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ABSTRACT

This paper addresses the problem of rank tracking in real time

hyperspectral image unmixing. Based on the On-line Alter-

nating Direction Method of Multipliers (ADMM), we propose

a new hyperspectral unmixing approach that integrates prior

information as well as joint sparsity regularization, allowing

to select only the active components on each sample of the im-

age. This results in a semi-supervised algorithm, well adapted

for on-line rank tracking for pushbroom imager. Experimen-

tal results on synthetic and real data sets demonstrate the ef-

fectiveness of our method for parameter estimation and rank

change detection.

Index Terms— Hyperspectral imaging, Pushbroom im-

ager, On-line semi-supervised unmixing, Alternating Direc-

tion Method of Multipliers, Rank tracking.

1. INTRODUCTION

In this paper, we address the problem of on-line spectral un-

mixing of hyperspectral images acquired by a pushbroom im-

ager [1]. This problem is encountered, for example, in remote

sensing applications but also industrial systems, particularly

for product quality control. The pushbroom technique is a line

scanning technique that can simultaneously acquire the whole

stripe of the scene, resulting in a 2D slice of a hyperspectral

image with both spatial and spectral dimensions.

Spectral unmixing is an important technique for hyper-

spectral data analysis as it decomposes an image observed

at several wavelengths, into a collection of spectral signa-

tures (also called endmembers) and their relative proportions

(also called abundances). Due to the non-negativity of hyper-

spectral data, Non-negative Matrix Factorization (NMF) [2]

has been widely used for this type of problem. However,

classical NMF runs in batch mode and cannot be directly
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applied to on-line processing and therefore, a family of on-

line NMF algorithms has been developed (see e.g. [3–6]).

They consist in recursively updating endmembers and abun-

dances as the data increases, while ensuring a low and con-

trolled computational complexity. We have recently proposed

the OMDC-ADMM algorithm (for On-line Minimum Disper-

sion Constraint-ADMM) [7], which is an adaptation of [4] to

pushbroom hyperspectral imaging system. Nevertheless, this

method works well in practice if the decomposition rank (i.e.

the number of endmembers) does not change between con-

secutive slices of the image; this is a strong assumption that

is not always satisfied in practical applications where one or

more sources can disappear / re-appear from one slice to an-

other.

In batch mode (see e.g. [8–12]), several approaches have

been proposed to select only variables that best describe the

data. They model pixel observations as linear combinations of

spectra from a library (potentially very large), built-up using

a learning procedure or a priori knowledge on the observed

phenomenon. The abundances are obtained by minimizing a

cost function, containing a data fitting term and a sparsity-

inducing regularizer, usually the ℓ2,0 norm, or its convex re-

laxation, the ℓ2,1 norm. This allows the zeroing of abundances

corresponding to non-active endmembers of the image. This

paper aims at investigating the interest of these approaches in

an on-line setup.

In this article, we introduce a new on-line unmixing al-

gorithm based on ADMM, devoited to track the evolution of

the number of active endmembers (the rank) at each slice ac-

quired by the pushbroom imager. The contributions of this

algorithm compared to our previous work [7] and to the state-

of-the-art on-line approaches are as follows: i) taking into

account a slow evolution of endmembers, in a neighborhood

defined by the vectors of the hyperspectral library; ii) the joint

use of the ℓ2,1 and ℓ1,1 norms, applied to the abundance ma-

trix which respectively promote row sparsity (low rank) and

spatial sparsity on the active rows (for source support recon-

struction with zero background). This algorithm is considered

as semi-supervised since a priori knowledge, i.e. the hyper-



spectral library, is added to the model. In the following, we

will refer to the proposed algorithm as OSS-ADMM, for On-

line Semi-Supervised ADMM.

The remainder of the paper is organized as follows: Sec-

tion 2 is devoted to the derivation of the proposed algorithm;

Section 3 presents several results obtained on simulated and

real hyperspectral images. Some conclusions are drawn in

Section 4.

2. PROPOSED APPROACH

2.1. Pushbroom data model

The proposed approach is an adaptive version of the classi-

cal NMF [2] that factorizes a non-negative data matrix X as

X ≈ SA, where S and A, of size L × R and R × P , respec-

tively, have also non-negative entries. In hyperspectral imag-

ing, the P columns of X represent the data samples recorded

at L wavelengths. S is a matrix containing the R normal-

ized endmembers on its columns and A is a matrix contain-

ing on its columns the abundances for the recorded samples.

The principle of the proposed on-line method is to alterna-

tively update the endmember and abundance matrices when a

new sample arrives at time instant k + 1. One way to handle

the pushbroom data is to unfold the hyperspectral image as

shown in Figure 1, where X̃
(1)

is the first slice of the hyper-

spectral image and X̃
(k)

is the kth slice. The entire data set

at time instant k + 1, i.e., X(k+1), can be represented as the

concatenation of the first k samples with the new incoming

sample i.e., X(k+1) =
[

X(k) X̃
(k+1)

]

. Similarly, we define

S(k+1) =
[

S(k) S̃
(k+1)

]

and A(k+1) =
[

A(k) Ã
(k+1)

]

.

X̃
(1) ...

X̃
(k)

X̃
(k+1)L

kP

P P P

X(k)

Fig. 1: Unfolded pushbroom hyperspectral image.

2.2. OSS-ADMM algorithm

In order to estimate S̃
(k+1)

and Ã
(k+1)

, we consider the fol-
lowing cost function:
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where the coefficient α controls the trade-off between the

contribution of the old and the new samples (tracking capa-

bility). The cost function (1) has five terms: the first two

terms allow to fit the model to the first k samples and to the

new incoming sample respectively; a natural assumption is

that endmembers vary only slightly between each slice i.e

S̃
(k+1)

≈ S̃
(k)

, ∀ k [3]. However, in the practical imple-

mentation of the algorithm, S̃ is updated at each new slice,

as explained in the sequel. The third term is a ℓ2,1 norm that

promotes row sparsity on Ã
(k+1)

. The ℓ1,1 norm used in the

fourth term reinforces sparsity on the active rows of Ã
(k+1)

,

especially in the case of source support reconstruction with

zero background. Theses norms are special cases of the ℓq,p

norm, defined as

∥

∥

∥
Ã

∥

∥

∥

q,p
=

(

∑R

r=1 ‖ã
r ‖

p

q

)
1
p

, where ã
r

is

the rth row of Ã. The last term forces the endmembers to

be close to the hyperspectral library matrix B, which gath-

ers the R reference endmembers on its columns. Matrix B

also allows to remove the order indeterminacy between the

endmembers, when their number evolves from one slice to

another. In the case where the spectra of B are not all present

simultaneously in a slice, the sparsity term imposed on the

abundance matrix will force to zero the rows corresponding to

the non-active endmembers. υ, γ and ω are hyperparameters

corresponding to the different penalties. In order to minimize

the cost function (1), we adopt an ADMM approach [13]; we

introduce two auxiliary variables Ũ and Ṽ and consider the

following equivalent problem:

minimize
S̃
(k+1)

,Ã
(k+1)

,Ṽ
(k+1)

,Ũ
(k+1)

J (k+1)
(

S̃
(k+1)

, Ã
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+ IR+
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+ IR+
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Ũ
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,

subject to S̃
(k+1)

= Ũ
(k+1)

and Ã
(k+1)

= Ṽ
(k+1)

, (2)

where IR+ represents the indicator function of R+ ensuring

the non-negativity of the endmembers and abundances. The

augmented Lagrangian L corresponding to the problem (2)

is given by the expression (3), where ρ > 0 is a tuning pa-

rameter which controls the convergence speed of the method.

Π̃
(k+1)

and Λ̃
(k+1)

are the scaled version of the dual vari-

ables. We first minimize the augmented Lagrangian (3) with

respect to
(

Ã
(k+1)

, Ṽ
(k+1)

)

and
(

S̃
(k+1)

, Ũ
(k+1)

)

, and then

update the dual variables Π̃
(k+1)

and Λ̃
(k+1)

. Algorithm 1

summarizes the proposed OSS-ADMM. It includes two main

loops: the outer loop produces estimates of all parameters at

each slice k. These estimates are iteratively refined in the in-

ner loop using a fixed number of iterations Niter . Note that

the ℓ2,1 norm can be expressed in the following matrix form:
∥

∥

∥
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(
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[14], where Q̃ is a diagonal ma-

trix with the rth diagonal element defined by 1
‖ãr‖2+δ

. The

parameter δ is a small value to avoid division by zero and

‖.‖2 denotes the ℓ2 norm. The identity matrix is denoted by I

and 1 is a matrix of ones.
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Algorithm 1 OSS-ADMM

Inputs: X, B, R, α, υ, γ, ω, ρ, δ, Niter ;

Initialization: k = 0, N = zeros(L,R), M = zeros(R,R), S̃ =
rand(L,R), Ṽ = zeros(R, P ), Ũ = zeros(L,R), Π̃ = zeros(R, P ),
Λ̃ = zeros(L,R), Q̃ = eye(R,R), A = [ ], S = [ ];
Outputs: A, S;

while New sample k + 1 available do

X̃ = X̃
(k+1)

;

t = 1;

while t < Niter do

Ã =
(

(1− α)S̃
T

S̃ + ρI + 2υQ̃
)

−1

(

(1− α)S̃
T

X̃ + ρ
(

Ṽ− Π̃

)

− γ1
)

;

Q̃ =











1

‖ã1‖
2
+δ

. . .
1

‖ãR‖
2
+δ











;

Ṽ = max
(

0, Ã + Π̃

)

;

Π̃← Π̃+ Ã− Ṽ;

Ñ = αN + (1 − α)
(

X̃Ã
T
)

;

M̃ = αM + (1− α)
(

ÃÃ
T
)

;

S̃ =
(

Ñ + ρ
(

Ũ− Λ̃

)

+ ωB
)

(

M̃ + ρI + ωI
)

−1
;

Ũ = max
(

0, S̃ + Λ̃

)

;

Λ̃← Λ̃+ S̃− Ũ;

t← t+ 1;

end while

N = Ñ; M = M̃;

A←
[

A, Ã
]

; S←
[

S, S̃
]

;

end while

It can be shown, using a similar approach to [7, 15, 16],

that any stationary point generated by a sequence of iterations

of OSS-ADMM satisfies the Karush-Kuhn-Tucker conditions

(for space reasons, the proof is not provided in this version

of the paper). This statement is valid only in the case of our

working assumption i.e. S̃
(k+1)

≈ S̃
(k)

, in other words, when

the steady state is reached. It does not provide any insights

into the rank tracking behavior. This point will be addressed

through numerical simulations in the following section.

3. EXPERIMENTS

3.1. Synthetic data

In this section, a number of experiments are conducted on

simulated hyperspectral data. The first experiment is designed

to study the influence of parameters υ, γ and ω on the perfor-

mance of OSS-ADMM, in a simple scenario. We simulated

a hyperspectral image of size 119 × 40 × 250, consisting of

a non-negative mixture of R = 3 endmembers that do not

change over time (from one slice to another). The rank of

the decomposition is identical for each slice (= 3). Here, 119

corresponds to the number of wavelengths and 40×250 to the

spatial dimensions. Each new sample is a 119×40 slice of the

hyperspectral image. Data are corrupted by a low level noise.

The first objective was to study the ability of sparsity con-

straints to deactivate endmembers not present in the analyzed

image, in the case where the value of R is overestimated. The

hyperspectral library B gathers the three real spectra plus a

fourth one that is not present in any sample of the image. The

values of the different parameters were set to R = 4, α = 0.9,

ω = 1, ρ = 0.001 and Niter = 50. Figure 2(a) illustrates the

rate of deactivation of the fourth endmember vs. the number

of slices, for different values of the couple of hyperparame-

ters (υ, γ). To assess the deactivation effect, we computed

the following quantity:
∑P

p=1 |ãrp|, with r = 4 i.e., the sum

of all elements on the fourth row of the abundance matrix

(the row corresponding to the non-existing endmember). We

note that as γ increases, the endmember is deactivated much

faster. However, the choice of the values for parameters υ and

γ must be done with care: from experience, a low value of υ

gives more accurate results than a strong value. We did not

found yet a completely satisfactory explanation for this phe-

nomenon, but we conjecture that this is because of the expres-

sion of the ℓ2,1 norm used in this paper, that yields a biased

estimator (specifically the term δ, in the update of Q̃). Figure

2(b) represents, as a bargraph, the Root Mean Square Error

(RMSE), between true and estimated abundances, as a func-

tion of ω. υ and γ were set to 0.0001 and 0.002, respectively.

As the value of ω increases, the RMSE decreases, indicat-

ing that the abundances are better estimated by the algorithm.

When ω = 0, the value of RMSE is high because the sparsity

constraints alone are not sufficient to regularize the solution,

and may generate order permutation of the endmembers dur-

ing the processing. A value of ω ≥ 1 seems to be adapted.
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Fig. 2: Influence of the hyperparameters

In the second experiment, we compared the performances

of OSS-ADMM to those of OMDC-ADMM [7], on a sim-

ulated hyperspectral image composed of three endmembers,

where the rank of the decomposition evolves between slices.

For OMDC-ADMM, the rank was set to R = 3. Figure 3

shows the abundance maps obtained by OSS-ADMM and

OMDC-ADMM, compared to the ground truth. We notice

that OMDC-ADMM totally fails to estimate abundances,

whereas OSS-ADMM provides accurate estimates according

to our expectations. Figure 4 illustrates the actual and esti-

mated ranks of the decomposition vs. the number of slices.



The two plots are almost completely superposed meaning that

OSS-ADMM is able to accurately track the evolution of the

number of endmembers over time (from one slice to another).
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3.2. Real data

To validate the performance of OSS-ADMM, we applied it to

two real hyperspectral images. The first real scenario is the

tracking of the diffusion of water in cereal products during

the drying stage. This is a problem of high practical interest

in food industry because the mechanism of water transport

is poorly known and can affect strongly the quality of prod-

ucts. In food products, the water presents two main states:

Free Water (FW) and Bound Water (BW). The evacuation of

the latter within a product (by drying, for example) must be

meticulously carried out in order to avoid the alteration of

the product. Experiments were conducted on a biscuit where

two drops of water were placed on its surface. Hyperspectral

cubes of this biscuit were acquired by a pushbroom imager (in

spectral range 900-2500 nm) every minute, for 73 minutes.

Each cube was processed by OSS-ADMM. The hyperspec-

tral library B was built-up using a priori knowledge on the

spectra of the different components present in the analyzed

samples; we used then the same B for all 73 hyperspectral

images. The OSS-ADMM parameters were set to R = 4,

α = 0.9, υ = 10−5, γ = 0.045, ω = 30, ρ = 0.001 and

Niter = 50. The results obtained on the second data cube are

shown in Figure 5 (left column). Because of the lack of space,

we do not show the results of the other hyperspectral cubes.

By expertise, the first two abundance maps are respectively

FW and BW, and the last two characterize cellulose compo-

nents of the biscuit. It is interesting to observe the evolution of

the rank of the decomposition, computed from the estimates

provided by OSS-ADMM. For example, we find that the four

endmembers are present simultaneously in slices 15 to 120

and 330 to 410, while the two states of water disappear in

slices 130 to 320, which quite corresponds to the regions that

can be observed on the abundance maps. For the considered

dataset, the processing time by OSS-ADMM was of about 3

s, on a 2.7 GHz Macbook Pro with 4-core processor and 16

GB of RAM.

The second dataset is the hyperspectral image Samson

with the ground truth available in [17]. This image is com-

posed of three endmembers: water, tree and soil. For this

scenario, the parameters of OSS-ADMM were set as follows:

R = 3, α = 0.9, υ = 10−5, γ = 0.008, ω = 50, ρ = 0.001
and Niter = 50. The matrix B was constructed using a pri-

ori knowledge on the spectral signatures of the three com-

ponents. The results generated by OSS-ADMM are shown

in Figure 5 (right column). We observe that OSS-ADMM is

able to closely follow the appearance and disappearance of

endmembers during the processing, while generating very ac-

curate abundance maps close to the ground truth (see [17]),

for a processing time of about 0.5 s.
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Fig. 5: Abundance maps and rank tracking by OSS-ADMM

for the real datasets

4. CONCLUSION

We proposed a new algorithm (OSS-ADMM) that estimates

and tracks the evolution of the number of endmembers for

on-line pushbroom-like acquisition systems. By using a hy-

perspectral library and sparsity regularizations, OSS-ADMM

is able to estimate for each new sample only the active end-

members and thus, to track the rank of the decomposition over

time. Tests on simulated data have shown that this new algo-

rithm outperforms state-of-the-art on-line processing meth-

ods, in terms of estimation quality. The performance of the

proposed algorithm was also validated on two real data sets.
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NMF en-ligne avec contrainte de dispersion minimale,”

in 27ème Colloque GRETSI Traitement du Signal et des

Images, 2019.

[8] Marian-Daniel Iordache, José M Bioucas-Dias, and An-
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