
HAL Id: hal-02478640
https://hal.science/hal-02478640

Submitted on 17 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Linking up pressure, chemical potential and thermal
gradients

François Montel, Hai Hoang, Guillaume Galliero

To cite this version:
François Montel, Hai Hoang, Guillaume Galliero. Linking up pressure, chemical potential and thermal
gradients. European Physical Journal E: Soft matter and biological physics, 2019, 42 (5), pp.65.
�10.1140/epje/i2019-11821-0�. �hal-02478640�

https://hal.science/hal-02478640
https://hal.archives-ouvertes.fr


1 

 

Linking up Pressure, Chemical Potential and Thermal Gradients 

François Montel1§, Hai Hoang2, Guillaume Galliero1 

1Laboratoire des Fluides Complexes et leurs Réservoirs, UMR-5150 CNRS/TOTAL/Univ Pau 

& Pays Adour, E2S, 64000, Pau, France 

2 Institute of Fundamental and Applied Sciences, Duy Tan University, 10C Tran Nhat Duat 

Street, District 1, Ho Chi Minh City 700000, Viet Nam 

 

§francois.montel@univ-pau.fr 

 

Abstract 

Petroleum reservoirs are remarkable illustrations of the impact of a thermal gradient on fluid 

pressure and composition. This topic has been extensively studied during the last decades to 

build tools that are required by reservoir engineers to populate their models. However, one can 

get only a very limited number of representative samples from a given reservoir and assessing 

connectivity between all sampling points is often a key issue. In some extreme cases, the whole 

reservoir fluid properties must be derived from a single point to define the field development 

plan. To do so, available models are usually not satisfactory as they need too many parameters 

and so cannot be considered as predictive tools. We propose in this work a comprehensive 

approach based on the irreversible thermodynamics principles to derive the relationships 

between pressure, chemical potentials and thermal gradients in porous media. It appears that 

there is no need for additional assumptions, it is just a matter of a making the right choices 

along theoretical developments. One of the most important steps is to express the full pressure 

gradient. As a final result, we obtain the chemical potential gradients for all components of the 

mixtures that can be easily translated in term of compositions through Equation of State 

modelling. The most important features of the final expressions are: (i) the species relative 

separation in a thermal field is sensitive to the relative diffusion coefficients at stationary state. 

In porous media, the separation is sensitive to the permeability when the overall mobility is 

similar to diffusive mobility; (ii) the magnitude of the separation depends on the residual 

entropy of the species; (iii) the separation is not simply balanced by the average residual 

entropy. The balance is modified by the relative diffusion mobility of the components; (iv) in 

low permeability porous media, the thermal gradient induces a pressure gradient proportional 

to the fluid residual entropy. As a validation, the proposed approach has been applied on a 

reservoir fluid subjected to a geothermal gradient and compared with non-equilibrium 

molecular dynamics simulation results at the stationary state.   
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I. Introduction 

The objective of this paper is to provide a general framework for the evaluation of the impact 

of a thermal gradient on fluid pressure and composition, i.e. thermodiffusion and related 

phenomena, in a porous medium at the stationary state. The main driver for this work is the 

development of a generic macroscopic formalism to describe the fluid distribution in petroleum 

reservoirs before production but many other applications of the proposed approach could be 

found in natural and industrial processes, see for example the recent review by Köhler and 

Morozov [1]. In petroleum industry, this topic is discussed in detailed in many recent textbooks 

[2,3], and correlations for the thermodiffusion parameters, despite their intrinsic limitations [1], 

are commonly used by reservoir engineer to populate their reservoir models.  

In some field cases, the geothermal gradient induces compositional gradients of the same order 

of magnitude than the gravitation [4-5]. Since the gravitational segregation is well quantified, 

the current practice in the petroleum industry consists in tuning the thermodiffusion parameters 

in order to match the available compositional field data. However, it happens quite often that 

the fluid column species distribution must be established from a very limited number of 

samples, sometimes only one as it is the case when data are coming from the discovery well. 

And it is of primary importance to get indisputable estimation of the thermodiffusion 

parameters to assess the fluid column species distribution and consequently oil and gas 

accumulation. A typical critical situation is the case of a discovery well crossing an oil pool, 

down-dip a large accumulation, for which a crucial question arises: is there a gas cap in the 

reservoir or not and if any where is it located? The symmetrical critical situation is encountered 

when the discovery well crosses the gas phase only with a possible oil rim down-dip. 

Thus, building a predictive model to describe fluid distribution in oil and gas reservoirs at the 

stationary state is a challenge that may be a game changer for the petroleum industry. Following 

a previous work on the subject [6], in which the conditions for application of the stationary state 

model was discussed, the proposed article is a step towards that direction. The article is 

organized as follows. In section II, the theoretical framework is provided. Details on the new 

predictive approach is described in section III. Then, the methodology is applied and validated 

on a practical case in section IV. Finally, the main outcomes of this work are summarized in 

section V. 

 

II. Theoretical framework 

To derive the conservation equations and the related flux-forces relations as proposed in this 

work, our main hypothesis are: 
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a. the average fluid velocity is slow enough to allow linearization of the fluid transport 

equation and to neglect inertial terms, 

b. the local equilibrium hypothesis is valid in the fluid phase, 

c. the fluid phase is homogeneous, 

d. the transport and conservation equations can be homogenized in a simple manner regarding 

thermodynamic variables and properties.  

 

A comprehensive discussion on these assumptions when dealing with oil and gas reservoir 

fluids can be found in Ref. [6]. 

 

2.1. Material balance equation 

To write the material balance equation per species, we consider an elementary representative 

volume of the porous medium filled with a reservoir fluid, in which ni is the number of moles 

of component “i” in this elementary volume.  

 
𝜕𝑛𝑖

𝜕𝑡
+ ∇𝐉𝐢 = 𝟎 (1) 

where, Ji is the total molar flux of each component, which is a linear function of the 

thermodynamic forces, composed of three contributions (advection, thermodiffusion and molar 

diffusion). It can be expressed in terms of molar quantities in the absence of an inertial term 

(hypothesis “a”) [6,7]: 

 𝐉𝐢 = −𝑛𝑖𝐿𝑃 (
V∇𝑃−𝑀 𝐠

𝑇
) + 𝑛𝑖𝐿𝑖𝑞∇ (

1

𝑇
) + 𝑛𝑖 ∑ 𝐿𝑖𝑗 (

𝑀𝑗 𝐠

𝑇
+ ∇ (−

𝜇𝑗

𝑇
)) 𝑗  (2) 

where P is the pressure, T the temperature, 𝜇𝑖 is the molar contribution of component “i” to the 

free energy of the fluid in the porous medium, it is the chemical potential in absence of specific 

interactions between the component “i” and the solid phase [6], g is the gravitational 

acceleration M is the molecular weight, V is the molar volume of the fluid, and Lp, Liq, Lij are 

phenomenological coefficients related to advection (i.e. barodiffusion), thermodiffusion and 

molar diffusion respectively.  

 

From the formulation of the molar flux per species, it is possible to deduce the advective fluid 

velocity which is simply the sum of the advective contributions of all components: 

 𝐔 = −
1

𝜌
∑ 𝑛𝑖𝑀𝑖𝐿𝑃 (

V∇𝑃−𝑀 𝐠

𝑇
)𝑖 = −

𝐿𝑝

𝑇
(∇𝑃 − 𝜌 𝐠) (3) 

where, ρ is the density. The sum of the thermodiffusive and diffusive contributions is nil in a 

closed system. However, it should be kept in mind that, in many petroleum reservoirs, there 
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exist some stationary light gas component fluxes coming from deep sources through water 

saturated surrounding rocks, i.e. open systems. In such situations, the sum of these contributions 

are not nil at the stationary state [6]. 

 

2.2. Energy equation 

If we neglect the viscous dissipation, the energy conservation equation can be written as: 

 
𝜕𝐻𝑚

𝜕𝑡
= ∇ ∙ 𝐉𝐓 (4) 

where Hm is the enthalpy of the saturated porous medium and the total heat flux JT is expressed 

by: 

 𝐉𝐓 =  𝐿𝑞𝑞∇ (
1

𝑇
) − 𝐿𝑃𝐻 (

V∇𝑃−𝑀 𝐠

𝑇
) + ∑ 𝐿𝑞𝑗 (

𝑀𝑗 𝐠

𝑇
+ ∇ (−

𝜇𝑗

𝑇
))𝑗  (5) 

in which ones recognizes a pure conduction contribution, an advective term and a 

thermodiffusion (Dufour) term with the corresponding phenomenological coefficients Lqq,  

Lp ,Lqj, respectively. H is the enthalpy defined as, 𝐻 = ∑ 𝑛𝑖ℎ𝑖𝑖 , where hi is the partial molar 

enthalpy of component i.  

The contribution of the molar flux of component “i” to the heat flux can be written as: 

 𝐉𝐪𝐢 = −𝑛𝑖ℎ𝑖𝐿𝑃 (
V∇𝑃−𝑀 𝐠

𝑇
) + 𝑛𝑖ℎ𝑖

∗ ∑ 𝐿𝑖𝑗 (
𝑀𝑗 𝐠

𝑇
+ ∇ (−

𝜇𝑗

𝑇
))𝑗  (6) 

in which ℎ𝑖
∗ is the molar enthalpy of component i carried out during molar diffusion. As for the 

difference between overall permeability and individual mobility [6], we distinguish between 

the enthalpy of the component in the bulk fluid flow ℎ𝑖 and the enthalpy transported by the 

same component, in and out the elementary volume, through a diffusion process, ℎ𝑖
∗. This 

difference is crucial. A single molecule carries only its own enthalpy. The energy balance of a 

single molecule in and out the elementary volume is not equal to its partial enthalpy in the fluid 

phase multiplied by the temperature difference if it moves alone independently from other 

molecules. ℎ𝑖
∗  differs from the partial enthalpy of the component “i” . 

From the previous equations, i.e. Eqs. (5-6), it is straightforward to deduce that the total heat 

flux can be written as : 

 𝐉𝐓 =  𝐿𝑞𝑞∇ (
1

𝑇
) − 𝐿𝑃𝐻

𝜌

𝑀
(

∇𝑃−𝜌 𝐠

𝑇
) + ∑ ∑ 𝑛𝑖𝐿𝑖𝑗ℎ𝑖

∗ (
𝑀𝑗 𝐠

𝑇
+ ∇ (−

𝜇𝑗

𝑇
))𝑗𝑖  (7) 

 

2.3. Molar flux 
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The reciprocal Onsager relations imply that the contribution of molar diffusive fluxes to the 

total heat flux must be consistent with the contribution of the thermal gradient to the molar 

diffusive fluxes. The coefficients are equal when the right thermodynamic forces and conjugate 

variables are selected [7]. Therefore, in the proposed formulation, the phenomenological 

thermodiffusion coefficients are: 

 𝐿𝑖𝑞 = 𝐿𝑞𝑖 =
1

𝑛𝑖
∑ 𝑛𝑗𝐿𝑖𝑗ℎ𝑖

∗
𝑗  (8) 

and the component fluxes, Eq. (2), can be expressed as : 

 𝐉𝐢 = −𝑛𝑖𝐿𝑃 (
V∇𝑃−𝑀 𝐠

𝑇
) + ∑ 𝑛𝑗𝐿𝑖𝑗ℎ𝑖

∗
𝑗 ∇ (

1

𝑇
) + 𝑛𝑖 ∑ 𝐿𝑖𝑗 (

𝑀𝑗 𝐠

𝑇
+ ∇ (−

𝜇𝑗

𝑇
)) 𝑗  (9) 

It should be noted that a similar approach was initially proposed by Haase [8] and applied to 

petroleum reservoir by Pedersen and Lindeloff in 2003 [9]. 

 

It is possible to go even further by using the fact that all the thermodynamic properties of a 

component i can be derived from its chemical potential and introducing the chemical potential 

gradient at constant temperature and the molar entropy obtains: 

 
∇𝜇𝑖

𝑇
=

−𝑠𝑖∇T+∇𝑇𝜇𝑖

𝑇
 (10) 

Finally, the driving force for molecular diffusion can be expressed as: 

 ∇ (−
𝜇𝑖

𝑇
) = −

∇𝑇𝜇𝑖

𝑇
− ℎ𝑖∇ (

1

𝑇
) (11) 

By combining Eqs. (9) and (11), the component fluxes can be written as: 

 𝐉𝐢 = −𝑛𝑖𝐿𝑃 (
V∇𝑃−𝑀 𝐠

𝑇
) + 𝑛𝑖 ∑ 𝐿𝑖𝑗 ((

𝑛𝑗

𝑛𝑖
ℎ𝑖

∗ − ℎ𝑗) ∇ (
1

𝑇
) −

∇𝑇𝜇𝑗

𝑇
+

𝑀𝑗 𝐠

𝑇
)𝑗  (12) 

 

The cross phenomelogical diffusion terms Lij are very difficult to get and can be considered to 

be small compared to the diagonal terms. This is of course not true for Fickian cross diffusion 

terms, even if they are usually small compared to the diagonal terms. The impact of chemical 

potential derivative matrix can even become singular at the critical point. Therefore, we 

consider: 𝐿𝑖𝑗 = 0  if  𝑖 ≠ 𝑗 and 𝐿𝑖𝑖 = 𝐿𝑖  if  𝑖 = 𝑗. In addition, if we use the following quantities: 

 𝑞𝑖 =
 ℎ𝑖−ℎ𝑖

∗

𝑇
 and 𝑄 = ∑ 𝑥𝑖

 ℎ𝑖−ℎ𝑖
∗

𝑇𝑖  (13) 

The final expressions of the molar fluxes become:   

 𝐉𝐢 = −𝑛𝑖𝐿𝑃 (
V∇𝑃−𝑀 𝐠

𝑇
) + 𝑛𝑖

𝐿𝑖

𝑇
(𝑞𝑖∇𝑇 − ∇𝑇𝜇𝑖 + 𝑀𝑖  𝐠) (14) 
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III. Practical formulations 

3.1. Pressure and chemical potential gradients 

3.1.1. General case in an open system 

The purpose of this section is to derive pressure and chemical potential gradients within the 

framework provided in the previous section. To do so, we first sum the component fluxes 

divided by Li which gives 

 
𝑀

𝜌
∑

𝐉𝐢

𝐿𝑖
𝒊 = −

𝐿𝑃

𝐿𝐷
(

V∇𝑃−𝑀 𝐠

𝑇
) +

𝑄

𝑇
 ∇T −

1

𝑇
∑ 𝑥𝑖(∇𝑇𝜇𝑖 − 𝑀𝑖  𝐠)𝒊  (15) 

where xi is the mole fraction of component i and LD, the average diffusion mobility, is given by: 

 
1

𝐿𝐷
= ∑

𝑥𝑖

𝐿𝑖
𝑖  (16) 

Applying the Gibbs-Duhem relationship [7] in the thermal field and the gravity field yields:  

 ∑ 𝑥𝑖(∇𝑇𝜇𝑖 − 𝑀𝑖  𝐠)𝒊 = ∑ (∇𝑇𝜇𝑖 − 𝑀𝑖  𝐠)𝒊 + 𝑆∇𝑇 = 𝑉∇𝑃 − 𝑀𝐠  (17) 

Then, it is possible to deduce the pressure gradient: 

 ∇𝑃 − 𝜌g =

𝜌

𝑀
𝑄∇𝑇−𝑇 ∑

Ji
𝐿𝑖

𝑖

𝐿𝑃
𝐿𝐷

+1
 (18) 

and using Eq.(14) and Eq.(18) we obtain the chemical potential gradient at constant 

temperature: 

  ∇𝑇𝜇𝑖 − 𝑀𝑖  𝐠 = (𝑞𝑖 −
𝐿𝑝

𝐿𝑖
(

𝑄
𝐿𝑃
𝐿𝐷

+1
)) ∇𝑇 −

𝑀

𝜌
 𝑇 (

Ji

𝑥𝑖𝐿𝑖
−

∑
𝐉𝐣

𝐿𝑖
𝒋

𝐿𝑖(
𝐿𝑃
𝐿𝐷

+1)
) (19) 

It should be emphasized that, in our approach, the link between thermodynamic properties and 

transport properties is build-in. The stationary state is a balance between the various forces 

weighted by the mobility of each molecule. 

 

There are some interesting features in Eq. (19): 

• The separation in a thermal field is sensitive to the relative diffusion coefficients 

at stationary state. In porous media, the separation is sensitive to the permeability 

(through LP coefficient) when the overall mobility LP is similar to the average 

diffusive mobility LD.  
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• The magnitude of the separation depends on qi quantities:  difference between 

the enthalpy of the component in the bulk flow and the enthalpy of the same 

component moving independently through a diffusion process. 

• External fluxes impact the compositional distribution, as expected from fluxes, 

cf. eq. (12). External fluxes values that just cancel the thermodiffusion are given 

by 𝐉𝐢 =
𝜌

𝑀
 𝑥𝑖𝐿𝑖  

𝑞𝑖

𝑇
 ∇𝑇 

 

3.1.2. Closed system 

In a closed system, the previous relations reduce to: 

  ∇𝑇𝜇𝑖 − 𝑀𝑖  𝐠 = (𝑞𝑖 −
𝐿𝑝

𝐿𝑖
(

𝑄
𝐿𝑝

𝐿𝐷
+1

)) ∇𝑇  (20) 

 ∇𝑃 − 𝜌g =
𝜌

𝑀
(

𝑄
𝐿𝑝

𝐿𝐷
+1

) ∇𝑇 (21) 

As expected, summation of Eq. (20) verifies Gibbs-Duhem [7] relation:  

 ∑ 𝑥𝑖(∇𝑇𝜇𝑖 − 𝑀𝑖  𝐠)𝑖 =
Q

𝐿𝑝

𝐿𝐷
+1

  ∇𝑇  =   
𝑀

𝜌
  (∇𝑃 − 𝜌g)  =  𝑉∇𝑃 − 𝑀g  (22) 

 

Permeable porous media case 

In case of a high overall mobility (LP >>LD), Eq.(20) reduce to: 

    ∇𝑇𝜇𝑖 − 𝑀𝑖  𝐠 = (𝑞𝑖 −
𝐿𝐷

𝐿𝑖
𝑄) ∇𝑇 (23) 

and according to Eq.(21) the pressure gradient becomes hydrostatic: ∇𝑃 = 𝜌g. This is true only 

if  LP >>LD , we will see in §3.3 that this is true for most of the petroleum reservoirs except for 

the unconventional play (Oil and Gas shale). Practical expressions for LP and LD are given in 

$3.3. Thus, in permeable porous media, the separation results from a balance between two 

forces. The thermal force pushes the molecules but the diffusion process holds it back. 

 

Low permeability porous media case 

In case of low overall mobility (tight porous media) Eq.(20) reduce to: 

   ∇𝑇𝜇𝑖 − 𝑀𝑖  𝐠 = 𝑞𝑖∇𝑇 (24) 

 ∇𝑃 − 𝜌g =
𝜌

𝑀
𝑄 ∇𝑇  (25) 
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Thus, in low permeability porous media, the thermal gradient induces the highest possible 

pressure gradient. Interestingly, without gravity, the pressure gradient becomes: 

 ∇𝑃 =
𝑄

𝑉
 ∇𝑇 (26) 

Applied to a pure compound this just means that ∇𝜇 = 0  and it leads to the Clapeyron equation 

[10] along an interface if Q=Sres. (molar residual entropy). It is a strong indication that 𝑞𝑖 should 

be related to the molar residual entropy of component “i” in a mixture. We will come back on 

that important point latter. 

3.1.3. Aerial thermal gradient 

In the case of a liquid vapour interface subjected to an aerial thermal gradient and a gravity, see 

Fig 1, which is sometimes found in large fields, it is possible to derive the tilt angle from Eq. 

18 by applying this equation in both phase along the interface. 

 

 

Fig.1: Interface subjected to gravity and thermal gradient 

 

For a small angle: 

 sinφ =
𝛿

1+𝛿
 𝑠𝑖𝑛𝜃 with δ =

1

(𝜌𝑙−𝜌𝑣)g
   (

𝑄𝑣
𝑉𝑣

1+
𝐿𝑝𝑣

𝐿𝐷𝑣

−

𝑄𝑙
𝑉𝑙

1+
𝐿𝑝𝑙

𝐿𝐷𝑙

)
𝑑𝑇

𝑑𝑥
 (27) 

As expected, for high permeability (𝐿𝑝 ≫ 𝐿𝐷), the tilt angle is nil. For low permeability 

(𝐿𝑝 ≪ 𝐿𝐷), δ reduced to: 

 δ =
(

𝑄𝑣
𝑉𝑣

−
𝑄𝑙
𝑉𝑙

)

(𝜌𝑙−𝜌𝑣)g
   

𝑑𝑇

𝑑𝑥
 (28) 

   

Z

X

g ∆

T

q

Liquid

Vapor

f
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3.2. Link with usual thermodynamic properties 

The difference between the value K of any thermodynamic function of fluid at P and T, and its 

value K° at the same temperature calculated for an ideal gas behaviour at reference pressure P°, 

or reference volume V°, is denoted as a departure from the ideal behaviour, a configurational 

property, or a residual part of the thermodynamic function, ∆𝐾𝑜. The link between the two 

configurational properties is [10]: 

 ∆𝐾 𝑇,𝑉
𝑜 =  ∆𝐾 𝑇,𝑃

𝑜 + ∫ (
𝜕𝐾 𝑇,𝑃

𝑜

𝜕𝑃
)

𝑇,𝑛
𝑑𝑃

𝑃
𝑅𝑇

𝑉

  (29) 

Our approach is based on material and enthalpy balance for an elementary volume. Therefore, 

we use V and T reference conditions to link thermodynamic and transport properties in the 

following. It should be noticed that ideal enthalpy using P and T or V and T reference conditions 

are the same but ideal entropy and ideal chemical potential are different.  

The chemical potential of a component can be replaced by its fugacity coefficient 𝜑𝑖 :  

 𝜇𝑖 = 𝑅𝑇 log 𝜑𝑖 + 𝜇𝑖(𝑇,𝑃)
𝑜 = 𝑅𝑇 log 𝜑𝑖 + 𝜇𝑖(𝑇,𝑉)

𝑜 + 𝑅𝑇 log 𝑍   (30) 

where R is the gas constant and 𝑍 = 𝑃𝑉/𝑅𝑇 is the compressibility factor. It is then possible to 

express the residual parts of the chemical potential, enthalpy and entropy as: 

 𝜇𝑖
𝑟𝑒𝑠 = 𝑅𝑇 log 𝜑𝑖  + 𝑅𝑇 log 𝑍, 

 ℎ𝑖
𝑟𝑒𝑠 = 𝑅𝑇2 𝜕 log 𝜑𝑖

𝜕𝑇
, 

 𝑠𝑖
𝑟𝑒𝑠 = −𝑅 log 𝜑𝑖 − 𝑅𝑇

𝜕 log 𝜑𝑖

𝜕𝑇
   − 𝑅 log 𝑍  (31) 

It is observed that the diffusive part of the flux of a component through the elementary volume 

is driven by its chemical potential gradient and temperature gradient, see Eq. (6). We concluded 

that the enthalpy of the component in the bulk flow ℎ𝑖 is different from the enthalpy of the same 

component moving alone independently through a diffusion process ℎ𝑖
∗. However, the chemical 

potential is the same for the diffusing component at the boundary in and out the elementary 

volume, i.e. 𝜇𝑖
∗ =  𝜇𝑖. This implies that: 

 𝑞𝑖 =
ℎ𝑖−ℎ𝑖

∗

𝑇
=

𝜇𝑖−𝜇𝑖
∗

𝑇
+ 𝑠𝑖 − 𝑠𝑖

∗ = 𝑠𝑖 − 𝑠𝑖
∗
 (32) 

At this point, we assume that the entropy of the component “i’ alone diffusing in and out the 

elementary volume is its ideal entropy at reference T and V conditions. Such a clear link between 

thermodiffusion and residual entropy is strongly supported by recent results obtained from 

molecular simulations of isotopic mixtures [11] and is consistent with what known for other 
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transport properties [12-13]. It is also compulsory to be consistent with the Clapeyron equation 

along a vapour/liquid interface. 

But it remains an assumption until we could make a clear evaluation of the heat transfer through 

molecular diffusion.  

It is then possible to deduce that: 

 𝑞𝑖 = 𝑠𝑖 − 𝑠𝑖
∗ = 𝑠𝑖

𝑟𝑒𝑠 = −𝑅 log 𝜑𝑖 − 𝑅𝑇
𝜕 log 𝜑𝑖

𝜕𝑇
− 𝑅 log 𝑍 (33) 

 𝑄 = 𝑆𝑟𝑒𝑠 = −𝑅 log 𝑍 − 𝑅 ∑ 𝑥𝑖 (log 𝜑𝑖 + 𝑇
𝜕 log 𝜑𝑖

𝜕𝑇
)𝑖  (34) 

and, at a consequence, ℎ𝑖
∗ = ℎ𝑖

𝑜 + 𝜇𝑖
𝑟𝑒𝑠, where the enthalpy of the component moving alone 

through a diffusion process ℎ𝑖
∗ is the ideal enthalpy of the component plus the residual part of 

the chemical potential. 

With an explicit gravitational potential the chemical potential gradient of molecule “i”  is given 

by Eq. 19: 

 ∇𝑇𝜇𝑖 = 𝑀𝑖  𝐠 + (𝑞𝑖 −

𝐿𝑝

𝐿𝑖
𝑄

𝐿𝑝

𝐿𝐷
+1

) ∇𝑇 −
𝑀

𝜌
 

𝑇

𝐿𝑖
 (

Ji

𝑥𝑖
−

∑
𝐿𝑝

𝐿𝑘
Jk𝑘

𝐿𝑝

𝐿𝐷
+1

)  (35) 

which reduces to, without external fluxes (closed system) in a permeable system: 

 ∇𝑇𝜇𝑖 = 𝑀𝑖  𝐠 + (𝑞𝑖 −
𝐿𝐷

𝐿𝑖
𝑄) ∇𝑇 (36) 

The chemical potential gradient can then be replaced by compositional gradients: 

 ∇𝑇𝜇𝑖 = 𝑅𝑇 ∑ (
𝛿𝑖𝑗

𝑥𝑗
+

𝜕 log 𝜑𝑖

𝜕𝑥𝑗
) ∇𝑥𝑗 + 𝑣𝑖∇𝑃𝑗  (37) 

And, starting from a reference point at which the fluid properties are known, the new 

compositions are obtained by solving a set of linear equations. 

 

3.3. Link with usual transport properties 

The phenomenological coefficients defined so far, Li,  Lp ,Lqj are not practical quantities. Thus, 

in the following we link these coefficients with more usual quantities. The phenomenological 

advection coefficient is simply deduced from the fact that the advective fluid velocity without 

chemical and thermal forces is described by a simple Darcy’s law [6]: 

 𝐔 = −
𝑘

𝜂
(∇𝑃 − 𝜌 𝐠) (38) 

where, k is the permeability of the porous medium and  the viscosity of the fluid. From Eq. 

(3), therefore, it is possible to deduce that : 
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 𝐿𝑃 =
𝜌

𝑀
𝑇

𝑘

𝜂
=

𝑃

𝑍𝑅

𝑘

𝜂
 (39) 

The phenomenological diffusion coefficient Li can be linked to the usual effective diffusion 

coefficient Di, only when dealing with ideal mixtures: 𝐿𝑖 = 𝐷𝑖/𝑅. 

The average diffusion mobility LD is linked to usual effective diffusion coefficient Di of the 

components [6], therefore: 

 
𝐿𝑖

𝐿𝐷
= ∑

𝑥𝑘

𝐿𝑘
𝑘 𝐿𝑖 = 𝐷𝑖 ∑

𝑥𝑘

𝐷𝑘
𝑖  (40) 

 

In the general case, using eq. (37), we have : 

 𝐿𝑖 [(1 + 𝑥𝑖
𝜕 log 𝜑𝑖

𝜕𝑥𝑖
) ∇𝑥𝑖 + 𝑥𝑖 ∑

𝜕 log 𝜑𝑖

𝜕𝑥𝑘
∇𝑥𝑘𝑘≠𝑖 ] ≡

𝐷𝑖

𝑅
∇𝑥𝑖 (41) 

And the evaluation of the phenomenological diffusion coefficient Li cannot be made 

straightforwardly from usual diffusion coefficients. However, for a dilute component in a 

solvent mixture, far from critical conditions, we can approximate our mobility coefficients by : 

 𝐿𝑖 =
𝐷𝑖

𝑅(1+𝑥𝑖
𝜕 log 𝜑𝑖

𝜕𝑥𝑖
)
 (42) 

In dense fluids, the effective infinite dilution diffusion coefficient of a species is roughly 

inversely proportional to the section of the molecule, i.e. a volume at an exponent  of about 

2/3. For practical application with an equation of state, as will be seen in the following, we 

assume that 𝐷𝑖 is proportional to 𝑏𝑖
−𝜏

, where 𝑏𝑖 is the covolume of the studied component [10] 

defined as 𝑏𝑖 ∝ 𝑇𝑐𝑖/𝑃𝑐𝑖 where 𝑇𝑐𝑖 and 𝑃𝑐𝑖 are the critical temperature and the critical pressure 

of component i respectively. With this formulation and assuming that all components are 

diluted, we can deduce that: 

 
𝐿𝑖

𝐿𝐷
= 𝐿𝑖 ∑

𝑥𝑘

𝐿𝑘
𝑘 =

(
𝑇𝑐𝑖
𝑃𝑐𝑖

)
−𝜏

(1+𝑥𝑖
𝜕 log 𝜑𝑖

𝜕𝑥𝑖
)

∑ 𝑥𝑘𝑘

(1+𝑥𝑘
𝜕 log 𝜑𝑘

𝜕𝑥𝑘
)

(
𝑇𝑐𝑘
𝑃𝑐𝑘

)
−𝜏  (43) 

We use (𝑇𝑐𝑖/𝑃𝑐𝑖)
−𝜏 for practical reasons, the right quantities are the square of molecular size.  

In addition, since LP and LD  are both inversely proportional to the fluid viscosity, it is interesting 

to notice that the LP / LD ratio in equations (35) and (36) is independent of the fluid viscosity. 

In dense fluid, this ration depends mainly on the ratio between the size of the molecules and the 

size of the pore throat. 

For typical reservoir fluid composition and typical reservoir conditions, the ratio LP / LD 

becomes close to unity when the permeability is in the range 10 to 100 nanoDarcy which 
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corresponds to the permeability of shale. In the case of usual reservoir permeability this ratio is 

very large and equation (36) can be applied to get the compositional gradient. 

 

 

3.4. Practical resolution algorithm 

For practical applications, one can use an equation of state (EoS) model, in that work a classical 

Peng-Robinson EoS with Peneloux volume translation [10], to compute all quantities [5, 14]. 

The simplest formulation is to calculate the composition at a given depth, (Z), and temperature, 

as a function of a reference point “ref” where all properties are known. Starting from Eq. (36) 

we get: 

 
𝑥𝑖

𝑥𝑖
𝑟𝑒𝑓 =

𝑃𝑟𝑒𝑓

𝑃

𝜑𝑖
𝑟𝑒𝑓

𝜑𝑖
𝑒

(𝑀𝑖 𝐠+(𝑞𝑖−
𝐿𝐷
𝐿𝑖

𝑄)∇𝑇)
(𝑍−𝑍𝑟𝑒𝑓)

𝑅𝑇  (44) 

where fugacity coefficients have to be evaluated at the same temperature. If the gravity forces 

are not balanced, the new pressure P is equal to the reference pressure plus the weight of the 

fluid column. Thus, the contribution of the pressure to the fugacity ratio can be included in the 

gravity term: 

 
𝑥𝑖

𝑥𝑖
𝑟𝑒𝑓 =

𝜑𝑖
𝑟𝑒𝑓

𝜑𝑖
𝑒

((𝑀𝑖 −ρ𝒗𝒊)𝐠+ (𝑞𝑖−
𝐿𝐷
𝐿𝑖

𝑄)∇𝑇)
(𝑍−𝑍𝑟𝑒𝑓)

𝑅𝑇
 (45) 

 

Where  

 𝑣𝑖 =
𝑅𝑇

𝑃
+ 𝑅𝑇

𝜕 log 𝜑𝑖

𝜕𝑃
 (46) 

In this case, the fugacity at the point of interest must be calculated at the same pressure than the 

reference point. 

This set of equations clearly shows the competition between gravity and thermodiffusion forces. 

A perfect balance is obtained if: 

  (𝑀𝑖 − ρ𝒗𝒊) 𝐠 + (𝑞𝑖 −
𝐿𝐷

𝐿𝑖
𝑄) ∇𝑇 = 0 (47) 

And external fluxes values that just cancel the thermodiffusion are given by: 

 𝐉𝐢 =
𝜌

𝑀
 𝑥𝑖𝐿𝑖  

𝑞𝑖

𝑇
 ∇𝑇 (48) 

 

IV. Application and validation 
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In this section, the proposed approach has been applied on a realistic reservoir fluid in reservoir 

conditions to determine the influence of thermodiffusion on species vertical distribution. More 

precisely, a fluid column of 450m height (located between -5325m and -5775m) subjected to a 

geothermal gradient of 0.029K/m and gravity has been modeled. The temperature and the 

pressure at -5525m are 87.5°C and 641 bar, respectively. 

 

4.1. Parameterisation of the studied system 

It is worth mentioning that validation on a real field case is almost impossible because of the 

uncertainty on fluid samples.  There are also various factors that may impact the compositional 

gradient [6] and it is rather difficult to be sure that the stationary state is reached. Therefore, to 

apply and verify the proposed approach we used a realistic fluid composition but, instead of 

using real field data, the influence of gravity and thermal gradient were evaluated through Non-

Equilibrium Molecular Dynamics (NEMD) simulations based on the methodology described in 

refs. [14,15]. 

Furthermore, modern analytical technics give us a huge number of components and it is not 

possible to use a full fluid description of reservoir fluid in NEMD simulation. Thus, we used a 

thermodynamic lumping technique, to reduce the number of components of the studied oil to a 

manageable value (8 pseudo-components in this case as shown in Table 1). More precisely, 

lumping was achieved a standard approach based on volatility under engineering constraints 

(groups correspond to boiling points cuts). The small amount of nitrogen was lumped with 

methane (N2C1) and the heavy ends C20+ was divided in two cuts (CN1 and CN2). 

The properties of the pseudo-components (critical properties, Tc and Pc, and acentric factors, 

) were deduced from the constraint of iso-chemical potential at initial reservoir conditions 

because EOS parameters of the pseudo component must be the same than calculated values 

from EOS mixing rules based on initial reservoir fluid compositions. The usual properties of 

the pseudo-components (critical parameters and acentric factors) were deduced from the 

calculated EOS parameters. And volume translation parameters Ci  were obtained by averaging 

the pure component values. 

 

Pseudo-

components 

Mole % 

@5525m 
M (g/mol-1) Tc (K) Pc (bar)  Ci 

N2C1 36.273 16.12 190.26 46.33 0.0117 -0.220 

CO2 37.262 44.01 304.10 73.70 0.2389 -0.030 
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C2 4.795 30.07 305.43 48.84 0.0986 -0.070 

C3C4 5.373 49.52 388.85 40.40 0.1653 -0.010 

C5C10 6.061 99.29 572.15 30.20 0.2924 0.020 

C11C19 4.948 196.19 728.15 20.60 0.4746 0.025 

CN1 2.849 331.82 883.15 15.20 0.7300 0.030 

CN2 2.439 569.31 1173.15 13.50 0.9790 0.035 

Table 1 : Thermodynamic properties of pseudo-components used to describe the oil.  

 

The transcription of the properties of the pseudo-component into molecular models used in 

molecular dynamics has been achieved using a top-down strategy based on the corresponding 

states, similarly to what done in ref. [16]. More precisely, we have used the Lennard-Jones 

chains model to represent the pseudo-component in which the molecular parameters (: sphere 

diameter, : potential depth and N: number of segments) were adjusted so as to yield exactly 

the critical temperature and the critical pressure, except for CO2. All molecular parameters so 

defined are provided in Table 2. For CO2 we have used the force field developed in ref. [17]. 

Classical Lorentz-Berthelot combining rules were used to define the cross molecular 

parameters. This coarse grained molecular model, even if perfect, is known to describe 

reasonably well thermodiffusion and PVT properties of hydrocarbons mixtures [5, 14].  

 

Pseudo-

components N  (j.mol-1)  (Å) 

N2C1 1 1209 3.697 

C2 2 1438 3.289 

C3C4 2 1831 3.760 

C5C10 3 2277 4.095 

C11C19 5 2501 4.149 

CN1 8 2798 4.222 

CN2 10 3459 4.468 

Table 2 : Molecular parameters of pseudo-components used to describe the oil 

 

The last parameter to define is the exponent  appearing in the mobility ratio of Eq. (43): 
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𝐿𝑖

𝐿𝐷
= 𝐿𝑖 ∑

𝑥𝑘

𝐿𝑘
𝑘 =

(
𝑇𝑐𝑖
𝑃𝑐𝑖

)
−𝜏

(1+𝑥𝑖
𝜕 log 𝜑𝑖

𝜕𝑥𝑖
)

∑
𝑥𝑘

(
𝑇𝑐𝑘
𝑃𝑐𝑘

)
−𝜏𝑖 (1 + 𝑥𝑘

𝜕 log 𝜑𝑘

𝜕𝑥𝑘
) 

As an initial value we have chosen to take  = 0.6 as done in the correlation of Wilke and Chang 

which is known to apply well on the hydrocarbon homologue series [10]. It should be recalled 

that the applicability of this relation is based on the fact that most of the component can be 

considered as “diluted” in the reservoir fluid. It is obviously the case of the components of the 

liquid fraction but it is not the case of some light components (CH4 and CO2 in our example). 

We assume that such an approximation remains valid for these small molecules in the reservoir 

fluid. 

 

 

4.2. Results 

As mentioned previously, a fluid column of 450m height was simulated by NEMD subject to 

gravity with, and without, a realistic thermal gradient of 0.029K/m to build the reference 

solution used to validate the thermodynamic model developed in this work. NEMD 

compositional profiles of some of the pseudo component are shown in Figs. 1 and 2. Then, 

computations have been achieved using the proposed thermodynamic model. The composition 

at depth -5525m was used as a reference for EOS modelling, EOS calculations make use of a 

reference depth composition, NEMD simulation use an average composition. For sake of 

comparison we use the composition at 5525m obtained from anisothermal NEMD simulation 

as the reference composition for EOS calculation. Since the average composition depends on 

the profile, it is not possible to get the same reference composition for the different cases. 
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Figure 2: Compositional profile of the two lightest compounds of the oil. 

  

  

Figure 3: Compositional profile of the two heaviest compounds of the oil. 

 

First, it is interesting to notice, see Figs. 2 and 3, that this realistic thermal gradient leads to an 

almost perfect compensation of the gravity force by the thermodiffusion force. Even, if this 

behavior has been noticed for other systems, such as acid gas [5] or synthetic oil [14], such a 

behavior is particularly striking for the heavy cuts (CN1 and CN2) which are highly segregated 

when gravity alone is applied. 

Second, Figures 2 and 3 show a qualitative agreement between results from NEMD simulations 

and those obtained from the proposed thermodynamic models with or without thermal gradient. 

Thus, as the results obtained by the two approaches without gravity are similar, this indicates 

that the thermodynamic model proposed in this work, despites its intrinsic assumptions, 

captures well the influence of thermodiffusion on the compositional profiles without any fitting 

parameters. However, it should be pointed out that the sensitivity to exponent  is large as 

shown in Fig. 4 and that a better fit could be obtained for  = 0.59. 
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Figure 4: Compositional profile of CO2, sensitivity tests on  

 

From this application we can deduced that our approach is good enough for practical application 

in the petroleum industry. But it may be due to the large number of components in the reservoir 

fluids and it could be necessary for other mixtures to account for cross phenomenological 

coefficients in Eq. (2). One of the key figures is that the molecular diffusive mobility appears 

only as divided by the average diffusive mobility (Eq.(43)). Therefore the evaluation of this 

ratio do not require information on the P,T,  dependency of these coefficients. We just need 

to know how these coefficients vary with the properties of the molecule itself. The other part 

of the thermal force is a simple thermodynamic property and accurate enough when the EOS 

model have been tuned on a large set of experimental data. 

 

 

 

4. Conclusions 

Thanks to an irreversible thermodynamic approach, we developed expressions providing the 

chemical potential gradients and the pressure gradient induced by the geo-thermal field in a 

petroleum reservoir. In the final expressions, the chemical potential gradients are proportional 

to the temperature gradient, and the proportionality coefficients are molar residual entropy of 
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each component balanced by the average residual entropy multiplied by the relative diffusion 

mobility of the components. 

The obtained relations imply that the species relative separation in a thermal field is sensitive 

to the relative diffusion coefficients at stationary state. In porous media, the separation is 

sensitive to the permeability when the overall mobility is similar to diffusive mobility. In 

addition, the magnitude of the separation depends on the residual entropy of the species and the 

separation is not simply balanced by the average residual entropy. The balance is modified by 

the relative diffusion mobility of the components. Another interesting feature of the proposed 

relations is that in low permeability porous media, the thermal gradient induces a pressure 

gradient proportional to the fluid residual entropy. 

Combined with an equation of state and a classical correlation for transport properties, the 

proposed relations do not need fitting parameters to model the impact of the thermal gradient 

on pressure and compositional gradients. As a test, the proposed approach has been applied on 

an eight pseudo-components reservoir fluid subjected to a geothermal gradient. First results in 

terms of compositional profiles versus depth have shown to be in good agreement with non-

equilibrium molecular dynamics simulation results at the stationary state.  
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