The Nonlinear Schrödinger Equation for Orthonormal Functions : Existence of Ground States - Archive ouverte HAL
Journal Articles Archive for Rational Mechanics and Analysis Year : 2021

The Nonlinear Schrödinger Equation for Orthonormal Functions : Existence of Ground States

Abstract

We study the nonlinear Schrödinger equation for systems of N orthonormal functions. We prove the existence of ground states for all N when the exponent p of the non linearity is not too large, and for an infinite sequence Nj tending to infinity in the whole range of possible p’s, in dimensions d≥1. This allows us to prove that translational symmetry is broken for a quantum crystal in the Kohn–Sham model with a large Dirac exchange constant.
Fichier principal
Vignette du fichier
2002.04963.pdf (711.26 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-03864212 , version 1 (21-11-2022)

Identifiers

Cite

David Gontier, Mathieu Lewin, Faizan Q. Nazar. The Nonlinear Schrödinger Equation for Orthonormal Functions : Existence of Ground States. Archive for Rational Mechanics and Analysis, 2021, 240 (3), pp.1203-1254. ⟨10.1007/s00205-021-01634-7⟩. ⟨hal-03864212⟩
113 View
104 Download

Altmetric

Share

More