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ABSTRACT

Gathering information about the acoustic environment of
urban areas is now possible and studied in many major cities
in the world. Part of the research is to find ways to inform
the citizen about its sound environment while ensuring her
privacy.

We study in this paper how this application can be cast
into a feature inversion problem. We argue that considering
deep learning techniques to solve this problem allows us to
produce sound sketches that are representative and privacy
aware. Experiments done considering the dcase2017 dataset
shows that the proposed learning based approach achieves
state of the art performance when compared to blind inver-
sion approaches.

Index Terms— spectral feature inversion, privacy aware
audio synthesis, deep neural network, environmental audio
processing

1. INTRODUCTION

Together with sound quality concerns in urban environments,
the advent of the Internet of Things has led to the implemen-
tation of large scale acoustic sensor networks for monitoring
purposes in several projects [1, 2, 3, 4]. The aim of these
sensor networks is to gather rich information about the sound
environment and its content. Gathering, storing, and process-
ing the data outputted from those networks are major techni-
cal challenges, but the production of indicators and materials
that can be directly interpreted by the citizens raises important
issues related to the quality and interpretability of the data, to-
gether with constraints about the privacy of the citizens.

On one hand, the sound pressure level clearly lacks rich-
ness, but one the other hand, presenting raw audio recordings
is not possible due to privacy concerns. Defining perceptual
indicators to go beyond the sound pressure level is one impor-
tant avenue of current research [5]. In this paper, we want to
study another direction where the citizen is allowed to listen
to sound sketches that illustrate the acoustic content of the ur-
ban area where the sensor is located. Importantly, we need to
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guarantee that the processing pipeline is privacy aware, that
is that no speech signals can be exposed. One solution stud-
ied in [6], is to perform speech source separation over audio
recordings. An alternative approach is to assume that the out-
put of the sensor are spectral features such as third octave
sound levels, which are sufficient to compute most indicators
used in monitoring applications and ensure privacy awareness
of the data under specific time resolution settings [7].

In this paper, we propose to investigate the potential of
a deep convolutional neural network approach operating in
the spectral domain to recover fine spectral information from
third octave spectra in acoustic scenes. In the general case
where privacy is not ensured by the representation settings,
the choice of training datasets may provide control on the type
of generated content.

After introducing some background on the formal defini-
tion of the signal processing task considered in Section 2, the
model is described in Section 3. The experimental protocol
considered to evaluate the proposed approach1 compared to
two baselines is described in Section 4. Section 5 presents
the results of the experiments, which are then discussed in
Section 6.

2. BACKGROUND

Retrieving time domain audio signals from spectral features
that embed rich information about the sound environment
is beneficial for many applications. In environmental sound
monitoring for example, it can be used for the manual an-
notation of sound scenes or the computation of more precise
features for learning-based characterization.

Those applications all require the inversion of the process-
ing steps applied to the original audio signal. In the case of
third octave spectra this operation is an ill-posed problem,
as the filterbank which summarizes spectral information on
a logarithmic frequency scale is not invertible. Similar prob-
lems of spectral feature inversion have been studied in the
speech processing community, through applications such as
speech coding for communication or text-to-speech. Such

1Code available at: https://github.com/felixgontier/
paperPrivacyAwareSynthesisIcassp20
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tasks consist in the estimation of speech waveforms primar-
ily from Mel spectrograms, which are similar to third octave
energies in construction though differently motivated, or Mel
Frequency Cesptrum Coefficients (MFCC) [8]. Because Mel
spectrograms are computed in the spectral domain, a com-
monly adopted approach is to first recover the linear scale
spectrogram of the speech signal before time domain recon-
struction. To do so, it is possible to compute an approximate
inverse transformation as the pseudoinverse of the Mel filter-
bank [8]. The resulting inverse transform uses no a priori
information on the properties of the studied signals. Such in-
formation can be used to enhance the quality of predictions.
For example, in [9] the authors add non-negativity and spar-
sity constraints to the optimization of the inverse Mel filter-
bank given a clean speech spectrogram as the target repre-
sentation. The sparsity property of speech spectra is further
used in [10], where an inversion based on `1 optimization is
proposed. Other approaches use the invertibility of the dis-
crete cosine transform used in the computation of MFCC to
artificially increase the precision of Mel spectra before inter-
polating a spectrogram with linear frequency scaling [11].

More recent approaches are based on deep learning tech-
niques. In [12] a deep neural network is proposed that pre-
dicts linear scale spectrograms from MFCC, that outperforms
non-parametric spectral inversion baselines on objective per-
ceptual quality and distortion metrics. The authors of [13]
further propose an encoder-decoder structure together with
adversarial training to recover detail in speech spectrograms
obtained from the Mel pseudoinverse. The problem of re-
trieving linear spectrograms from downsampled features also
relates to applications in image processing, such as the inver-
sion of both handcrafted and learned features [14] or super-
resolution [15]. State of the art approaches in these areas of
research primarily include convolutional neural networks, in
supervised or unsupervised generative frameworks. Recently,
some models exist that directly retrieve time domain audio us-
ing generative models. Notably, [16] propose a sample-based
architecture conditioned on Mel spectrograms as a single-
speaker vocoder. Though unprecedented performances are
obtained, the generation process is computationally intensive.

Compared to speech signals, acoustic environments fea-
ture complex polyphonies with a wide range of sound sources
yielding both harmonic and wide band structures in sound
scenes. As such, designing a content-dependent inversion
method is difficult. In this context, the use of deep learning
techniques removes the need for model-based inversion pro-
cess design. By training a model with sufficient capacity on a
large dataset containing polyphonies with real-life complex-
ity and diversity, it can learn to implicitly extract information
about typical spectral patterns useful in the reconstruction of
plausible spectrograms. Together with performance, using a
learning-based inversion has the benefit of allowing us to con-
trol the type of content that it is trained to produce.
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Fig. 1. Proposed fully convolutional neural network for third
octave inversion.

3. PROPOSED APPROACH

The aim of the model is to predict a linearly scaled spec-
trogram from its energy summarized on third octave bands,
thus on a logarithmically scaled frequency axis. Though, us-
ing third octave spectrograms directly as inputs of the model
would require it to perform non-linear upsampling in the fre-
quency dimension. Motivating an architecture based on con-
volutions with constant stride and kernel size would be diffi-
cult for such a task. Instead, the use of baseline linear spectro-
gram approximations obtained using the Φ† pseudoinverse is
considered (see Section 4 for more details). The target repre-
sentation is then a spectrogram of the same shape and domain.

The proposed architecture is a 5-layer fully convolutional
neural network as illustrated in Figure 1. Each successive hid-
den layer is characterized by 9x9 (K) convolution kernels, 64
output channels and a rectified linear unit (ReLU) activation.
Inputs are padded so that the size of internal representations
does not change throughout the network. The output layer
also uses 9x9 kernels, but outputs a single channel and is fol-
lowed by a linear activation. The input linear spectrogram
estimated using the Φ† pseudoinverse is added to the output
of the network through a residual connection. As a result, the
CNN architecture does not learn to model the overall envelope
of the spectrum, but rather concentrates on adding fine scale
variations to refine the baseline approximation. A final ReLU
activation is applied to ensure that the model’s predictions are
valid (i.e. non-negative). The considered architecture con-
tains a total of about 1M parameters.



4. EXPERIMENTAL PROTOCOL

We use the DCASE2017 task 1 dataset [17] in this study. It
is composed of a development set and an evaluation set con-
taining 4680 and 1620 sound scenes of 10s each respectively.
The development set is further split into train and validation
subsets of 3510 and 1170 extracts respectively, according to
split 1 in the provided cross-validation setup. Though this
dataset is intended for acoustic scene classification tasks, its
wide range of ambiances covers most of the polyphonies that
could be recorded from large scale sensor networks in urban
environments. Furthermore, it is appropriate for the privacy
aware constraint of the considered application as it does not
contain intelligible speech.

All extracts are resampled to 16kHz and converted to
mono. Target spectrograms are extracted using a short-
term Fourier transform (STFT) on windows of 1024 samples
(64ms) with an overlap of 512 samples (32ms) and Hann
windowing. These spectra are then partitioned into texture
frames of 32 frames, or about 1s, corresponding to individual
examples. The input third octave spectra are then obtained
by applying a fixed filterbank in the frequency domain on
the squared magnitude spectrum. At the sampling rate of
16kHz, this yields 24 logarithmically spaced bands in the
range 20Hz-8kHz.

To evaluate the performance of the proposed method, two
baselines are considered for the feature inversion task. First,
an approximation of the linear spectrogram is obtained using
the Moore-Penrose pseudoinverse Φ† of the third octave fil-
terbank matrix Φ [8]. As Φ does not have full-rank, Φ† must
be computed using either a least squares solver or the singu-
lar value decomposition (SVD) of the forward transformation
matrix. Note that in both cases, the computation Φ† is not
subject to a non-negativity constraint, which may lead to neg-
ative magnitude estimates in linear spectrograms. To palliate
this issue a threshold X̂ = max(0, X̂) is applied to spectro-
grams computed with this baseline.

The second baseline considered is the estimation of the
linear spectrogram using a non-linear least squares (NNLS)
method, defined as:

Ŷ = arg min
Y

|ΦY −X|2 (1)

where Ŷ is the linear spectrogram estimation and X is the
third octave spectrogram.

The proposed model described in Section 3 is imple-
mented in the Pytorch framework and trained on minibatches
of 32 examples for 20 epochs. The loss function used is the
mean squared error:

L(y, ŷ) =
1

N

Nb∑
n=1

T,F∑
t=1,f=1

(ŷn(t, f)− yn(t, f))2 (2)

where y is the ground truth linear spectrogram, ŷ is the output
of the model, Nb is the batch size, and T and F are the time

and frequency dimensions of the output respectively. Opti-
mization is performed using the Adam algorithm with param-
eters β1 = 0.9 and β2 = 0.999, and learning rate λ = 0.001.

The reconstruction of audio signals in the time domain
from estimated magnitude spectrograms using an overlap-add
method requires phase information. Here we consider either
using the original phase or an estimate obtained using the
Griffin-Lim algorithm [18] with 100 iterations.

Two metrics are proposed for the evaluation of the spec-
tral feature inversion techniques on the evaluation set. The
first is the spectral root mean squared error (RMSE) defined
as the square root of the loss function used to train the model
as described in eq. 2. As a time-domain metric, the signal to
reconstruction ratio (SRR) is considered. The SRR is com-
puted for each 10s extract of the evaluation set as:

SRR = 10 log10

( ∑
t |x(t)|2∑

t |x(t)− x̂(t)|2

)
(3)

where x is the target time-domain signal and x̂ its estimation.
While both metrics give quantitative estimates of the per-

formance of the proposed methods, they do not necessarily
reflect the perceived quality of reconstructed sound scenes. A
listening test would be the most appropriate method to do so.
Though, conducting one is time-consuming and covering the
entire range of ambiances represented in the evaluation set is
difficult. As an alternative, some objective metrics have been
proposed that are based on perceptual models to assess the
quality of audio signals in estimation tasks. In addition to the
spectral MSE and time-domain SRR, the objective difference
grade (ODG) obtained as part of the perceptual evaluation
of audio quality (PEAQ) algorithm proposed in the ITU-R
BS.1387 norm [19] is considered.

5. RESULTS

First, the performance metrics are computed on the whole
evaluation dataset and shown in Table 1. Compared to both
baselines the proposed model performs better in terms of
spectral RMSE. This is expected as the model is trained to
directly minimize this loss, while the baselines are both blind
approaches. The SRR with oracle phase reconstruction is cor-
related to the spectral RMSE. The proposed method shows
similar performance to NNLS estimation, and both are ben-
eficial compared to the use of the pseudoinverse only. Using
Griffin-Lim phase reconstruction results in an important de-
crease in SRR values for the three methods. Though, the
SRR obtained by applying phase retrieval to the reference
magnitude spectrograms yields similar results. This indicates
that the SRR is sensitive to the phase shift between the esti-
mated and reference time-domain signals introduced by this
algorithm, which reduces its interpretability in this case. The
improvements in spectral RMSE and oracle phase SRR are
not reflected by the ODG: phase retrieval through the Griffin-
Lim algorithm yields similar results for the three methods,



Table 1. Overall performance metrics of the proposed CNN compared to the pseudoinverse and NNLS baselines.

Spectral RMSE SRR (dB) ODG
- Griffin-Lim Oracle Griffin-Lim Oracle

Pseudoinverse Φ† 0.047 ±0.061 -2.96 ±0.28 13.1 ±3.8 -3.49 ±0.42 -2.83 ±0.44
NNLS 0.041 ±0.054 -2.96 ±0.27 14.4 ±5.1 -3.49 ±0.42 -2.84 ±0.44
Proposed 0.034 ±0.044 -2.78 ±0.33 14.2 ±5.3 -3.45 ±0.50 -3.00 ±0.48

Table 2. Class-wise differences between metrics for the pro-
posed approach and the pseudoinverse baseline, computed on
n = 108 extracts for each class.

Spectral RMSE SRR (dB)
- Oracle

beach -0.003±0.002 0.42±0.27
bus -0.040±0.035 3.63±2.16
cafe/restaurant -0.005±0.004 0.49±0.49
car -0.047±0.034 4.44±2.24
city center -0.012±0.011 1.18±0.71
forest path -0.001±0.002 0.11±1.63
grocery store -0.005±0.004 0.76±0.58
home -0.001±0.001 -0.52±1.23
library -0.001±0.001 0.67±1.34
metro station -0.002±0.002 0.28±1.11
office 0.000±0.000 -1.46±1.15
park -0.001±0.001 0.18±0.70
residential area -0.004±0.007 0.79±1.38
train -0.054±0.029 4.14±1.31
tram -0.025±0.024 2.28±1.46

and waveform reconstructions using the proposed CNN and
the original phase perform slightly worse than both baselines.

All metrics in Table 1 display high variances compared to
their respective mean values. This may be due to the variety
of sound environments represented in the evaluation dataset,
as the model may perform differently depending on the type
of spectral content or complexity of the scene. Thus, the 15
ambiances labeled in the dataset are considered separately.
As the evaluation set is balanced, each class is represented
by n = 108 sound scenes. Table 2 shows the ambiance-wise
differences between metrics computed for the proposed CNN
and the pseudoinverse baseline, as a way to assess the gain as-
sociated with the CNN and residual connection. For both the
spectral RMSE and the SRR, the proposed model improves
the bus, car, train and tram classes. These ambiances are
characterized by predominant low-frequency content. An in-
terpretation of this result is that the model is trained to min-
imize the error between the estimated and reference linear
scale spectrograms. Due to the typical exponential decay of
magnitude as a function of increasing frequency in environ-
mental sound scenes, there is an imbalance between values of
the loss function in lower and higher frequencies. Thus, the

model primarily concentrates on learning to reproduce low-
frequency content. Conversely, a decrease in quality is found
for the home and office ambiances, both of which are quieter
indoor environments. Without normalization the magnitudes
and thus errors are lower, and the model may not learn as
well to represent the polyphonies found in these ambiances.
An informal listening test confirms these results for the CNN
outputs, with improvements in low-frequency content (traffic
sources) but poor resolution in high frequencies characterized
by a lack of clearly defined pitches for sources such as bird-
song or sirens. Sound scene examples can be listened to here2.

6. DISCUSSION

The potential of using a fully convolutional neural network
with a residual connection to refine baseline spectral feature
inversion predictions has been studied. Overall, the proposed
approach performs comparably to a baseline that uses extract-
wise optimization to recover the linear spectrogram from third
octave energies. The model outperforms baselines on am-
biances with dominant low frequency activity, but is worse
for quiet environments. Some design considerations can be
outlined from these results: spectral whitening, pre-emphasis
filtering, example-wise normalization [20] or scale-invariant
metrics could be beneficial the model to produce sound en-
vironments with high variations in source types, polyphonies
and sound levels.

Because of the amount of information missing in high fre-
quencies, generative models could improve the quality of gen-
erated extracts compared to deterministic approaches. Fur-
thermore, the loss of phase information yields a significant
decrease in objective prediction quality. Sample-based ap-
proaches are a potential solution to this problem, and will be
studied in future work.

Still, learning-based models may allow us to control the
content that is generated, both implicitly through the training
data and explicitly through the loss function. This is a key ad-
vantage in the context of privacy aware environmental scene
generation compared to blind approaches. In addition to the
previous considerations, future work will thus aim at deter-
mining the impact of the content in training data on the intelli-
gibility of reconstructed speech segments, as well as possible
custom loss functions penalized by speech content quality.

2http://soundthings.org/research/
paperPrivacyAwareSynthesisIcassp20
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