjusted tests
involve formulations in continuous variables with quadratic (in general neither convex nor concave) objective
functions and linear constrains, and as such can be treated by a quadratic programming solver. It turns
out, however, that this would lead to excessive number of SGA iterations. Therefore it is more efficient to
use a mixed-integer quadratic programming solver for the modified feasibility tests with the state polytope-
defining variables u assumed to be binary – this version of SGA was used in the calculations reported in
Section 8.2.

7 Discussion

In fact, the AFT formula (2e) (called simple and referred to as SAFT in the following) used so far is only
one of many possible. On another extreme is the following general AFT formula (GAFT):

xsdp = z0dp −
∑

e∈E β(e, s)zedp (18)

where the coefficients z are unlimited in sign, contrary to SAFT, where all zedp are nonnegative and z0dp = x0dp.
Note that GAFT depends on the degradation ratios β(·, s) of all links in E , and not only on the degradation
ratios of the links in E(d, p) that form the considered path as in SAFT (2e). Clearly, such an extension of
the range of the thinning formula (as well as allowing unlimited sign of coefficients z and introducing z0dp
instead of x0dp) is advantageous for traffic flows handling (and thus for network cost (2a) minimization) since
it makes it possible to better approximate the optimal flows obtained from FTOP formulated in (1).

However, the general AFT formula (18) has a major drawback. Since the concept of flow thinning
assumes that the capacity of each (MPLS) tunnel is controlled at its originating node by a packet admission
control mechanism based on the on-line knowledge of the currently available link capacity, some kind of the
signalling mechanism for interchanging information concerning the current link degradation ratios β(·, s)
must be implemented in the network. In the case of the general AFT formula (with the full range E) this
requires some kind of a flooding protocol since the tunnels’ originating nodes need to be aware of the current
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availability state of all links. Since flooding signalling takes time, the capacity adjustment process may
lead to unprecise tunnel capacity control and, in consequence, to traffic losses. Moreover, flooding may be
excessively complex to implement and thus virtually not applicable. Note that this drawback concerns the
basic FT mechanism as well, since with FT the optimized capacities of the tunnels are, for all s ∈ S, stored
in their originating nodes and activated according to the current values of β(e, s), e ∈ E .

Clearly, the above drawback can be eliminated by making GAFT (18) depending, just as SAFT, only
on the degradation ratios along the path realizing the given tunnel, i.e., by substituting E with E(d, p) in
the summation on the right-hand side of equation (18). Then, the signalling in question is simple and fast:
when availability of a link is changed, an appropriate message is propagated backwards to the source nodes
of all the tunnels traversing the considered link, resulting in efficient and timely message delivery for link
availability state monitoring. In the following, this version of GAFT will be denoted by GAFT/E(d, p);
symmetrically, formula (18) will be denoted by GAFT/E .

In fact, such simplified signalling is also valid for thinning formulae depending on the degradation ratios
of all links e incident to the nodes v traversed by the considered tunnel. In the following, such defined
range will be denoted by E+(d, p), and formula (18) with range E substituted with E+(d, p) will be denoted
by GAFT/E+(d, p). Similar notation, i.e., SAFT/E(d, p), SAFT/E+(d, p), SAFT/E will be used for the
three versions of formula (2e) with the summation ranges E(d, p), E+(d, p), E , respectively. For a detailed
description and classification of feasible AFT formulae the reader is referred to [20]. All these variants of
AFT will be considered in Section 8.

Another important issue is the tunnel capacity control in the states unforeseen in optimization, i.e.,
the states not defined by the state polytope nor on the initial list of states (see Step 1 of SGA+PGA in
Section 5.3). Since haphazard setting of tunnel capacity can lead to link overloads and hence to traffic losses,
the unconstrained (except for the bound imposed by (1e)) FT mechanism is risky in this aspect, as it does
not provide consistent means for this kind of control. On the contrary, the AFT mechanism can simply apply
its optimized explicit flow thinning formula also to the unforeseen states, modifying the tunnel capacity to 0
or x0dp when necessary, i.e., when the value obtained from the flow thinning formula is below 0 or above x0dp,
respectively. (Traffic efficiency of such extended thinning is addressed in Section 8.2 of [16] for the general
AFT formula.) Note that with the simple formula (2e) the nominal flows are always thinned whatever the
set of degradation ratios β(·, s) is. This makes the tunnel capacity control safer in terms of traffic losses.

To summarize, although the basic FT mechanism with no constraints on thinning (except for (1e))
is the cheapest in terms of the resulting link capacity cost (1a), it is hardly practical due to difficulties
with signalling and with control of tunnel capacity outside the state-list considered for dimensioning. Note
that the first difficulty makes also the general AFT formula (18) impractical, but its GAFT/E(d, p) and
GAFT/E+(d, p) versions (as well as SAFT/E(d, p) and SAFT/E+(d, p)) are implementable. Although in
terms of cost efficiency, the modified general formula is superior to its simple counterpart (see Section 8.3),
the latter is safer to use outside the state space S assumed in optimization. We deliberately do not make
any firm recommendation for the most suitable version of the AFT formula here, as this requires further
studies after extending the optimization model (2) in its state generation part to all feasible AFT formulae.
(Path generation algorithms, together with appropriate pricing problems, for the considered AFT formulae
are discussed in detail in [20].)

As far as QFT is concerned, all variants of the AFT thinning formulae considered above can be easily
transformed to analogous variants for QFT (i.e., to SQFT and GQFT with different ranges) in the same way
in which the simple AFT formula (2e) has been transformed to the simple QFT formula (16). Then, the
above statements characterizing AFT remain valid for QFT, with one general comment. Adding quadratic
terms to the AFT formulae improves the network traffic efficiency and thus leads to less expensive network in
terms of link capacity. However, optimization models for QFT become more complicated and time consuming
with respect to corresponding model for AFT, both in the state and path generation aspects. This issue is
further addressed in Section 8.3. Path generation algorithms for the feasible QFT formulae are presented
and discussed in [20].
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8 Numerical study

In this section we present numerical results that illustrate efficiency of the SGA+PGA iterative optimization
procedure for AFT/QFT described in Sections 5.3 and 6, from the computational efficiency and the optimized
network cost viewpoints, for different variants of the flow thinning formula. Observe that solving AFTOP
for the general case of AFT (and, for that matter, also for the general case of QFT) requires not only
an appropriate adjustment of formula (2e) in order to take the extended range into account, but also (for
GAFT and QFTP) adding a new constraint, namely constraint (1e) from FTOP, since in the case of GAFT
and GQFT, thinning of nominal flows is no longer automatically guaranteed. Moreover, in this case an
additional feasibility test to find out whether xdp(u) = z0dp(S)−

∑
e∈E(d,p) β(e, u)zedp(S) ≤ x0dp(S) is required

(see Section 5.1). In all cases, appropriate pricing problems for path generation (to be found in [20]) were
applied.

8.1 Network instance

The study was performed for an FSO network instance designed for Paris metropolitan area using realistic
data, like population data (to calculate the traffic matrix) and weather records (to calculate typical FSO link
degradation ratios). The considered instance (referred to as PMAN) was introduced in [12]. The network
(depicted in Figure 2) is composed of |V| = 12 nodes and |E| = 21 undirected links. Its set of traffic demands
consists of |D| = 66 (undirected) demands; the reference demand volumes (expressed in Gbps) are given in
the form of a traffic matrix depicted in Table 2. The link capacities are expressed in Gbps as well, while
the unit link capacity cost is assumed to be equal to 1 per 1 Gbps for all links (i.e., ξ(e) = 1, e ∈ E). It is

Figure 2: Paris Metropolitan Area network

important to note that although in reality the traffic demands (modelling the Internet traffic) are directed
and the FSO links are composed of full-duplex FSO systems (i.e., an FSO link consists of two oppositely
directed arcs of the same capacity), the use of undirected links and undirected demands in our optimization
model is correct provided the traffic matrix is symmetric (as in PMAN). In such a case we can first assume
undirected demands with the values specified in the upper part (i.e., above the diagonal) of the traffic
matrix (as in Table 2) and dimension the network using the undirected network model. Then, in the post
processing phase, we can bring back the directions of the demands for the upper-part demands and direct
the optimal nominal path-flows x0 accordingly. In this way each link e = {v(e), w(e)} will carry a set of
(directed) flows in the v → w direction, and a set of flows in the w → v direction. The resulting directed
link loads (let us denote them by Y (v(e), w(e)) and Y (w(e), v(e))) sum up to y0e (the optimal nominal
undirected capacity of link e). After that, we consider path-flows for the directed demands from the lower
part symmetric (below the diagonal) of the traffic matric that are symmetrical (but oppositely directed) to
their counterparts from the upper-part of the matrix. For link e this will result in link loads Y ′(w(e), v(e)) and
Y ′(v(e), w(e)). Clearly, Y ′(w(e), v(e)) = Y (v(e), w(e)) and Y ′(v(e), w(e)) = Y (w(e), v(e)). Therefore, if we
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realise loads Y (v(e), w(e)) and Y ′(v(e), w(e)) on arc (v(e), w(e), and loads Y (w(e), v(e)) and Y ′(w(e), v(e))
on arc (w(e), v(e), these loads will be carried on full-duplex link e with capacity y0e in both directions.

In fact, the optimization model presented in this paper can be easily modified to directly consider full-
duplex links and directed demands. But since for symmetric traffic optimal solutions of such a modified
model are equivalent to the solutions described above, we prefer to use the above model as it requires two
times less flow variables.

Table 2: Traffic matrix [Gbps]
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

(1) Paris1 – 74.38 5.40 4.26 4.99 5.02 5.24 4.74 5.41 5.26 4.87 3.82
(2) Paris2 – – 5.40 4.26 4.99 5.02 5.24 4.74 5.41 5.26 4.87 3.82
(3) Saint-Denis – – – 0.23 0.34 0.35 0.36 0.33 0.38 0.37 0.29 0.23
(4) Argenteuil – – – – 0.27 0.28 0.29 0.26 0.30 0.30 0.22 0.01
(5) Colombes – – – – – 0.36 0.37 0.34 0.39 0.37 0.34 0.26
(6) Courbevoie – – – – – – 0.37 0.34 0.39 0.38 0.34 0.26
(7) Nanterre – – – – – – – 0.34 0.40 0.39 0.35 0.28
(8) Versailles – – – – – – – – 0.29 0.28 0.23 0.18
(9) Vitry-Sur-Seine – – – – – – – – – 0.31 0.26 0.20
(10) Creteil – – – – – – – – – – 0.25 0.20
(11) Montreuil – – – – – – – – – – – 0.21
(12) Aulnay-Sous-Bois – – – – – – – – – – – –

The results of the numerical study are presented in Tables 3-8. All the reported calculations were executed
on a PC-class computer (Windows 10 64-bit, 8 GB RAM, Processor Intel Core i5-3210M, 4 logical processors,
2.5GHz) using CPLEX 12.8.0.0.

8.2 Efficiency of SGA+PGA

In Table 3 we report the results of solving AFTOP (2) – the dimensioning problem assuming SAFT/E(d, p) –

the simple affine flow thinning formula (2e). We examine six sets of states B̂(N, a, b,H) (rows 1-6 in Table 3).
Recall that, considering for example row no. 3, the parameters (21, 1, 2), (1, 0.75, 0.75), and (0, 0, 0.05)
imply that the corresponding state set includes all combinations of simultaneous degradation of U2 = 0, 1
links that are degraded to availability ratio 0.75, and U3 = 0, 1, 2 links degraded also to availability ratio
0.75 (then U1 := 21 − U2 − U3 links are fully available). When state with (U1, U2, U3) is observed, the
traffic of each demand d ∈ D is equal to H(d)(1− 0.05U3) (i.e., the reference demand volumes are reduced
only when U3 > 0). It should be noted here that the reference demand values H(d), d ∈ D are taken from
Table 2 assuming the lexicographical order of the node pairs (1, 2), (1, 3), . . . , (11, 12).

Analogous results for GAFT/E(d, p), i.e., the results of solving AFTOP with (2e) substituted with formula
(18) with range E(d, p) are presented in Table 4.

In the calculations, the initial path-lists for the PG algorithm contain only one path per demand (66 paths
in total) – the shortest path with respect to the link unit costs (i.e., to the number of hops, as ξ(e) ≡ 1). The
initial list of states S0 contains the full-availability state (all links fully available), and all states with exactly
one degraded link with link availability ratio α(e, s) = 0.75 (22 states in total). For all the states in the
initial list of states 100% traffic protection is assumed, i.e., h(d, s) = H(d), d ∈ D. Note that assigning the
entire demand volume H(d) for each demand d to its shortest path will result in the optimally dimensioned
network when protection is not considered. For the examined network this cost turns out to be F ∗ = 246.38.
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Tables 3 and 4 show that the SGA+PGA is computational efficient. It requires up to 10− 12 iterations
(column “iter”) and generates a reasonable number of paths (column “∆P”) and states (column “∆S”).

In both tables the first row describes the state set B̂(N, a, b,H) which is equal to the initial state set S0;
therefore no iterations of SGA+PGA are needed since the algorithm stops after the first execution of Step 2.
We notice that although the total execution times are typically (column “total [s]”) of the order of hours,
they are acceptable considering the size of the problems and the fact that they are not supposed to be solved
online but rather once in the network management cycle.

Table 3: Results of SGA+PGA for SAFT/E(d, p)
N(k) a(k) b(k) F ∗ ∆P ∆S iter total [s] t/PG [s] t/SG [s]
(21, 1) (1, .75) (0, 0) 312.36 215 0 0 161 160 1
(21, 1, 1) (1, .75, .75) (0, 0, .05) 325.72 262 168 3 1477 737 740
(21, 1, 2) (1, .75, .75) (0, 0, .05) 326.83 300 287 3 4288 803 3485
(21, 1, 2, 1) (1, .75, .75, .5) (0, 0, .05, .1) 432.30 358 541 3 5853 1197 4656
(21, 1, 2, 2) (1, .75, .75, .5) (0, 0, .05, .1) 448.58 340 534 10 12296 2685 9611
(21, 1, 2, 3) (1, .75, .75, .5) (0, 0, .05, .1) 449.98 307 465 6 7534 1592 5942

Explanation: N(k), a(k), b(k), state polytope parameters; F ∗, cost of the optimal solution; ∆P, number
of generated paths; ∆S, number of generated states; iter, number of iterations of SGA+PGA; total, total
computation time; t/PG, computation time spent in PGA(S); t/SG, computation time spent in SGA(P).

Table 4: Results of SGA+PGA for GAFT/E(d, p)
N(k) a(k) b(k) F ∗ ∆P ∆S iter total [s] t/PG [s] t/SG [s]
(21, 1) (1, .75) (0, 0) 312.36 211 0 0 408 407 1
(21, 1, 1) (1, .75, .75) (0, 0, .05) 325.72 286 190 4 4544 1433 3111
(21, 1, 2) (1, .75, .75) (0, 0, .05) 326.83 372 385 12 25891 5241 20650
(21, 1, 2, 1) (1, .75, .75, .5) (0, 0, .05, .1) 432.30 353 570 4 18668 2619 16049
(21, 1, 2, 2) (1, .75, .75, .5) (0, 0, .05, .1) 448.58 342 613 8 31459 3987 27472
(21, 1, 2, 3) (1, .75, .75, .5) (0, 0, .05, .1) 449.98 328 577 10 24725 4130 20595

In Table 5 we compare performance of the simple AFT formula (SAFT) and the general AFT formula
(GAFT) for two ranges: E(d, p) and E+(d, p). In the table, the asterisks in the last column denote that the
result was obtained through applying AFTOP (only once) to the final path-lists and state-lists obtained for
the range E(d, p). Finally, the percentages in column 8 give the cost increase of SAFT/E+(d, p) as compared
to GAFT/E+(d, p). Note that the network cost for both SAFT variants considered in Table 5 is the same.

A general conclusion is that optimization of GAFT is more time consuming than SAFT, especially the
E+(d, p) version, but its cost can be noticeably lower than for SAFT.

Table 5: Comparison of network cost and computation time of SGA+PGA for different AFT formulae
SAFT/E(d, p) GAFT/E(d, p) SAFT/E+(d, p) GAFT/E+(d, p)

N(k) a(k) b(k)
F ∗ total [s] F ∗ total [s] F ∗ total [s] F ∗ total [s]

(21, 1) (1, .75) (0, 0) 312.36 161 312.36 408 312.36 (0%) 1* 312.36 1*
(21, 1, 1) (1, .75, .75) (0, 0, .05) 325.72 1477 325.72 4544 325.72 (3%) 23* 317.59 57*
(21, 1, 2) (1, .75, .75) (0, 0, .05) 326.83 4288 326.83 25891 326.83 (3%) 31* 317.91 307*
(21, 1, 2, 1) (1, .75, .75, .5) (0, 0, .05, .1) 432.30 5853 432.30 18668 432.30 (6%) 171* 409.38 1553*
(21, 1, 2, 2) (1, .75, .75, .5) (0, 0, .05, .1) 448.58 12296 448.58 31459 448.58 (8%) 150* 415.27 1757*
(21, 1, 2, 3) (1, .75, .75, .5) (0, 0, .05, .1) 449.98 7534 449.98 24725 449.98 (8%) 80* 416.99 896*

Table 6 presents results of SGA extended to quadratic FT formula (16). The calculations were performed
for fixed path-lists obtained from the respective final path-lists in the solutions presented in Table 5. As
expected, the quadratic formulae lead to less expensive networks in terms of the link capacity cost (by about
1-4%, see the F ∗ values in italics in the second row in Tables 5 and 6). However, due to excessive computation
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time, it was possible to solve the optimization problem only for the first two state polytopes. Note that the
costs in the first rows of Tables 5 and 6 are the same, as this case considers only single link degradations.
Note also, that the reason why the network cost (F ∗ = 313.99) for the SQFT/E+(d, p) case is smaller than
the cost (F ∗ = 316.44) for the GQFT/E+(d, p) case is that path-lists for QFT were not optimized but just
taken from the corresponding AFT solutions.

Table 6: Results of SGA for different QFT formulae
SQFT/E(d, p) GQFT/E(d, p) SQFT/E+(d, p) GQFT/E+(d, p)

N(k) a(k) b(k)
F ∗ total [s] F ∗ total [s] F ∗ total [s] F ∗ total [s]

(21, 1) (1, .75) (0, 0) 312.36 4 312.36 6 312.36 5 312.36 7
(21, 1, 1) (1, .75, .75) (0, 0, .05) 317.53 54 316.52 145 313.99 184 316.44 483

To end this section we mention that link availability ratios considered in the above tables, i.e., 1.0, 0.75
and 0.5, correspond to the modulation and coding schemes applicable to FSO links; see the discussion in
[12] based on [23, 11].

8.3 Network cost efficiency

Below, in Table 7, we briefly summarize the cost efficiency of the FT/AFT mechanisms, in particular in
comparison with Global Rerouting (GR). Recall that GR is a well known protection mechanism which
allows for unrestricted flow rearrangement whenever a network state is changed (GR is called unrestricted
reconfiguration in [21]). This feature makes GR impractical, but at the same time makes it a benchmark
mechanism, as it provides the lower bound on the network cost achievable with any other mechanism. The
comparison encompasses GR, FT, GAFT and SAFT, and is based on explicit (predefined) lists od states
(SL – single link degradations, DL – double link degradations, TL – triple link degradations) fully described
in Section 6.1 of [20]. (The state polytope model is not used here since formulation (2) and the SGA+PGA
algorithm are not applicable to GR and FT.) The percentages in the FT column express the increase of
the network cost for FT in comparison with the cost for GR, while the percentages in the GAFT/E column
show the increase of the cost for GAFT/E in comparison with the cost for FT. In all other columns, the
percentages compare the reported cost to the cost for GAFT/E .

A general conclusion is that GAFT/E+(d, p) performs very well in terms of the network cost with respect
to FT (the cost for FT provides a lower bound for all AFT variants). Also, the cost for FT is not much
larger than the cost for GR, and the cost for SAFT (the same for all formula ranges) is acceptable.

Recall that the decrease in network cost observed when the AFT formula is substituted by its QFT
counterpart for the cases reported in Tables 5 and 6 was merely between 1 and 4 percents. However, such a
decrease can be more prominent, as illustrated in Table 8. This table shows the results obtained for another
12-node network called polska (its data is available in the library SNDlib, sndlib.zib.de, see [15]) that was
studied in our previous papers, for example in [16] and recently in [20]. In Table 8 all six variants of the
QFT formula are considered for the DL and TL scenarios. Each entry of the table gives the network cost
achieved with the formula specified for its column and the scenario specified for its row, together with the
percentage (given in parenthesis) of the increase of the network cost when the corresponding AFT formula
is applied. This time the gain from QFT can be quite substantial, ranging from 4 to 17 percents.

Table 7: Comparison of the network cost for different AFT formulae
GR FT GAFT/E SAFT/E GAFT/E+(d, p) SAFT/E+(d, p) GAFT/E(d, p) SAFT/E(d, p)

SL 392.90 416.63 (6%) 416.63 (0%) 416.63 (0%) 416.63 (0%) 416.63 (0%) 416.63 (0%) 416.63 (0%)
DL 362.80 379.10 (4%) 385.13 (2%) 407.15 (6%) 390.82 (1%) 407.15 (6%) 407.15 (6%) 407.15 (6%)
TL 325.03 333.60 (3%) 337.46 (1%) 350.17 (4%) 339.12 (1%) 350.17 (4%) 350.17 (4%) 350.17 (4%)
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Table 8: Comparison of the network cost for AFT and QFT formulae
GQFT/E SQFT/E GQFT/E+(d, p) SQFT/E+(d, p) GQFT/E(d, p) SQFT/E(d, p)

DL 40104 (+5%) 40285 (+17%) 41152 (+6%) 41278 (+14%) 41939 (+12%) 42034 (+12%)
TL 37269 (+4%) 37705 (+11%) 38864 (+3%) 39456 (+6%) 39939 (+5%) 40044 (+5%)

9 Final remarks

The optimization model for AFT network dimensioning introduced in this paper can be helpful in practical
design of FT networks robust to link capacity fluctuations. First, the use of AFT formulae for tunnel
thinning is relatively simple to implement using existing network protocols. Second, the state description
(using the state polytope) applied in the optimization model makes it capable of taking into account a
great deal of those link availability states that can occur during network operation (i.e., against which the
network should be made robust). Finally, as discussed in [16], the opportunity provided by the use of affine
thinning formulae, i.e., automatic adjustment of the tunnel capacity at the originating nodes to current link
availability ratios (once they become known to the tunnel originating node), enables AFT to work properly
also in the states outside the state polytope. This is because for such states usually acceptable traffic losses
are experienced even though the AFT formulae are not optimized for those states. This is implied by the
very nature of the AFT that throttles the traffic at the originating nodes according to a consistent formula
dependent on the link degradation ratios.

Besides affine FT, we considered also its quadratic extension which leads to more efficient traffic handling
and thus requires less link capacity.

Numerical results show that the optimization procedure introduced in Section 5.3 is computationally
efficient, despite the binary pricing problems required in the path generation step. In fact, an analogous
optimization model can be found in [8] and in its journal version [12]. However, that model uses a sim-
plified, less practical state polytope description, and assumes an impractical Global Rerouting mechanism
(characterized in Section 8.3) which is much simpler to deal with than AFT/QFT, as it does not require
path generation and posses a compact linear programming formulation (and hence does not require path
generation) and a simpler state generation algorithm.

As for the future work, the introduced model will be extended to modular link capacities. This feature
will transform AFTOP to a mixed-integer programming problem with integer variables y0, and will most
likely require additional valid inequalities to keep the solution approach efficient. Also, a more comprehensive
numerical study involving extended versions of the state polytope, not considered in this paper, is planned.
Finally, as already observed in the numerical section, the simple AFT formula with the range limited to the
path’s links turns out to be as efficient as its versions with the extended range. Most likely this is not a
coincidence but a general property, at least for the kind of state polytopes considered. This question should
definitely be clarified.
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[12] D. Nace, M. Pióro, M. Poss, F. D’Andreagiovanni, I. Kalesnikau, M. Shehaj, and A. Tomaszewski. An
optimization model for robust FSO network dimensioning. Optical Switching and Networking, 32(0):25–
40, 2019.

[13] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. John Wiley & Sons, 1988.

[14] S. Orlowski and M. Pióro. Complexity of column generation in network design with path-based surviv-
ability mechanisms. Networks, 59(1):132–147, 2012.

[15] S. Orlowski, M. Pióro, A. Tomaszewski, and R. Wessäly. SNDlib 1.0 – Survivable Network Design
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[16] M. Pióro, Y. Fouquet, D. Nace, and M. Poss. Optimizing flow thinning protection in multicommodity
networks with variable link capacity. Operations Research, 64(2):273–289, 2016. Best paper award in
INFORMS Telecom and Network Analytics 2016-2018.
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A Formulations of the feasibility tests

The linear programming formulations of feasibility tests (13) applied in state generation are as follows.

T (d) = max
{
hd −

∑
p∈P(d) xdp

}
(19a)∑

k∈K u
k
e = 1, e ∈ E (19b)∑

e∈E u
k
e ≤ Nk, k ∈ K (19c)

Uk =
∑

e∈E u
k
e , k ∈ K (19d)

βe = 1−
∑

k∈K a(k)uke , e ∈ E (19e)

hd = H(d)(1−
∑

k∈K b(k)Uk) (19f)

xdp = x0dp(S)−
∑

e∈E(d,p) βez
e
dp(S), p ∈ P(d) (19g)

u, U, β, h non-negative continuous; x continuous. (19h)

T (e) = max
{∑

d∈D
∑

p∈R(d,e) xdp − αey
0
e(S)

}
(20a)∑

k∈K u
k
e = 1, e ∈ E (20b)∑

e∈E u
k
e ≤ Nk, k ∈ K (20c)

αe =
∑

k∈K a(k)uke (20d)

βe = 1−
∑

k∈K a(k)uke , e ∈ E (20e)

xdp = x0dp(S)−
∑

e∈E(d,p) βez
e
dp(S), d ∈ D, p ∈ P(d) (20f)

u, U, α, β, h non-negative continuous; x continuous. (20g)

T (d, p) = max
{
− xdp

}
(21a)∑

k∈K u
k
e = 1, e ∈ E (21b)∑

e∈E u
k
e ≤ Nk, k ∈ K (21c)

βe = 1−
∑

k∈K a(k)uke , e ∈ E (21d)

xdp = x0dp(S)−
∑

e∈E(d,p) βez
e
dp(S), d ∈ D, p ∈ P(d) (21e)

u, U, α, β non-negative continuous; x continuous. (21f)

Recall that above y0(S), x0(S), z(S) are vectors of parameters, while u, U, α, β, h, x are vectors of variables.
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