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Abstract

We investigate algorithms that solve exactly the robust single machine schedul-
ing problem that minimizes the total tardiness. We model the processing times
as uncertain and let them take any value in a budgeted uncertainty set. There-
fore, the objective seeks to minimize the worst-case tardiness over all possible
values. We compare, through computational experiments, two types of solu-
tion algorithms. The first combines classical MILP formulations with row-and-
column generation algorithms. The second generalizes the classical branch-and-
bound algorithms to the robust context, extending state-of-the-art concepts
used for the deterministic version of the problem. By generalizing the clas-
sical branch-and-bound algorithm we are able to assemble and discuss good
algorithmic decisions steps that once put together make our robust branch-and-
bound case attractive. For example, we extend and adapt dominance rules to
our uncertain problem, making them an important component of our robust
algorithms. We assess our algorithms on instances inspired by the scientific lit-
erature and identify under what conditions an algorithm has better performance
than others. We introduce a new classifying parameter to group our instances,
also extending existing methods for the deterministic problem case.

Keywords:
Robust Optimization, Scheduling Problem, Row-and-column generation,
Integer programming, Branch-and-bound

1. Introduction

Scheduling is an important and diverse topic in combinatorial optimization.
It has applications in many different industries, ranging from production and
manufacturing systems to transportation and logistics systems. The scheduling
problem considered in this study considers a single machine. Hence, we are
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given a set of n jobs, denoted N = {1, 2, . . . , n}, and any feasible solution for the
problem consists of a permutation of N , represented by σ where σ(k) denotes the
job that occupies position k for each k ∈ N . The objective function considered
herein supposes that each job i ∈ N has a given due date di and a processing
time pi. Assuming that the processing times are known with precision, we can
define the completion time of job i for σ as

Ci(σ) =

σ−1(i)∑
k=1

pσ(k), (1)

and the tardiness of job i can be defined as Ti(σ) = max(Ci(σ)−di, 0). Denoting
by X the set of all permutations of N , the problem that minimizes the tardiness
can be formally stated as

min
σ∈X

n∑
i=1

Ti(σ). (2)

Notice that problem (2) is often denoted as 1||
∑
j Tj in the literature, where 1

means that a single machine is used and
∑
j Tj represents the objective function

employed.
In real applications, the processing times are hardly known with precision

(see the examples below). Hence, it is more realistic to assume that p can take
any value within a given set U that contains plausible values for p. Then, the
robust counterpart of (2) is

min
σ∈X

max
p∈U

n∑
i=1

Ti(p, σ), (3)

where we introduced p in the definition of Ti to emphasize that its value depends
on p ∈ U . It is similar for the completion time of job i that will be noted as
Ci(p, σ).

In this study, we let U be the budgeted uncertainty set proposed by [7].
Hence, we consider a parameter Γ and, for each job i, a nominal value p̄i and a
deviation p̂i. Then, the uncertainty set is defined as

U ≡

{
p : pi = p̄i + p̂iξi, i = 1, . . . , n; 0 ≤ ξi ≤ 1,

n∑
i=1

ξi ≤ Γ

}
, (4)

Note that we have eliminated downward deviations from the original uncer-
tainty set because they are not used by worst-case scenarios of our problem.
The motivation behind definition U is two-fold. First, the set is easy to charac-
terize and build from historical data, as only lower and upper bounds on p are
required, while the value of Γ let us model the risk-averseness of the decision
maker. Specifically, higher values of Γ lead to larger uncertainty sets and thus,
more conservative solutions. For instance Γ = 0 means that U = {p̄} while
Γ = n means that U is the box [p̄, p̄+ p̂]. Second, the set has a nice combinato-
rial structure that can be exploited by combinatorial algorithms to provide more
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efficient solution algorithms than using arbitrary uncertainty sets. In fact, these
reasons have made (4) extremely popular in the robust combinatorial optimiza-
tion and integer programming literature. In particular, recent papers on robust
scheduling have provided polynomial algorithms for robust problems that would
have been NP -hard using arbitrary uncertainty sets [8, 33].

The effect of uncertainty on scheduling has been studied under many different
perspectives. For a more recent survey on different perspectives to scheduling
under uncertainty one can see, for example, [9].

Applications of robust approaches to the total tardiness problem have been
implemented in different industries. Typically, these applications solve problems
where there are penalties associated with not fulfilling due dates and the deci-
sion maker has a conservative attitude in trying to minimize these penalties no
matter the realization of uncertainty. In [10] the authors study project schedul-
ing at a large IT services delivery center in which there are unpredictable delays,
which are known to belong to a bounded set. They apply robust optimization
to minimize tardiness while informing the customer of a reasonable worst-case
completion time. They decompose the problem into a master problem and a
subproblem. The subproblem is solved using constraint programming concepts
in an algorithm called Logic-Based Benders Decomposition. The subproblems
generate valid cuts to be used by the master problem in successive iterations.
In [25] the authors consider a scheduling problem in which manufacturing com-
panies with large energy demand must comply with total energy consumption
limits in specified time intervals and have to deal with the fact that in reality
the production schedules are not executed exactly as planned due to unexpected
disturbances such as machine breakdowns or material unavailability. The goal
is to find a robust schedule which minimizes total tardiness and guarantees that
the energy consumption limits are not violated if the start times of operations
are arbitrary delayed within a given limit. A robust total weighted tardiness
approach is implemented in [1] for operation room planning in a hospital with
uncertain surgery duration. The problem aims at minimizing a measure of wait-
ing time of the patients and a tardiness function is created weighted by a patient
urgency parameter.

In this work, we shall develop two types of exact solution algorithms to solve
(3). The first type of algorithms combines the integer programming formulations
available for 1||

∑
j Tj with the decomposition algorithm in the line of [37] and

[4]. More specifically, our integer programming formulations will turn the static
scheduling problem into an adjustable robust optimization problems by lineariz-
ing the convex function

∑
j Tj . This approach is classical in robust lot-sizing

(e.g. [6]) and it has been studied for more general robust convex constraints in
[31] and [38]. The second type of algorithms takes the (combinatorial) branch-
and-bound algorithms developed for 1||

∑
j Tj and extend them to the robust

counterpart (3).
Most exact solution algorithms for 1||

∑
j Tj are strongly based on domi-

nance conditions and decomposition principles applied to the sequencing of jobs.
These conditions and principles define ordering and positioning restrictions for
the jobs in an optimal sequence and are used as a base to develop branch-
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and-bound and dynamic programming algorithms. For branch-and-bound al-
gorithms different lower bound propositions were developed, including even the
absence of lower bounds and relying only on the power of decomposition (for
examples see [12, 30, 20, 26, 32]). Decomposition principles were initially de-
veloped in [21] and establish conditions by which a single machine scheduling
problem can be decomposed into subproblems that can be solved independently.
For the robust scheduling case, due to the added complexity of having to deal
with correlations of uncertainty between subproblems, we do not consider the
decomposition principles introduced there.

Many integer formulation approaches can also be found in the literature for
deterministic single machine problems in general (see [19] for review and com-
parisons). The formulations are based on the type of variables used to define the
sequencing of jobs. Some effort has been made in order to improve performance
of this approach by defining strong valid inequalities through polyhedral studies
(see [29] for example). Six different integer programming formulations of the
single machine total tardiness problem are compared in [5]. They verify that
a generic integer programming approach does not compete with state-of-the-
art branch-and-bound tardiness algorithms. They conclude that the sequence-
position formulation provides most computationally effective solutions and note
that, although the attention paid to time-index formulations may be justified as
they provide insight into theoretical results, they leave something to be desired
when it comes to computational experience.

We review next some recent works on robust scheduling, which originated in
the seminal paper from [11]. From a robust optimization perspective, in [11], the
authors work the concept of uncertainty defined by scenarios or interval data.
They introduce three types of robust objective defined as absolute robustness,
as used in this paper, deviation robustness, meaning minimizing the maximum
deviation from optimality, and relative robustness defined as the one that ex-
hibits the best worst case percentage deviation from optimality. The authors
develop solutions with a objective performance of total flow time. The objective
is based on deviation robustness criterion. Processing times are uncertain and
defined by interval data, where a finite interval of equally possible values for
processing times for each job is given. They introduce a MILP formulation for
the problem, develop dominance rules and propose a branch-and-bound algo-
rithm where the lower bounds are given as a surrogate relaxation of the MILP
formulation. Heuristics are also presented. This MILP formulation is further
improved in [24], using classical robust dual reformulation. The author also
introduces additional restrictions to the formulation based on the dominance
rules developed by [11]. He compares performance between his pure MILP solu-
tion using CPLEX with the branch-and-bound algorithm proposed by [11] and
conclude that, for the instances used, MILP solution performs better.

That seminal work has also been followed by a sequence of works on the
theoretical aspects of robust scheduling [e.g. 3, 23, 36] where the authors have
shown that very simple scheduling problems become NP-hard as soon as the un-
certainty set contains more than one scenario. Some authors have also studied
the complexity of simple robust scheduling problems under budgeted uncer-
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tainty, see [8, 33]. We also refer to [34] for a recent survey on robust scheduling.
From a numerical viewpoint, the closest work from the current manuscript

has been carried out in [13] where the authors study the optimal allocation
of surgery blocks to operating rooms. Therein the authors introduce different
models, including a robust model that is similar to the problem here studied.
However, a fundamental difference is that we let Ti be different for each p ∈ U ,
which is underlined by the notation Ti(p, σ) used in (3), while [13] consider a
static-model where Ti must be fixed independently from p ∈ U . While the static
model is easier to handle computationally, it is also more conservative, as we
shall illustrate briefly in our numerical experiments.

Our main contributions with respect to the literature are summarized below.

• We introduce an alternative approach to the existing literature of robust
single machine tardiness scheduling, where we let Ti be different for each
p ∈ U .

• We extend dominance rules developed for deterministic single machine
total tardiness problem to our robust version. In our case, dominance
rules are new constraints added to reduce the domains of the defined
variables and, as a consequence, the solution space of our problem.

• We develop a branch-and-bound algorithm based on the dominance rules
above and a defined lower bound. We generalize the classical branch-
and-bound algorithms to the robust context, extending state-of-the-art
concepts used for the deterministic version of the problem. By generalizing
the classical branch-and-bound algorithm we are able to assemble and
discuss good algorithmic decisions steps that once put together make our
robust branch-and-bound case attractive.

• We introduce different MILP formulations for our problem, and define dy-
namic programming routines to solve separation problems within a given
decomposition algorithm. We combine classical MILP formulations with
row-and-column generation algorithms.

• We compare the solution performance of our different MILP formulations
and branch-and-bound algorithms. We assess our algorithms on instances
inspired by the scientific literature and identify under what conditions an
algorithm has better performance than others. We introduce a new clas-
sifying parameter to group our instances, also extending existing methods
for the deterministic problem case.

Outline We formally present the problem with MILP formulations in Section
2. There, we also present the row-and-column generation algorithm utilized
to solve it. Next, in Section 3, we present the branch-and-bound algorithm
developed to solve our problem. Sections 4 and 5 detail key concepts used in
the algorithms presented. In Section 6 we present computational results.
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2. MILP formulations

In [5] the authors summarize different MILP formulations for the determin-
istic single machine total tardiness problem. Based on the variables defined and
their deterministic formulations, we present here the equivalent robust counter-
part formulations utilized in our experiment. The formulations are based on the
type of variables defined to represent the sequencing of jobs (see [5]). We have
utilized sequence-positions variables and linear ordering variables.

Sequence position variables are variables x such that xik = 1 if job i is in
position k and xik = 0 otherwise. Linear ordering variables are variables y such
that yij = 1 if job i precedes job j and yij = 0 otherwise. These two sets of
variables do not depend on the uncertain parameters as they describe the jobs
ordering, which is fixed independently from the values taken by the processing
times. In contrast, our robust formulations consider that tardiness, t, and job
starting time, s, are only defined after realization of uncertainty, so that in a
generic form there are infinite number of variables and constraints, each one
representing a realization of uncertainty. We represent this in our formulation
by introducing an index set W for our uncertainty set U , possibly uncountable,
and utilizing a superscript xw for any given variable or data x, meaning there is
one for each w ∈ W . We show later in Subsection 2.3 that only a finite subset
of W is needed, for a suitable W , to solve the problem.

We disregard here the time-indexed formulation (e.g. [28]) in which binary
variables indicate when jobs are completed. While advanced decomposition
algorithms (called SSDP in [35]) have solved efficiently the deterministic coun-
terpart of 1||

∑
j Tj , the robust counterpart cannot benefit from these techniques

because the binary variables would depend on each vector p ∈ U . Specifically,
the resulting formulation would have a pseudo-polynomial number of variables
for each p ∈ U , making SSDP completely unrealistic [14]. Finally, notice that
we also disregard the disjunctive constraints formulation (see [5]). Initial tests of
our algorithms revealed that this formulation algorithm performed much worse,
among all instances, when compared to others algorithms, so that we eliminated
it from our analyses.
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2.1. Sequence-position formulation

The robust counterpart of the sequence-position formulation is given by the
following:

min z

s.t.

n∑
k=1

twk ≤ z ∀w ∈W (5)

n∑
i=1

pwi

k∑
u=1

xiu −
n∑
i=1

dixik ≤ twk ∀ k ∈ N ,∀w ∈W (6)

n∑
i=1

xik = 1 ∀ k ∈ N (7)

n∑
k=1

xik = 1 ∀ i ∈ N (8)

xik ∈ {0, 1}, twk ≥ 0, z ≥ 0 ∀ k, i ∈ N ,∀w ∈W, (9)

where variable z is the overall objective and tk is tardiness of job in position
k. Constraint (6) calculates tardiness for job in position k while constraints (7)
and (8) guarantee that each position is occupied by only one job and each job
occupies only one position.

If dominance rules are introduced to the above formulation, the information
of precedence of jobs can be used to reduce the number of sequence-position
variables. For this we define Ai to be the set of jobs known to follow job i
and Bi as the set of jobs known to precede job i and use the cardinality of sets
Bi and Ai to restrict possible positions k. Job i cannot occupy the first |Bi|
positions and the last |Ai| positions. We can, therefore, reduce the the number
of variables xik by limiting the variation of k as |Bi| + 1 ≤ k ≤ n − |Ai| and
constraints (6), (7) and (8) are substituted for:

n∑
i=1

pwi

min(k,n−|Ai|)∑
u=|Bi|

xiu −
∑

i:|Bi|<k≤n−|Ai|

dixik ≤ twk ∀ k ∈ N ,∀w ∈W

(10)

n−|Ai|∑
k=|Bi|+1

xik = 1 ∀ i ∈ N (11)

∑
i:|Bi|<k≤n−|Ai|

xik = 1 ∀ k ∈ N (12)

We add a new set of constraints to guarantee precedence between jobs:

n−|Aj |∑
k=|Bj |+1

kxjk ≥
n−|Ai|∑
k=|Bi|+1

kxik + 1 ∀ i ∈ N, j ∈ Ai (13)
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Constraints (13) define that the position occupied by job j has to be at least
one position greater than job i position.

2.2. Linear ordering formulation

The robust counterpart of the linear ordering formulation is given by the
following:

min z

s.t.

n∑
j=1

twj ≤ z ∀w ∈Wr (14)

pwj +
n∑
i=1
i6=j

pwi yij − dj ≤ twj ∀ j ∈ N, ∀w ∈W (15)

yij + yji = 1 ∀ i, j ∈ N, i < j (16)

yij + yjk + yki ≤ 2 ∀ i, j, k ∈ N i 6= j, j 6= k, i 6= k (17)

yij ∈ {0, 1}, twj ≥ 0, z ≥ 0 ∀ i, j ∈ N, i 6= j, ∀w ∈W, (18)

where variable z is the overall objective and tj is tardiness of job j. Constraint
(15) calculates tardiness for job j while constraints (16) and (17) guarantee the
right ordering of jobs.

In case dominance rules are considered the precedence of jobs information
can be used and a new set of constraints is added:

yij = 1 ∀ i ∈ N , j ∈ Ai (19)

2.3. Row-and-column generation algorithm

To solve our robust integer formulation we use the decomposition algorithm
proposed by [37]. We relax the problem into a master problem where each
robust constraint is written only for a finite subset U0 ⊆ U . Given a feasible
solution to the master problem, we check whether the solution is feasible for
each robust constraint by solving adversarial separation problems. In case one
or more robust constraints are infeasible, we expand U0 by one or more vectors
and solve the augmented master problem under a row-and-column generation
approach.

It turns out that our adversarial separation problem is in fact the problem
of, given a sequence of jobs, finding the worst-case realization of uncertainty
value and verifying if that value is greater than the one provided by the master
problem. We can solve that by the methods described in Section 4. Since
our uncertainty set U is polyhedral, there will be a finite number of extreme
solutions to search and the algorithm terminates. See [37, Proposition 2] for
more details on this previous statement.
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3. Branch-and-bound

The total tardiness problem has been studied through many methods of
implicit enumeration, notably of branch-and-bound type. We develop below a
branch-and-bound algorithm to solve our robust problem to optimality. The
key elements of our branch-and-bound algorithm are: branching, node selection
and bound and pruning. We describe each one of them in what follows.

3.1. Branching

We create a search tree with no jobs scheduled at the root node. From
the root node, n branches lead to n nodes on the first level, each of which
corresponds to a particular job being scheduled in the n-th position. Generally,
each node at level l in a tree corresponds to a set Jl ⊆ {1, . . . , n} filling the last l
positions in a given order. This is called branching by backward sequencing. By
successively placing each job j (j ∈ N\Jl) in the |N\Jl|-th position, |N\Jl| new
nodes are created. This is reasonable because all sequences of jobs are feasible
in our problem.

In the literature both branching by backward sequencing(from last to first
position) and forward sequencing(from first to last position) have been imple-
mented. See for instance [30] where the authors implement backward sequencing
as we have done. The decision of what method to use has been made by leverag-
ing other existing properties. In our case we use backward sequencing in order
to facilitate calculation of the lower bound, as described in item 3.3.2. There we
show that modified due dates are calculated and dependent on the completion
date of each job and by backward sequencing that does not involve jobs with
positions already defined at each node (set Jl). That reduces computation time
specially in nodes that are more distant from the root.

3.2. Node selection

We make use of a best bound or a depth first approach as search strategy for
node selection. For best bound the node selected is the one, among unprocessed
nodes, with minimum lower bound. This way we never branch any node whose
lower bound is larger than the optimal value. For depth first the node selected
is the one, among unprocessed nodes with maximum depth in the search tree.
This way we navigate the tree prioritizing the search of new incumbent values.

3.3. Bound and pruning

After each branching we prune nodes based on dominance rules described
in Section 5, on lower bounds when it is greater than the best upper bound
calculated at that stage and on optimality conditions when lower bound matches
upper bound of a given node.
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3.3.1. Upper bound

An initial upper bound, as incumbent solution, is calculated at the root node
based on a constructive heuristic algorithm (see Algorithm 1 for its pseudocode).
The general idea behind this algorithm is that we shall assign jobs from last
position to first. At each position we assign the job that provides the smallest
ratio of the least tardiness and the greatest maximum processing time. By doing
so, we leave jobs with grescheduleater tardiness or less maximum processing
times to be assigned later in the sequencing, where their value of tardiness will
decrease or their contribution to partial makespan of that position will be less
than other jobs already assigned.

We leverage the calculated dominance rules to create sets of allowable jobs for
each position k, ALJ [k]. Let SJ be the sequence of jobs already selected, from
position n to position k + 1. Then, we define ALJ [k] = {i ∈ N\SJ |Ai ⊆ SJ}.
This set is never empty, since if all Ai, i ∈ N\SJ , have elements outside SJ ,
every element in N\SJ is followed by another element in N\SJ which creates a
subcycle and that is prevented by construction when calculating the dominance
rules (for example see [30] where these cycles are avoided by constructing the
transitive closure of the set of known precedence relations immediately after a
new relation has been found and by only examining pairs of jobs that are not
yet related).

We assign the job i with the least ratio Ti/max
p∈U

pi to each position. This ratio

for job i is given by the formula
max(0,max

p∈U

∑
j∈N\SJ

pj−di)

p̄i+p̂i
. We solve the worst-case

evaluation problem (Section 4), using the sequence assigned by our heuristic, to
calculate the initial upper bound.

An upper bound is also calculated at the last level of the search tree using
the sequence of jobs defined for that level, and solving the worst-case evaluation
problem.

3.3.2. Lower bound

We detail in this subsection the lower bound that will be used to cut part
of the branch-and-bound tree.

Here we introduce counterparts of (2), Pdet(p, δ), and (3), Prob(δ), where
parameters processing time, p ∈ U , and due date, denoted δ ∈ Rn+, are made
explicit. In the same way we denote their optimal solution costs by zdet(p, δ) =
minσ∈X

∑n
i=1 Ti(p, σ, δ) and zrob(δ) = minσ∈X maxp∈U

∑n
i=1 Ti(p, σ, δ), where

now we emphasize dependence of Ti on δ values.
The first step to provide a lower bound to the original robust problem (3)

comes from the idea of relaxing the due dates, di, of each job i ∈ N .

Proposition 1. Define d
′

i ≥ di,∀i ∈ N , as the relaxed due date of job i.

Therefore, zdet(p, d
′
) ≤ zdet(p, d),∀p ∈ U .
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Proof. First we verify for each job i ∈ N and schedule σ ∈ X and a given p ∈ U :

d
′

i ≥ di =⇒ Ti(p, σ, d
′
) ≤ Ti(p, σ, d) =⇒

n∑
i=1

Ti(p, σ, d
′
) ≤

n∑
i=1

Ti(p, σ, d).

(20)

Now, supposing σ1 is an optimal solution for Pdet(p, d) and σ2 is an optimal
solution for Pdet(p, d

′
), we have:

zdet(p, d
′
) =

n∑
i=1

Ti(p, σ2, d
′
) ≤

n∑
i=1

Ti(p, σ1, d
′
) ≤ (21)

n∑
i=1

Ti(p, σ1, d) = zdet(p, d).

The second step to provide a lower bound is to modify the due dates, d, in
such a way that the optimal schedule becomes easy to provide. For this step we
extend the work previously done in [32] to our robust case. Specifically, in [32],
the authors apply the following properties to problem (2):

Proposition 2.

1. The EDD schedule (ordering jobs by non decreasing due dates) is optimal
if Cσ(k)(p, σ) ≤ dσ(k) + pσ(k) for all positions k [17, Corollary 2.2].

2. The statement above can be relaxed to be true only for positions k where
pσ(k) < max(pσ(1), . . . , pσ(k−1)), because on the other hand if pσ(k) ≥
max(pσ(1), . . . , pσ(k−1)) other arguments in [17] assure that jobs {σ(1), . . . ,
σ(k − 1)} precede job σ(k) [32, Property 5].

The Proposition below extends the above properties to our robust case (3).

Proposition 3. Given an EDD schedule σ∗, if max
p∈U

Cσ∗(k−1)(p, σ
∗) ≤ dσ∗(k)

for each position k > 1 for which min
p∈U

pσ∗(k) < max(max
p∈U

(pσ∗(1)), . . . ,

max
p∈U

(pσ∗(k−1))) then it is robust optimal.

Proof. We first show that if σ∗ ∈ arg min
σ∈X

∑n
i=1 Ti(p, σ, d),∀p ∈ U , then σ∗ ∈

arg min
σ∈X

max
p∈U

∑n
i=1 Ti(p, σ, d). Suppose σ∗ /∈ arg min

σ∈X
max
p∈U

∑n
i=1 Ti(p, σ, d) and

∃σ∗∗ 6= σ∗, σ∗∗ ∈ arg min
σ∈X

max
p∈U

∑n
i=1 Ti(p, σ, d). Then, by definition of the ro-

bust optimal solution, max
p∈U

∑n
i=1 Ti(p, σ

∗, d) > max
p∈U

∑n
i=1 Ti(p, σ

∗∗, d). This is

a contradiction since by hypothesis
∑n
i=1 Ti(p, σ

∗, d) ≤
∑n
i=1 Ti(p, σ

∗∗, d),∀p ∈
U .
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Now suppose we have for k > 1, max
p∈U

Cσ∗(k−1)(p, σ
∗) ≤ dσ∗(k). Therefore

Cσ∗(k−1)(p, σ
∗) ≤ dσ∗(k),∀p ∈ U , and by Proposition 2.1,

σ∗ ∈ arg min
σ∈X

n∑
i=1

Ti(p, σ, d),∀p ∈ U.

Therefore, as showed above, σ∗ ∈ arg minσ∈X maxp∈U
∑n
i=1 Ti(p, σ, d).

On the other hand, if for a given position k > 1,

min
p∈U

pσ∗(k) ≥ max(max
p∈U

(pσ∗(1)), . . . ,max
p∈U

(pσ∗(k−1))),

then we have pσ∗(k) ≥ max(pσ∗(1), . . . , pσ∗(k−1)),∀p ∈ U , and by Proposition
2.2, we can then relax the application of Proposition 2.1 for position k,∀p ∈ U
and σ∗ is robust optimal regardless the application of Proposition 2.1.

Proposition 4. Given the EDD schedule σ∗, and defining d
′

σ∗(k) =

max(dσ∗(k),max
p∈U

Cσ∗(k−1)(p, σ
∗)) for positions k as in Proposition 3, zrob(d

′
) ≤

zrob(d). Also, σ∗ ∈ arg minσ∈X maxp∈U
∑n
i=1 Ti(p, σ, d

′
).

Proof. We first show that the EDD ordering does not change by modifying the
due dates according to Proposition 3.

Consider any two jobs l and j, so that dl ≤ dj and let d
′

i = max(di, si),
where si is the worst-case starting time of job i,∀i ∈ N . We have two cases:

• d′l = dl ≤ dj ≤ d
′

j ,

• d′l = sl ≤ sj ≤ d
′

j ,

and ∀l, j ∈ N | dl ≤ dj =⇒ d
′

l ≤ d
′

j .
We conclude that the EDD schedule is unchanged and it will satisfy Propo-

sition 3, therefore σ∗ ∈ arg minσ∈X maxp∈U
∑n
i=1 Ti(p, σ, d

′
).

Now consider that we do not adjust due dates for jobs in EDD positions k > 1
for which min

p∈U
pσ∗(k) ≥ max(max

p∈U
(pσ∗(1)), . . . ,max

p∈U
(pσ∗(k−1))). As in Proposition

3, other arguments in [17] assure that jobs {σ∗(1), . . . , σ∗(k − 1)} precede job
σ∗(k) and the EDD sequence is still optimal.

We show in the sequence that zrob(d
′
) ≤ zrob(d). We have:

zrob(d) = min
σ∈X

max
p∈U

n∑
i=1

Ti(p, σ, d) ≥ max
p∈U

min
σ∈X

n∑
i=1

Ti(p, σ, d) = max
p∈U

zdet(p, d).

where the inequality follows from swapping the min and max terms. Addition-
ally, by Proposition 1:

zrob(d) ≥ max
p∈U

zdet(p, d) ≥ max
p∈U

zdet(p, d
′
). (22)
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Now consider that by definition zrob(d
′
) = maxp∈U

∑n
i=1 Ti(p, σ

∗, d
′
) and by

hypothesis zdet(p, d
′
) =

∑n
i=1 Ti(p, σ

∗, d
′
),∀p ∈ U , then we have:

zrob(d
′
) = max

p∈U
zdet(p, d

′
). (23)

Finally from (22) and (23):

zrob(d
′
) ≤ zrob(d). (24)

As already seen, each node level l of our search tree is composed of a set Jl
filling the last l positions in a given order. Since the order of the last l positions
is defined, we concentrate on an EDD sequencing for the first n − l positions.
We order by due date the first n−l positions. We relax their due dates using the
rules defined above. We concatenate the solution above, using modified relaxed
due dates, with the other sequenced jobs of the node, using original due dates
and use the worst-case evaluation methods presented in Section 4 to find the
associated lower bound.

The pseudocode used for our branch-and-bound algorithm is presented in
Algorithm 2.

Algorithm 1 Upper bound heuristic

Input // Γ and vectors p̄, p̂, d
SJ ← void // Sequence of selected jobs
for k = n to 1 do

ALJ [k] = {i ∈ N\SJ |Ai ⊆ SJ} // Allowable jobs for position k

JRi=
max(0,max

p∈U

∑
j∈N\SJ

pj−di)

p̄i+p̂i
, i ∈ ALJ [k] // Store ratio job i

if min
i
JRi = 0 then SJ ← SJ ∪ arg max

i∈ALJ[k],JRi=0

p̄i + p̂i

else SJ ← SJ ∪ arg min
i∈ALJ[k]

JRi // job selected for position k

Calculate maximum total tardiness for sequence SJ //Worst-case solution
Return solution - sequence of jobs SJ and maximum total tardiness value

4. Worst-case evaluation

In this section we discuss how to perform an evaluation of the worst-case
realization of the uncertainty set given a sequence of jobs. Recall that it is used
to solve the adversarial separation problem in the row-and-column generation
algorithm and also used in our branch-and-bound algorithm. This problem,
for a given sequence of jobs σ = {σ(k), k = 1, . . . , n}, where k represents a
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Algorithm 2 Branch-and-bound algorithm

Input // Γ and vectors p̄, p̂, d
Initialize
//Nodes list ← root node, Incumbent solution ← void, Lower bound ← −∞
while There are still nodes to be branched in the Nodes list do

Node Select // Select node based on search criteria
Prune // by lower bound
Update Incumbent solution // use best upper bound so far
Branch node
Prune // by dominance rules
Calculate lower and upper bound // of new nodes
Update Nodes List

Return optimal solution - sequence of jobs and total tardiness value

position and σ(k) represents the job that occupies that position, is defined by
the worst-case total tardiness, T ∗σ , associated with this sequence and given by:

T ∗σ = max
p∈U

 n∑
k=1

max

0,

k∑
k′=1

pσ(k′ ) − dσ(k)

 (25)

We assume that maximal deviations of processing times of our budgeted
uncertainty set are integers. Also, for the sake of simplicity, we consider in
what follows that Γ is a non negative integer. As we will see, the budgeted
uncertainty set allows us to explore some properties that simplify complexity of
our algorithms.

Using these assumptions, statement (25) reflects a problem with a convex
function being maximized over a polytope defined by uncertainty set U . Hence,
to define the worst-case robust realization of uncertainty we only have to take
into account specific realizations of the uncertainty set given by:

• Extreme points of the polytope. For each job i, we only consider values
p̄i and p̄i + p̂i

• It is clear that any worst-case realization will use as much budget of un-
certainty as possible. Hence we can assume

∑
i ξi = Γ

We work two alternative methods to evaluate a worst-case solution value:
one based on dynamic programming and another based on a simple heuristic.

4.1. Dynamic programming

We adopt a dynamic programming algorithm developed by [2] for a gen-
eral class of robust optimization problems. The complexity of this algorithm is
O(nΓΦ̄), where Φ̄ is the maximum cumulative processing time deviation allowed,
that is Φ̄ = max

S⊆N :|S|=Γ

∑
i∈S p̂i. It is favored when processing time deviations
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are small. We verify that the optimal solution for the adversarial problem only
depends on the cumulative deviations of the job processing times. Let us define
a value-function α(k, γ,Φ), where 1 ≤ k ≤ n, 0 ≤ γ ≤ Γ, 0 ≤ Φ ≤ Φ̄, as the
optimal value of the restricted problem for a set of jobs positions {1, . . . , k} with
at most γ deviations and a cumulative deviation Φ. The optimal value of the
adversarial problem is defined by T ∗σ = max

Φ∈{0,...,Φ̄}
α(n,Γ,Φ). Furthermore, we

see that the value-function satisfies the recursion:

α(k, γ,Φ) =


max(0, Φ +

∑k
k
′
=1

p̄
σ(k
′
)
− dσ(k)) + α(k − 1, γ,Φ), if Φ− p̂σ(k) < 0

max(0, Φ +
∑k
k
′
=1

p̄
σ(k
′
)
− dσ(k))+

max(α(k − 1, γ,Φ), α(k − 1, γ − 1,Φ− p̂σ(k))), if Φ− p̂σ(k) ≥ 0

Also, the following statements are used to initialize the dynamic program-
ming table:

α(1, 0, 0) = max(0, p̄σ(1) − dσ(1))

α(1, γ, p̂σ(1)) = max(0, p̂σ(1) + p̄σ(1) − dσ(1)), 1 ≤ γ ≤ Γ

α(1, γ,Φ) = −∞, for remaining cases

α(k, 0, 0) = max(0,

k∑
k′=1

p̄σ(k′ ) − dσ(k)) + α(k − 1, 0, 0), 2 ≤ k ≤ n

α(k, 0,Φ) = −∞, 2 ≤ k ≤ n, 1 ≤ Φ ≤ Φ̄

In [2] the authors show that their dynamic programming approach outper-
forms the rather traditional approach of using a MILP formulation to solve the
worst-case evaluation subproblem. For our problem, we have also performed
comparisons between the two approaches and the overall results were favor-
able to the dynamic programming approach, so that we discarded the MILP
approach from our study.

4.2. Heuristic

We implement a simple greedy algorithm of complexity O(Γn2) to obtain a
lower bound on T ∗σ . The pseudocode for this heuristic is presented in Algorithm
3. Given a sequence of jobs, we execute an algorithm with Γ iterations. At each
iteration we define a job to have its processing time deviated to its maximum.
Following are the steps executed:

• At each one of the Γ iterations, we verify total tardiness originated by
setting each one of the n jobs processing time to its maximum (if not
already considered in previous iteration as deviated) and pick the one
that provided maximum total tardiness.

• If total tardiness is not augmented in relation to the previous iteration we
set the processing time of the first job in the sequence not already deviated
to its maximum.
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Algorithm 3 Worst-case evaluation heuristic

Input
//Sequence of jobs: σ = {σ(k), k = 1, . . . , n}, Γ and vectors p̄, p̂, d
D ← void // Set of jobs with deviated processing times
MAXTT = −∞ // Worst-case total tardiness
for g = 1 to Γ do

TTi(D) =
∑n
j=1 max(0, (

∑
k≤σ−1(j) p̄σ(k) +

∑
k≤σ−1(j)
σ(k)∈D∪{i}

p̂σ(k) − dj)), for i ∈ N\D

if max
i
{TTi(D)}>MAXTT then D← arg max {TTi(D)};MAXTT = max

i
{TTi(D)}

else D ← arg min
i∈N\D

{σ−1(i)}

Total tardiness = MAXTT
Return Total tardiness

It can be used as a lower bound when the performance of an exact solution
in the algorithm is an issue.

5. Dominance rules

Dominance rules have been extensively used in the past in combinatorial
optimization problems and specially in scheduling problems [18]. A dominance
rule is established in order to reduce the solution space either by adding new
constraints to the problem, or by writing a procedure that attempts to reduce
the domain of the variables, or by building interesting solutions directly.

One of the main theoretical developments for the total tardiness problem
were the dominance rules derived by [17]. The author proved three fundamental
theorems that helped establish precedence relations among job pairs that must
be satisfied in at least one optimal schedule. These dominance rules are a major
component of existing state-of-art algorithms. All the three theorems assumes
the ordering of jobs by their processing times. Although we can naturally apply
these rules to our robust problem for jobs that do not overlap, that is, given two
jobs i, j,max

p∈U
pi < min

p∈U
pj , there is a tendency to have the applicability of these

rules reduced since processing times are uncertain.
Later, [30], working with single machine weighted total tardiness problem,

extended these dominance conditions to more general forms where the ordering
of processing times are not always necessary, and so, are more adequate to be
extended to our robust problem where processing times are uncertain.

To extend dominance conditions of [30] to our robust problem we have to
consider definitions that follow, where Bi and Ai are sets of jobs known to
precede job i and follow i, respectively. Also for notation purposes, for any set
Q, Q ⊆ N , the notation P (Q) represents

∑
i∈Q pi.

• We order two jobs i, j that do not overlap. That is i ≺ j if max
p∈U

pi <

min
p∈U

pj .
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• We define the earliest completion date of a job i, Ei = min
p∈U

(P (Bi) + pi)

• We define the latest completion date of a job i, Li = max
p∈U

P (N \Ai)

Using definitions above, conditions of [30] can be restated as follows.

Proposition 5. Job i precedes job j in at least one robust optimal schedule if
at least one of the conditions below are satisfied:

1. i ≺ j and di ≤ max(Ej , dj)

2. dj ≥ max(Li −min
p∈U

pj , di)

3. dj ≥ Li

Proof. Extending the dominance rules defined by [30] to our robust problem
is based on the idea that if a rule is valid for a predefined worst-case event of
uncertainty it will be valid for all realizations of uncertainty. In other words,
if a job i precedes job j in a worst-case predefined event, it will precede for all
realizations of uncertainty. Hence, this additional restriction can be added to
the overall robust problem.

For the sake of completeness we restate below the dominance conditions
defined in [30]:

• At least one optimal schedule has job i preceding job j if di ≤ max(P (Bj)+
pj , dj), αi ≥ αj and pi ≤ pj [30, Corollary 1].

• At least one optimal schedule has job i preceding job j if dj ≥ P (N \Ai)−
pj , dj ≥ di and αi ≥ αj [30, Corollary 2].

• At least one optimal schedule has job i preceding job j if dj ≥ P (N \Ai)
[30, Corollary 3].

where αi, i ∈ N are the weight coefficients for the weighted tardiness problem
that in our case are equal to 1.

For item 1 of Proposition 5 one can verify:

max
p∈U

pi < min
p∈U

pj and di ≤ max(min
p∈U

(P (Bj) + pj), dj) =⇒

pi ≤ pj and di ≤ max(P (Bj) + pj , dj),∀p ∈ U

For item 2 of Proposition 5 one can verify:

dj ≥ max
p∈U

P (N \Ai)−min
p∈U

pj and dj ≥ di =⇒

dj ≥ P (N \Ai)− pj and dj ≥ di,∀p ∈ U

For item 3 of Proposition 5 one can verify:

dj ≥ max
p∈U

P (N \Ai) =⇒ dj ≥ P (N \Ai),∀p ∈ U.
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This way Corollary 1,2 and 3 in [30], respectively, are satisfied by all realiza-
tions of the uncertainty set. Hence, they can be extended to the robust problem
as defined in Proposition 5.

By applying these rules successively we can populate, for each job i, the set
of jobs known to precede i, Bi and follow i, Ai in some optimal sequence. The
idea is that as we run rules above, and pair of jobs are ordered, the sets Ai and
Bi will grow, favoring new runs.

These dominance conditions can be incorporated in our MILP formulations
as precedence constraints or can be used to prune non optimal node sequences in
our branch-and-bound algorithm. They can also be applied dynamically, during
branching decisions at each node. If, applied for the subproblem of sequencing
jobs j ∈ N\Jl, they identify that there is job i ∈ N\Jl that precedes a job j,
then job i can be eliminated and job j considered for the |N\Jl|-th position.

Calculating latest and earliest completion times for each subproblem can,
though, add non desired computational complexity. Many proposed algorithms
avoid this additional complexity by applying at each node only a relaxed version
of the third condition of Proposition 5, called Elmaghraby’s lemma [16], where
the latest completion time of each job i ∈ N\Jl, Li, is relaxed to makespan of
the subproblem. In other words, if there is a job j that has zero tardiness for
the last position (dj ≥ makespan), it can be considered for branching and all
other jobs i ∈ N\Jl eliminated (for examples, see [30] and [27]).

We experiment a compromise between these two previous approaches. We
relax the latest and earliest completion dates of all jobs j ∈ N\Jl by considering
maximal (max

p∈U
P (N\Jl)) and minimal (min

p∈U
P (N\Jl)) makespan, and setting

Ladjj = min(Lj ,max
p∈U

P (N\Jl)) and Eadjj = min(Ej ,min
p∈U

P (N \ Jl)), where Ladjj

and Eadjj are the adjusted latest and earliest completion dates for job j, and
Lj and Ej are the latest and earliest completion dates for job j calculated for
the original set of jobs N . Proposition 5, adjusted, can be used to identify a
job j ∈ N\Jl that succeeds other jobs of set N\Jl. If that job j is found, the
number of new nodes during branching can be reduced.

Observation 5.1. If a job i ∈ N\Jl satisfies one of the conditions below, for
some job j ∈ N\Jl, i 6= j, then job i can be eliminated during branching at level
l of the search tree.

• i ≺ j and di ≤ max(Eadjj , dj)

• dj ≥ max(Ladji −min
p∈U

pj , di)

• dj ≥ Ladji

As a remark, any assignment of positions should be in alignment with prece-
dence constraints already generated.
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6. Implementation and results

6.1. Implementation details

Instances We construct instances based on those of the literature, using the
same directives as in [27]. We vary hardness of problem solving using parameters
R, relative range of due dates and T , average tardiness factor. These parameters
are used to define the average and range of variation of due dates. Due date
range significantly affects the time performance of algorithms. Due dates widely
distributed are easier to solve. The values of R are chosen as R = {0.2, 0.6, 1.0},
and the values of T are chosen as T = {0.2, 0.6, 0.8}. With P =

∑n
i=1 p̄i and

chosen R and T , we generate a non negative integer due date di from the uniform
distribution [P (1− T −R/2), P (1− T +R/2)] for each job i.

We define a new parameter G, to control the relative range of variation of
uncertainty. By range of variation of uncertainty we mean the difference in
values of Total Tardiness when we change from one realization of uncertainty
to another. The parameter G is an artificial measure introduced to control the
values of the total allowed deviation, Γ, and the percentage of allowed deviation
from nominal processing times for each job. A small Γ and large process de-
viation time potentially produce larger differences in Total Tardiness when we
change from one realization of uncertainty to another. Small G corresponds to
small Γ and large process deviation time. The values of G are as G = {10, 100}.
For each job i, an integer processing time p̄i is generated from the uniform dis-
tribution [1, 100] and an integer processing deviation time p̂i is generated from
the uniform distribution [p̄i

2
G , p̄i

7
G ]. The value of Γ is an integer generated from

the uniform distribution [5× 10−3Gn, 9× 10−3Gn].
Using a sample size of ten for each of the 18 combinations of R and T and

G we generate 180 instances for problems with 20, 40, 60 and 100 jobs, giving
a total of 720 instances tested.
Algorithms Specification Algorithms are coded in Julia [22] using JuMP
package and Cplex 12.7. All algorithms run in an Intel CORE i7 CPU 3770
machine. A limit of 9600 seconds of computing time is given for each instance.

All algorithms are tested on the same set of instances. We test MILP for-
mulations (sequence-position and linear ordering) and branch-and-bound algo-
rithms here developed. MILP formulations run under a row-and-column gen-
eration method where the separations problems are solved using the dynamic
programming algorithm here presented. Each MILP formulation algorithm runs
also with the option of using dominance rules to insert precedence constraints.

The branch-and-bound algorithm runs with the options of best bound or
depth first search strategy. Upper bounds are calculated at root level and level
n− 1 of our search tree, as described in Section 3. Lower bounds are calculated
using the dynamic programming method only at level 1. At level n − 1 the
lower bound is equal to the upper bound so that we do not have to recalculate.
At other levels of the search tree the lower bound is approximated using the
heuristic method of Section 4 to improve performance. Dominance rules are
used to create precedence between jobs and prune nodes during branching. We
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also apply dynamically, at each node, the two last conditions of Observation
5.1.

The name and configuration of each algorithm is presented in Table 1.

6.2. Comparative performance of the algorithms

We first present in Table 2 general results comparing performance of the
algorithms for all instances. Algorithm BB1 is the one that solves the majority
of the instances with best time. %Best Performance measurement indicates
that the algorithm BB1 solved 61% of instances with best performance, followed
by algorithm SEQ2, that solved 37%.

Measurement %Solved 100 indicates that all algorithms were not able to
solve the majority of the 100 jobs instances within the time limit. The other pre-
sented measurements ( %Solved, Tmedian, Avg%Gap) favor algorithms SEQ1
and SEQ2. We present medians in order to mitigate the effect of instances not
solved within the time limit.

Figure 1 presents a comparison of all algorithms using a performance profile
[15]. In this figure, the vertical axis points out in percentage, for each algorithm,
in how many instances the result was not more than x times - horizontal axis
- worse than the best algorithm. For x = 1, the indicators replicates the best
performance indicators presented in Table 2.

Figure 1 evidences that each algorithm has different time variation character-
istics. In particular, algorithm LIN1 and SEQ1 present the highest ascending
slopes, indicating that, although they are not best performers as measured by
%Best Performance, they present the characteristic of less solution time vari-
ance among all algorithms.

Table 2 and Figure 1 evidence that algorithm BB1 solves the majority of
the instances with best time, but it is due to conditions that favor its core
characteristics. When these conditions are not satisfied, other algorithms are
favored. To analyze these conditions we group our instances and verify the
performance of algorithms.

For this we present Table 3 where the same indicators are listed, but now
grouped by special instances. We follow concepts defined in [27] and group
instances based on their R, relative range of due dates and T , average tardiness
factor. Instances with ratio T/R greater than 1 are classified as “High hardness”
and classified as “Low hardness” otherwise. In general “Low hardness” instances
will be more completely classified by dominance rules as stated in [27]. We also
group instances by their G value. Instances with G = 10 are classified as
“Large uncertainty range” and as “Small uncertainty range” otherwise. “Large
uncertainty range” instances are the ones that, in general, have large solution
value distance between one realization of uncertainty to others. These groups
are not disjoint.

Analysis of Table 3 shows that algorithm SEQ2 has best %Best Performance
indicator for “High hardness” instances whileBB1 has best %Best Performance
indicator for “Low hardness” instances and “Large uncertainty range” instances.
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These results so far are expected since, on one side, the branch-and-bound
algorithm relies heavily on dominance conditions to prune nodes and this is
favored in “Low hardness” instances. On the other hand, our MILP RCG
algorithms are not favored by “Large uncertainty range” instances, since in
general it will require more calls to separation problems.

This effect can be better verified in Figure 2 where we present performance
profiles for each group of instances. In general, now grouped by special instances,
the algorithms with %Best Performance indicator show consistency of perfor-
mance along the x-axis. It evidences, for “High hardness” instances, that when
characteristics as dominance conditions are not favored, the sequence-position
formulation is privileged. Algorithm LIN1 is privileged for “Small uncertainty
range” instances.

These results suggest that, in general, if an instance is not well defined by
dominance rules, a “High hardness” instance, SEQ2 is favored. If not, if an in-
stance is well defined by dominance rules, a “Low hardness” instance, the char-
acteristic of uncertainty range will define the algorithm to be favored: “Large
uncertainty range” instances are favored by BB1 and, “Small uncertainty range”
instances are favored by LIN1.

In Figure 3 we present different performance profiles, now comparing each
MILP RCG method among their different configurations. We can observe that
both sequence-position and linear ordering formulations had better performance
when precedence constraints, based on dominance rules, were added. The effect
of precedence constraints was most pronounced in LIN1 algorithm. This can
be partially explained because the precedence constraints added for the LIN2
algorithm (see equation 19) are effective to restrict the search of the CPLEX
linear programming algorithm to a reduced set of extreme points. For the
sequence-position formulation, although the presence of precedence constraints
in SEQ1 helped it to present the highest ascending slope among the two, it is
SEQ2 that is the best performer, although only sligthy above SEQ1.

Table 4 presents average time performance of each MILP algorithm. Here we
present average as mean measures because we are interested in contributions of
all instances (even outliers).We also present standard deviation as a secondary
measure. Time performance is split between master and adversarial problems.
We also present average number of iterations, split between “Large uncertainty
range” and “Small uncertainty range” instances. These results evidence that the
critical step for these algorithms is the master problem resolution, even with the
addition of precedence constraints. We see also that the number of iterations
are greater for “Large uncertainty range” instances, as it was designed to be.

Figure 4 presents performance profile for our two branch-and-bound algo-
rithms. Algorithm BB1, based on a depth first search strategy, clearly out-
performs algorithm BB2, based on a best bound search strategy. To analyze
this effect we present in Table 5 detailed results for our branch-and-bound algo-
rithms. It shows that the dominance rules were effective to prune nodes in both
strategies. It also shows that the best bound strategy was not successful as the
depth first strategy to prune nodes by its lower bound. In fact, by the way our
branch-and-bound algorithms were implemented, lower bound values improves
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Algorithm Name Method Dominance Rules Best Bound Strategy Depth First Strategy
Seq1 Sequence MILP RCG Yes - -
Seq2 Sequence MILP RCG No - -
Lin1 Linear MILP RCG Yes - -
Lin2 Linear MILP RCG No - -
BB1 Branch-and-bound Yes No Yes
BB2 Branch-and-bound Yes Yes No

RCG meaning row-and-column generation

Table 1: Algorithms

as the algorithm reaches the leaves of the tree and that favors the depth first
strategy. It is also a consequence of our choice of a lower bound algorithm that
is easy to calculate but not tight. On the other hand, depth first search strat-
egy is also able to find an upper bound more quickly, which helps to improve
performance.

6.3. Assessing the robustness

We assess below the costs provided by different models under different un-
certainty sets on two instances with 20 jobs. The six models considered are
related to the robust model used and to the value of Γ ∈ {0, 5, 10, 20}. The
model with Γ = 0 is the deterministic model that ignores uncertainty, while the
one with Γ = 20 is the deterministic model that is completely risk-averse and
overestimates all parameters. The other values of Γ model intermediate risk
aversions by using either the robust model studied here, or the simpler static
model obtained by adding the constraints Ti(p, σ) = Ti(p

′, σ) for each i ∈ N
and p, p′ ∈ U . Let σΓ and σΓ

stat be the solutions obtained by the robust models
for the value Γ ∈ {10, 15}, and denote similarly the deterministic solutions by
σ0
det and σ20

det. We report on Figure 5 the costs TΓ(σ) = maxp∈U
∑
i∈N Ti(p, σ)

on two instances that illustrate the general patterns that can be observed.
A “Large uncertainty range” instance, where there are large solution value

distances between one realization of uncertainty to others is presented. For
this instance, varying the level of conservativeness, that is, varying Γ and the
number of jobs processing times that can vary, have significant impact on total
tardiness. From Figure 5 we see that the nominal solution, as well as static
solutions, are suboptimal for Γ ∈ {1, . . . , 7}. Specifically, for these values of Γ,
σ5 is roughly 20% cheaper than σ5

stat, and the ratio increased when considering
the other models. For larger values of Γ, the cheapest solution is σ20

det, with the
robust solutions σ10 and σ10

stat being roughly 5% more expensive. We also see
that the deterministic solution σ0

det behaves extremely badly as soon as Γ > 1.
To summarize, analyzing these two figures show that the robust solution σ5

should be preferred because it is never far from being the cheapest one.
A “Small uncertainty range” instance example is also presented. For this

instance, varying levels of conservativeness do not have a great impact on the
total tardiness.
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Indicator Seq1 Seq2 Lin1 Lin2 BB1 BB2
% Best Performance 31 37 33 22 61 21

%Solved 73 70 63 47 67 41
%Solved 100 44 44 31 31 40 25
Avg%Gap 8 5 4 10 10 33
Tmedian 37.84 30.93 69.97 9600 41.63 9600

% Best Performance is percentage of total instances where algorithm was best in time performance
%Solved is percentage of total instances solved within time limit
%Solved 100 is percentage of total 100 jobs instances solved within time limit
Avg%Gap is average percentage gap of solutions not solved to optimality
Tmedian is median solution time (s)

Table 2: Performance of algorithms for all instances
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Figure 1: Performance profile among all instances
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Instances group Indicator Seq1 Seq2 Lin1 Lin2 BB1 BB2

High Hardness

% Best Performance 47 56 47 28 38 28
%Solved 63 63 44 16 43 13

%Solved 100 38 38 0 0 0 0
Avg%Gap 0 0 37 10 9 35
Tmedian 248.25 270.32 9600 9600 9600 9600

Low Hardness

% Best Performance 16 19 19 16 85 13
%Solved 84 78 81 78 88 69

%Solved 100 63 50 63 63 63 50
Avg%Gap 17 8 15 8 14 29
Tmedian 26.31 18.45 2.26 14.11 0.62 1.21

Large Uncertainty Range

% Best Performance 53 31 37 31 75 31
%Solved 63 63 50 44 57 34

%Solved 100 35 35 25 25 30 30
Avg%Gap 8 16 42 15 11 31
Tmedian 105.91 223.78 5074.54 9600 201.79 9600

Small Uncertainty Range

% Best Performance 10 44 28 12 50 10
%Solved 84 78 75 50 63 47

%Solved 100 63 50 38 38 38 25
Avg%Gap 0 0 28 0 11 34
Tmedian 35.03 6.33 9.56 8400.55 146.45 9600

% Best Performance is percentage of total instances of a group where algorithm was best in time perfor-
mance
%Solved is percentage of total instances of a group solved within time limit
%Solved 100 is percentage of total 100 jobs instances of a group solved within time limit
Avg%Gap is average percentage gap of solutions not solved to optimality
Tmedian is median solution time (s) considering all instances of a group

Table 3: Performance of algorithms, grouping by special instances
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Figure 2: Performance profile of algorithms, grouping by special instances
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Figure 3: Performance profile MILP methods and configurations
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Indicator Seq1 Seq2 Lin1 Lin2
Master Problem Time* 2862.88/4803.15 3436.01/5166.87 3872.16/5045.17 5138.58/4572.73

Adversarial Problem Time* 82.57/187.91 3.78/7.07 0.47/1.32 0.92/2.15
LUR Number of Iterations* ** 5.93/6.89 6.81/6.26 2.28/2.09 3.00/2.19
SUR Number of Iterations* *** 1.75/0.43 1.90/0.50 1.65/0.49 1.78/0.49

* We present average value / standard deviation value.
** Large uncertainty range (LUR) instances only.
*** Small uncertainty range (SUR) instances only.

Table 4: MILP algorithms - all instances

Indicator BB1 BB2
Nodes visited* 3511383/11695381 571012/683244

% Nodes pruned by dominance* 69/24 95/16
% Nodes pruned by lower bound* 20/18 0/14

Solution time* 4882.83/4774.04 6724.52/4712.30
% Solution gap** 10 33

* We present average value / standard deviation value.
** Average value calculated for non optimal solutions as percentage difference to best solution among all
algorithms.

Table 5: Branch-and-bound algorithms - all instances
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Figure 4: Algorithms BB performance profile among all instances
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Figure 5: Worst-case evaluation for robust and nominal solutions
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7. Conclusions

We develop a new branch-and-bound approach for robust single machine
total tardiness problem representing uncertainty by a set, extending dominance
rules and lower bounds concepts used for the deterministic case. We define
MILP formulations for our problem and apply the dominance rules studied as
additional precedence constraints for these formulations. We have experimented
different algorithms and presented computational results where we were able to
verify in which conditions algorithms better perform. More specifically we were
able to identify:

• The dominance rules were fundamental for a good performance of our
branch-and-bound algorithms and MILP formulations algorithms.

• We could verify characteristics of our instances that influence performance
and suggest the best algorithm, in general, for each type of instance.

• Depth first search strategy was a key feature for our branch-and-bound
algorithm.

We have shortly assessed the cost of the solutions returned by the robust model,
and compared them to the deterministic solutions. The latter seem to indicate
that:

• The deterministic solutions overestimating the parameters should be pre-
ferred over those underestimating the latter.

• The robust solution with Γ = n/4 seems to perform well under all circum-
stances. In our assessment of robustness, different from other models, it
has showed to be never far from being the cheapest one. It also improved
roughly 20% over the static model that has been used before in other
contexts (e.g. [13]).
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[25] Módos, I., Š̊ucha, P., Hanzálek, Z., 2016. Robust scheduling for manufac-
turing with energy consumption limits. In: 2016 IEEE 21st International
Conference on Emerging Technologies and Factory Automation (ETFA).
pp. 1–8.

[26] Potts, C. N., Wassenhove, L. N. V., 1982. A decomposition algorithm for
the single machine total tardiness problem. Operations Research Letters
1 (5), 177–181.

[27] Potts, C. N., Wassenhove, L. N. V., 1985. A branch and bound algorithm
for the total weighted tardiness problem. Operations Research 33 (2), 363–
377.

[28] Pritsker, A. A. B., Waiters, L. J., Wolfe, P. M., 1969. Multiproject schedul-
ing with limited resources: A zero-one programming approach. Manage-
ment science 16 (1), 93–108.

[29] Queyranne, M., Schulz, A., 1994. Polyhedral Approaches to Machine
Scheduling. Preprint-Reihe Mathematik. TU, Fachbereich 3.

[30] Rinnooy Kan, A. H. G., Lageweg, B. J., Lenstra, J. K., 1975. Minimizing
Total Costs in One-Machine Scheduling. Operations Research 23 (5), 908–
927.

31



[31] Roos, E., den Hertog, D., Ben-Tal, A., de Ruiter, F. J., Zhen, J., 2018.
Approximation of hard uncertain convex inequalities. Optimization On-
line URL http://www. optimization-online. org/DB HTML/2018/06/6679.
html.

[32] Szwarc, W., Della Croce, F., Grosso, A., 1999. Solution of the single ma-
chine total tardiness problem. Journal of Scheduling 2 (2), 55–71.

[33] Tadayon, B., Smith, J. C., 2015. Algorithms and complexity analysis for
robust single-machine scheduling problems. J. Scheduling 18 (6), 575–592.

[34] Tadayon, B., Smith, J. C., 2015. Robust offline single-machine scheduling
problems. Wiley Encyclopedia of Operations Research and Management
Science.

[35] Tanaka, S., Fujikuma, S., Araki, M., 2009. An exact algorithm for single-
machine scheduling without machine idle time. Journal of Scheduling 12 (6),
575–593.

[36] Yang, J., Yu, G., 2002. On the robust single machine scheduling problem.
Journal of Combinatorial Optimization 6 (1), 17–33.

[37] Zeng, B., Zhao, L., 2013. Solving two-stage robust optimization problems
using a column-and-constraint generation method. Operations Research
Letters 41 (5), 457–461.

[38] Zhen, J., D. R. F. J., Den Hertog, D., 2017. Robust optimization for
models with uncertain soc and sdp constraints. Optimization Online URL
http://www.optimization-online.org/DB FILE/2017/12/6371.pdf.

32


