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Abstract

We use a Shadow Particle Tracking Velocimetry technique (S-PTV) with collimated light to investigate the dynamics of a turbulent

von Kármán (VK) flow in water. Such a PTV technique permits easy calibration since the apparent particle positions on the

images do not depend on the camera-particle distance and tracking of small objects (100 μm particles, fibers, ...) with low power

LEDs light sources is made possible in a large volume (approximately (6 cm)3). This technique provides an ensemble of Lagrangian

trajectories which are conditioned in space on a grid in order to reconstruct the 3d Eulerian mean flow together with its fluctuations.

Typical Lagrangian statistics can also be obtained with this technique, such as velocity and acceleration auto-correlation functions.
c© 2016 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of organizing committee of the 24th International Congress of Theoretical and Applied Mechanics.
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1. Introduction

Turbulent flows play a major role in mixing, chemical process in reactors, and has received much attention over the

years. In the field of experimental fluid dynamics research, significant progress has been made during the last decade

with the advent of space and time resolved optical techniques based on high-speed imaging13. However, classical

techniques such as Particle Image Velocimetry reduces the available information (2 or 3 components in a plane)

which may impede or complicate a direct resolution of the Eulerian flow, especially when the flow is created in a

complex geometry. In this context, Lagrangian techniques such as Particle Tracking Velocimetry, offer the possibility

for a full 3d characterization of the flow properties at a modest computational cost15,10,13. By using an ensemble of

fast cameras, PTV permits tracking of small particles (10 − 100 μm large) in turbulent flows with Reynolds numbers

Rλ > 100 with a temporal resolution of the order of the Kolmogorov frequency fK =
√
ε/ν ∼ 1 − 10 kHz, ε being

the injected power per unit mass, and ν the fluid viscosity. However when developing a PTV setup with classical

illumination, one confronts several difficulties: the quality of images depends strongly on the particle characteristics

(refraction index, size), a complex 3d calibration is required in order to achieve stereo-matching between the different

camera views14, and powerful light sources (high power LEDs, or a high power laser) are requisite when tracking
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small objects. To overcome these difficulties we have developed a new optical setup inspired from previous works3

which tracks particles’ shadows produced when using parallel lighting.

2. Shadow Particle Tracking setup

2.1. Experimental setup

The experimental apparatus is a von Kármán flow that has been used previously3 with a square cross-section of 15

cm on each side. Two bladed discs of radius R = 7.1 cm counter-rotate at constant frequency Ω (figure 1 (a)) and are

20 cm apart. The flow has a strong mean spatial structure arising from the counter rotation of the disks. The azimuthal

component resulting from this forcing is of order 2πRΩ near the disks’ edge and zero in the mid-plane (z = 0), creating

a strong axial gradient (figure 1 (a)). The disks also act as centrifugal pumps ejecting the fluid radially in their vicinity,

resulting in a large-scale poloidal recirculation with a stagnation point in the geometrical centre of the cylinder (figure

1 (b)). Using water to dilute an industrial lubricant, UconTM, a mixture with a viscosity of 8.2 m2s−1 and a density of

ρ = 1000 kg.m−3 allows the production of an intense turbulence with a Taylor-based Reynolds number Rλ = 200 and a

dissipative length η = 130 microns (see table 1 for more details on the flow parameters). We perform particle tracking

of Lagrangian tracers (250 μm polystyrene particles with density ρp = 1060kg.m−3) in a large volume 6× 6× 5.5 cm3

centered around the geometrical centre ((x, y, z) = (0, 0, 0)) of the flow with 2 high-speed video cameras (Phantom

V.12, Vision Research, 1Mpix@7kHz) with a resolution 800 × 768 pixels, and a frame rate up to fs = 12 kHz. Such

a sampling frequency is sufficient for resolving particle acceleration, calculated by taking the second derivative of the

trajectories.
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Fig. 1. (a) Sketch of the counter-rotating von Kármán flow. Arrows indicate the topology of the mean flow, the dashed line indicates the mid-plane

of the vessel. (b) Schematic cut of the vessel along the (z, x) or (z, y) plane. (c) Optical setup for S-PTV with 2 identical optical arrangements

forming an angle θ = 90 degrees (only the vertical arm is described). The 1W LED source is imaged in the focus of a parabolic mirror to form

a large collimated beam. A converging lens and a diaphragm are used to make the LED a better point-like source of light. Light is propagating

through the flow volume using a beam splitter (BS) before being collected using a 15 cm large lens whose function is to redirect the light into the

camera objective of the camera. The optical system [L2+objective] is focussed on the output face of the vessel marked with a dashed-dotted line.

The camera setup is inspired from a previous work3 and is depicted in figure 1 (c). It consists of 2 identical optical

configurations with a small LED located at the focal point of a large parabolic mirror (15 cm diameter, 50 cm focal

length) forming 2 collimated beams which are perpendicular to each other in the measurement volume. A converging

lens and a diaphragm are used to make the LED a better point-like source of light. This large parallel ray of light then

reflects on a beam splitter and intersects the flow volume before being collected by the camera sensor using a doublet
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consisting of a large lens (15 cm in diameter) and the camera objective. All optical elements are aligned using large

(home made) reticules which also precisely measure the magnification in each arrangement. When placing an object

in the field of view, it appears as a black shadow on a white background corresponding to the parallel projection of

the object on the sensor. The particle size and shape do not depend on the object-to-camera distance, as opposed to

classical lighting schemes where the apparent object size is a decreasing function of the object-to-camera distance.

When particles are tracked, camera 1 will then provide their (x1, z1) 2d positions while camera 2 will measure their

(y2, z2) positions. The z coordinate is redundant and we have the equation z2 = az1 + b where a and b account for

slight differences in the magnification and centering between both arrangements, respectively.

Ω v′x v′y v′z v′ τη η ε Rλ Re
Hz m.s−1 m.s−1 m.s−1 m.s−1 ms μm W.kg−1 - -

4.2 0.39 0.37 0.24 0.34 3.2 162 0.8 175 16200

5.5 0.50 0.49 0.33 0.45 2.1 130 1.9 200 21200

6.9 0.62 0.62 0.41 0.56 1.5 111 3.6 225 26700

Table 1. Parameters of the flow. Ω, rotation rate of the discs; ε, dissipation rate obtained from the power consumption of the motors. The rms

velocities are obtained at the geometrical centre of the flow using data points situated in a ball with a 1 cm radius. The Taylor-based Reynolds

number is estimated as Reλ =
√

15v′4/νε with v′ =
√

(v′x2 + v′y2 + v′z2)/3. The large scale Reynolds number is Re = 2πR2Ω/ν. The kinematic

viscosity of the water-UconTM mixture is ν = 8.2 10−6 m2s−1 with a density ρ = 1000kg m−3.

2.2. Tracking algorithms

Given the magnification of the setup (1/4, 1px equals 90 μm), the depth of field of the optical arrangement is

larger than the experiment. As both beams do not overlap on the entire flow volume, particles situated in one arm but

outside the measurement volume can give a well contrasted image on one camera while not being seen by the other.

Such a situation could lead to a wrong stereo-matching event when many particles are present. This is illustrated on

figure 2 (a), where the shadows left by two particles situated at the exact same z position but outside of the beams

overlap (black dots) could be interpreted as one particle within the overlapping region (dashed circle). To mitigate

these errors we construct 2d trajectories for each camera using the (x1, z1) and (y2, z2) coordinates separately. Once

tracked in time, these trajectories may be stereo-matched instead of individual particle positions. One may note that

while typical PTV algorithms perform stereo-matching on particle positions followed by trajectory construction, we

proceed in the opposite order. The advantage of this method is that neither stereo-matching nor tracking errors are

made, as will be detailed below. Due to the necessity of trajectory occurrence in the overlapping beam area, one must

track many more 2d trajectories than are stereo-matched. One last drawback is the projection of 3d positions into a

plane, which strongly decreases the inter-particle distance making apparent particle overlap an issue when the particle

diameter becomes large with respect to the effective measurement volume. However, the presence of a redundancy

in the z coordinate may be used to overcome such indetermination when the apparent proximity results only from

projection.

We implement a 2d tracking scheme using a 4 Frames Best Estimate method inspired from previous works.9,8,17.

Stereo-matching is then performed by identifying trajectories with z1(t) � z2(t) using the relation z2 = az1 + b as

shown in figure 2 (b). This key relation is determined recursively using a dilute ensemble of particles for which an

initial identification of a single pair of 2d trajectories allows a first estimate of the relationship between z2 and z1.

As more trajectories are found, the affine relationship is refined until the maximum possible amount of trajectories

for a single experiment is obtained. In this recursive manner, the tracking algorithm is self-calibrating. Here the

parameters are a = 0.98, b = 15.6 px estimated from 1900 matched trajectories, corresponding to 6 106 data points

as shown in figure 2 (c). Together with the pixel-to-mm conversion from one of the cameras, this method provides

all relevant information about particle positions in laboratory coordinates. By taking only trajectories that are long

enough to ensure a proper stereo-matching (typically 70 time-steps, approximately 2.5τη), we prevent the inclusion

of any anomalous trajectories. Such an occurrence becomes increasingly unlikely as the trajectory duration threshold

is increased. A false trajectory can only occur when the relationship z2 = az1 + b leads to an indetermination when

particles are close to colliding, an extraordinarily rare event in dilute situations. After tracking and stereo-matching
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Fig. 2. (a) Scheme of the intersecting parallel light beams showing individual particle stereo-matching is not reliable. The black dots are two

particles at the same z position outside of the beam overlapping region and the dashed circle is a particle at the same z position within the region

(both situations being measured identically by the cameras). (b) Time evolution of the raw z (redundant) coordinate of the same particles as obtained

with 2d tracking with cam1 and cam2. Only 38 matched trajectories are plotted. (c) Affine relation between z2 = az2 + b (a = 0.98, b = 15.6 px)

measured with 1900 trajectories corresponding to 6 105 data points. (d) Random sample of 150 trajectories in the vessel obtained from the same

movie.

each pair of movies gives an ensemble of trajectories from which all single particle statistics can be computed as

shown in figure 2 (d).

3. Flow measurements

The measurement volume (6 × 6 × 5.5 cm3) covers more than an integral scale (Lv = v′3ε−1 � 4.8 cm) in all

directions, rendering it inhomogeneous and necessitating a sufficient number of trajectories to converge spatially and

temporally conditioned statistics . We record 200 pairs of movies with a duration of 1.3 seconds at 12kHz and obtain

O(1000) tracer trajectories per film. A statistical ensemble of O(105) trajectories with mean durations 〈t〉 ∼ 0.25/Ω
permits the spatial convergence of both Eulerian and Lagrangian statistics. The flow properties are obtained from

the PTV data and are given in table 1 together with the energy dissipation ε which is estimated globally from the

power consumption of the motor.16. The fluctuating velocity of the flow is found to be proportional to the propeller

frequency Ω (table 1) which is because the flow is produced by inertial steering using bladed discs and the turbulence

becomes fully developed, provided Re = 2πR2Ω
ν > 400011. In what follows, we focus our analysis on Ω = 5.5 Hz.
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Fig. 3. Cuts of the 3d reconstructed Eulerian mean velocity (a,b) field and rms velocity (c,d). The reconstruction is achieved by computing the

mean 〈 �v 〉 and rms values (v′x, v′y, v′z) of the velocity in each bin of a 123 cartesian grid. (a) Πxy = (x, y, z = 0) plane. Arrows are (〈vx〉, 〈vy〉), the

color coding for the 〈vz〉. (b) Πyz = (x = 0, y, z) plane. Arrows are (〈vy〉, 〈vz〉), the color coding for the 〈vx〉. (c) rms value of velocity fluctuations

v′ =
√

(v′x2 + v′y2 + v′z2)/3 in the Πxy = (x, y, z = 0) plane. (d) rms value of velocity fluctuations in the Πyz = (x = 0, y, z) plane.

3.1. 3d Eulerian flow

The 3d particle tracking yields a set of trajectories, each containing the temporal evolution of Lagrangian velocity

at the particle position. Based on this ensemble of trajectories, one may reconstruct the mean velocity field in 3d

〈�v〉(x, y, z) =(〈vx〉, 〈vy〉, 〈vz〉) and the rms fluctuations of each velocity component (v′x, v′y, v′z). This is achieved by an

Eulerian conditioning of the Lagrangian dataset on a 123 cartesian grid, which corresponds to a spatial resolution of

5 mm in each direction. The choice of the grid size must satisfy several criteria: it must be small as compared to

the typical scale of the mean flow properties (here Lv ∼ 4.8 cm), but large enough so that statistical convergence is

achieved. Here the grid size was chosen so that there are at least O(1000) trajectories across each bin which is enough

to converge both the mean and rms values.

Figure 3(a,b) display two cross-sections of the reconstructed mean flow in two perpendicular planes, the mid plane

Πxy = (x, y, z = 0) and Πyz = (x = 0, y, z), an horizontal plane containing the axis of rotation of the discs. We

observe for the mean flow a structure that is close to the schematic view of figure 1 (a). The flow is almost radial

and convergent with 〈vz〉 ∼ 0 in Πxy, with a z component which reverses under the transformation z → −z (figure

3(b)). We also observe a strong y-component of the velocity in Πyz which reverses under the transformation y → −y
and corresponds to the differential rotation imposed by the discs. These cross-sections also reveal that the flow has

the topology of a stagnation point at the geometric centre (0, 0, 0) as was shown in another von Kármán flow with

a circular section6. With a 3d measurement of the mean flow, it is possible to compute spatial derivatives along all
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Fig. 4. Normalized velocity auto-correlation functions for the three components versus the normalized time-lag Ωτ. (a) plotted in linear scale. (b)

plotted with semilog vertical scale. Solid line: x-component. Dashed line: y-component. Dashed dotted line: z-component.

directions. This leads to ∂x〈vx〉 ∼ ∂y〈vy〉 � −1.5 Ω for the stable directions, and ∂z〈vz〉 ∼ 3.0 Ω for the unstable

direction. Note that the sum of these terms must be zero because this quantity is the divergence of the mean flow. This

condition is found to be well satisfied although the velocity components where computed independently without any

constraint. Verifying that the flow is divergence free is then an a posteriori test that the reconstruction of the mean

flow is physical.

Figure 3(c,d) display rms values of velocity fluctuations v′ =
√

(v′x2 + v′y2 + v′z2)/3 in Πxy = (x, y, z = 0) and

Πyz = (x = 0, y, z). These maps reveals that the flow properties are non isotropic and non homogeneous at large

scale, as already observed in similar setups (reference2 for instance). We observe that the fluctuations increase with

r =
√

x2 + y2 in the Πxy plane, the fluctuation map having the square symmetry of the vessel. An interesting result

is that as opposed to what is observed in the x and y directions, the flow properties are only weakly varying in the z
direction as can be seen in the Πyz plane. These different behaviors will have strong consequences on the shape of the

Lagrangian velocity auto-correlation functions.

3.2. Lagrangian two-time statistics

The Lagrangian velocity auto-correlation function is a fundamental quantity when addressing particle dispersion

from a point source12. However, computing this quantity requires long trajectories. As a consequence, particles will

explore regions with strong mean flow variations, making it impossible to properly estimate the turbulent Lagrangian

integral time-scale5. The 3d mean field has low levels of noise and sufficient resolution to permit its subtraction step-

by-step along each trajectory to obtain signal comprised solely of velocity fluctuations v′i(�X(t)) = vi(�X(t))− 〈vi〉(�X(t)),
with i = x, y, z. Here, 〈vi〉(�X(t)) are the components of the 3d Eulerian mean-field at the particle position for time

t, �X(t). These trajectories of fluctuating velocity are then used to estimate the velocity correlations as Rvivi (τ) =〈
v′i(t + τ)v

′
i(t)
〉
/
〈
v′2i
〉
, where τ is the time-lag. To allow for comparison with measurements in similar setups (but with

a circular cross-section), we only use 2.5 104 trajectories which have crossed through a sphere with a diameter of 2

cm in the center of the vessel.

Figure 4 (a) displays the velocity auto-correlation function for the three components up to τΩ = 0.35 corresponding

to τ/τη = 30. We only observe a total decorrelation for the two transverse components x, y, while the axial component

is correlated on a longer time-scale, as has already been observed10. The semi-log graph of figure 4 (b) demonstrates

that only the axial component is exponentially decreasing on long times, which is what is observed in homogeneous

and isotropic turbulence18. This must to be linked to the fact that the fluctuations are more homogeneous in the z
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direction than in any other so that the properties of v′z do not vary much along the trajectories when computing Rv′zv′z (τ).
Because the shape of the correlation function depends on the components, we do not fit any function to estimate the

Lagrangian integral time-scale, but compute it as Ti = 1/ fs
∑

Rvivi up to τΩ = 0.55 which is sufficient to observe a

total decorrelation of v′z. We obtain ratios between the injection time-scale and the integral times 1/TzΩ = 6.7 and

1/TxΩ = 7.7, similar to values ranging from 5.4 to 6.2 with varying propeller frequency as found previously in a

similar setup with a circular cross-section7.
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Fig. 5. Normalized acceleration auto-correlation functions for the three components versus the normalized time-lag τ/τη. Solid line: x-component.

Dashed line: y-component. Dashed dotted line: z-component.

We now probe smaller scale statistics by considering Raiai (τ) = 〈ai(t + τ)ai(t)〉 /
〈
a2

i

〉
, the acceleration auto corre-

lation functions. They are computed without subtracting the mean acceleration field thanks to the scale separation

between a′i and 〈ai〉(�X(t)), which are correlated on a time-scale τa ∼ τη and Ti � τη respectively. The results are

plotted as functions of τ/τη in figure 5. While the transverse components x and y are identical at these scales, a small

scale anisotropy persists as the axial z component is correlated over shorter time. This is consistent with measure-

ments of acceleration spectra in a similar setup which were shown to be anisotropic even at the highest frequencies10.

Because the integral of the acceleration auto-correlation function has to be zero (the velocity is bounded), we compute

the acceleration time-scale using the positive part of the function ti
a =
∫ τ0

0
Raiai dτ, where τ0 is the first zero-crossing

time of Raiai . We obtain tx,y
a /τη ∼ 2.5 and tz

a/τη ∼ 2, yielding an anisotropy ratio of almost 25%, larger than the

one associated to the larger velocity scales of approximately 15%. Such an anisotropy must to be connected to the

stagnation point topology of the mean flow, z being the unstable direction while x, y are stable directions. However,

one may observe that the averaged acceleration time-scale ta =
∑

ti
a/3 � 2.3τη is close to the famous zero-crossing at

2.2τη found in homogeneous isotropic turbulent flows.

4. Conclusion

In this contribution we have introduced a novel method for measuring the Lagrangian statistics of small particles

or tracers in a highly turbulent flow known to be both inhomogeneous and anisotropic and which may be conditioned

in space to reconstruct the Eulerian flow properties in 3d. The Shadow Particle Velocimetry setup, based on two large,

perpendicular collimated rays of light requires two LEDs, instead of a high-power laser, and allows for the tracking

of small objects in a large volume. The tracking algorithms implement an innovative one-component redundancy to

overcome the difficulty of a large depth of field and prevents any wrong trajectory constructions. This setup yields

long, clean trajectories necessary to study one-particle dispersion in turbulence and the properties of a flow that is

anisotropic both at large and small scales. The technique is tested by computing the velocity and acceleration auto-

correlation functions which present time scales in accord with those found in the literature. By using many trajectories,
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we are capable of reconstructing a 3d map of ensemble-averaged Eulerian quantities. This versatile setup may also

be used with fewer particles to study flow statistics at long times4 as is usually done with 1d (or 2d) measurements1.

As the method measures two projections of the objects advected by the flow in two perpendicular planes, it is also

suitable to study the translation and rotation dynamics of non-spherical objects, such as fibers or disks.
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