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ABSTRACT 

We evaluated the statistical power, family wise error rate 
(FWER) and precision of several competing methods that 
perform mass-univariate vertex-wise analyses of grey-
matter (thickness and surface area). In particular, we 
compared several generalised linear models (GLMs, current 
state of the art) to linear mixed models (LMMs) that have 
proven superior in genomics. We used phenotypes simulated 
from real vertex-wise data and a large sample size 
(N=8,662) which may soon become the norm in 
neuroimaging.  

No method ensured a FWER<5% (at a vertex or cluster 
level) after applying Bonferroni correction for multiple 
testing. LMMs should be preferred to GLMs as they 
minimise the false positive rate and yield smaller clusters of 
associations. Associations on real phenotypes must be 
interpreted with caution, and replication may be warranted 
to conclude about an association. 

Index Terms— Grey-matter, mass univariate vertex-
wise analyses, simulations, false positive, precision 
 

1. INTRODUCTION 
The recent availability of large MRI imaging cohorts (such 
as the UKBiobank) offers the opportunity to progress our 
understanding of the associations between phenotypes and 
grey-matter structure.  

Mass univariate vertex-wise analyses (MUVA) aim to 
identify which of the ~650,000 cortical and subcortical 
vertices are associated with a trait. Current state of the art 
approaches rely on generalised linear models (GLMs, e.g. 
implemented in FreeSurfer1) though little is known about 
their power, false positive rate and spatial precision in large 
samples (sometimes referred to as “large degree of freedom 
problem”). Reports on several omics datasets (of similar 
size and complexity) have warned about increased false 
positive rate when performing mass univariate analyses on 
correlated features and large samples2,3, which led us to 
evaluate standard GLMs against more robust linear mixed 
models (LMMs).  

For realistic evaluations of the model performances, 
we simulated phenotypes based on real vertex-wise 
measurements from the UKBiobank (N~10,000). We used 
Bonferroni correction to account for multiple testing across 
the vertices, which we preferred over random field theory 
(RFT)4 as it does not require hypotheses about smoothing of 

the grey-matter surfaces4. Permutation testing was too 
computationally costly to represent a viable option. 
 

2. MATERIALS AND METHODS 
2.1. Participants recruitment and MRI imaging 
The UKB participants were unselected volunteers from the 
United Kingdom5. Exclusion criteria were limited to the 
presence of metal implant or any recent surgery and health 
conditions problematic for MRI imaging (e.g. hearing, 
breathing problems or extreme claustrophobia)6. T1w and 
T2 FLAIR MRI images were collected using a 3T Siemens 
Skyra machine and a 32-channel head coil6. 

Informed consent was obtained from all UK Biobank 
participants. Procedures are controlled by a dedicated Ethics 
and Guidance Council (http://www.ukbiobank.ac.uk/ethics), 
with the Ethics and Governance Framework available at 
http://www.ukbiobank.ac.uk/wp-
content/uploads/2011/05/EGF20082.pdf. IRB approval was 
also obtained from the North West Multi-centre Research 
Ethics Committee. This research has been conducted using 
the UK Biobank Resource under Application Number 
12505.  

 
2.2. Image processing  
We processed the T1w and T2 FLAIR images together to 
enhance the tissue segmentation in FreeSurfer 6.01, hence a 
more precise skull stripping and pial surfaces definition. We 
retained the maximal image information by using the 
(fsaverage - unsmoothed) vertex-wise level data in the 
cortical surface and thickness analyses7. In addition, we 
applied the ENIGMA-shape processing8,9 to the segmented 
images to extract radial thickness and log Jacobian 
determinant (analogous to a relative surface area) of the 
hippocampus, putamen, amygdala, thalamus, caudate, 
pallidum and accumbens8,9. The processed imaging data 
comprised 654,026 vertex measurements separable into 4 
modalities (types of features): cortical thickness, cortical 
surface area, subcortical thickness or subcortical area).  

 
2.3. Sample description and quality control (QC) 
We considered the first 10,103 participants of the UK 
Biobank (UKB) imaging wave. Our final sample after 
processing comprised 9,890 adults with complete cortical 
and subcortical data, aged 62.5 years on average (SD=7.5, 
range 44.6–79.6) with slightly more (52.4%) female 



participants. We used a stringent data-driven QC, which 
excluded 1,228 subjects (12.4%) who showed an outlying 
brain (+-5SD from the mean when looking at individual 
(pairwise) brain similarities). A more lenient QC may be 
applied in real data analysis to maximise the sample size.  

 
2.4. Phenotype simulation and age at MRI  
For realistic scenarios, we simulated continuous phenotypes 
from the (standardised) grey-matter data2. We selected 
randomly a fixed number of associated vertices and drew 
each effect size from a normal distribution. We considered 3 
traits architecture that differ in term of number of associated 
vertices and total association R2 (morphometricity): i) 10 
associated vertices accounting for a morphometricity of 
R2=0.10; ii) 100 associated vertices accounting for R2=0.50; 
iii) 1000 vertices accounting for R2=0.40. For a finer 
understanding of the results, we drew associated vertices on 
each modality independently and repeated each simulation 
100 times.  

We used age at MRI to validate our results on a real 
continuous phenotype. 
 
2.5.  GLMs for mass univariate analyses 
Commonly used in the neuroimaging field are the GLMs 
without covariates (“uncorrected”) or using standard 
covariates such as age, sex and ICV (“age, sex, ICV 
corrected”). Next, we varied the covariates by including the 
top 5 or 10 principal components (PCs) of the vertex-wise 
data (“5 global PCs”, “10 global PCs”). We also considered 
10 principal components specific to the vertex modality (“10 
modality specific PCs”). The rationale is to correct for 
structure in the population in a data-driven manner. Thus, 
grey-matter PCs may be able to also remove unmeasured or 
unaccounted batch effects (e.g. software update, processing 
options) or factors showing large associations with grey-
matter structure (e.g. height, body size7).  

 
2.6. LMMs for mass univariate analyses 

We considered 2 linear mixed models that are 
extensions of the previous approaches in that they explicitly 
model the population structure under the form of grey-
matter similarities between any pair of individuals. The 
LMM models may be written as  ! = #β + & + '		      
where !",$   is the phenotype considered with N the number of 
observations, !",$   is a vector of vertex-wise measurement, β   
is the vertex-trait association we are trying to estimate, !   is 
a random effect with !~# 0, &σ() 	  and !   is the error term 

with !~# 0, &σ() .	   σ"#    and σ"#   are the variances of the 
random effects !   and !   (residual). For the first LMM 
(“LMM global BRM”), !   is the brain relatedness matrix 
(NxN matrix of variance-covariance between individuals7) 
calculated from all grey-matter vertices. This is similar to 
the MOA model implemented in OSCA2. The second LMM 
(“LMM multi. BRM”) fits 4 random effect, one for each 

modality. For all models, we performed a χ  2 test of the 
association between each vertex and the phenotype using: 

!
"#(!)

&
~	χ(1)   

 
2.7. Metrics of interest 
On the null vertices (uncorrelated with the associated 
vertices), the empirical distribution of chi2 statistics may be 
compared to the expected one using the ratio of median chi2, 
known as the inflation factor (λ). Inflation factors close to 1 
indicate no inflation of the test statistics.  

We quantified the statistical power of the BWAS 
models using the true positive rate (TPR) after Bonferroni 
correction for multiple testing.  

We measured the family-wise type I error rate (FWER) 
as the proportion of replicates with at least 1 false positive 
(FP) vertex (after Bonferroni correction). In presence of 
strong correlation between (neighbouring) vertices, it is 
statistically difficult to separate true and false positive and 
we can expect clusters of associations (thus large FWER). 
We evaluated how separable are the associations on the 
different modalities by reporting the FWER restricted to 
vertices on the non-associated modalities.  

Beyond vertex-wise FWER, we reported the cluster 
FWER: proportion of replicates with at least 1 false positive 
cluster (contiguous FP vertices on the associated modality). 
We further reported the number and median size of the false 
positive clusters as well as the proportion of false positive 
clusters (cluster FDR).  

For completeness, we evaluated whether TP and FP 
clusters could be separated by size (without excluding any 
true positive). We also assessed whether true positive 
clusters could pinpoint the correct cortical region (ROI-
FWER, based on the Desikan atlas).  

 
3. RESULTS 

As expected in presence of population structure leading to 
widespread correlation between vertices, we observed a 
global inflation of tests statistics when using GLMs (Figure 
1 for scenario with 100 associated vertices). In comparison 
LMMs could control the inflation of test statistics on null 
vertices (Figure 1). When restricting the null probes to 
those from non-associated modalities we also observed an 
inflation in the linear case, which was well controlled by the 
LMM models. 

LMMs had lower power than the linear models, as 
shown by reduced true positive rate, especially on 
subcortical volumes (Figure 1). However, the clusters of 
true positive identified using LMMs were much smaller than 
those identified by the other models (in terms of minimal, 
median and maximal cluster size). To note, the true positive 
clusters on surface area were overall small (median <3 
vertices), though some large clusters were also observed. 
Thus, TP clusters in cortical surface area are nested in the 
correct cortical region (ROI-FWER<3%), though this was 



not the case for cortical thickness where the larger TP 
clusters often overlapped several cortical regions. 

All simulations with associated vertices on cortical 
thickness and subcortical structures yielded at least 1 false 
positive vertex (FWER=1). For associated vertices on 
cortical surface area, the FWER was minimised by using 
LMMs, though greater than 5%. More interestingly, we 
found that analysing the data using GLMs resulted in false 
positive associations on non-associated modalities in at least 
20% of the replicates (Figure 1). Using LMMs minimised 
the FWER on other modalities, though it did not ensure an 
error rate<5% for all associated modalities and phenotype 
architectures. In particular, LMM (multi. BRM) could 
separate associations on the cortex and on subcortical nuclei 
(FWER<5%) but failed at separating associations on 
thickness and surface area.  

Similarly, LMMs minimised the probability of 
observing false positive clusters on the associated modality 
but failed to ensure a cluster-FWER below 5% across all 
scenarios (Figure 1). For example, using the best LMM 
(multi. BRM), 40% of the simulations yielded a false 
positive cluster on cortical surface area but this rate was 
10% on cortical thickness, 4.1% on subcortical area and 
14% on subcortical thickness (Figure 1). The proportion of 
false positive clusters tended to be small with LMMs 
(FDR<5%) except for the scenario of 1000 associated 
vertices, which may be due to the low power and small 
number of TP clusters. Using LMM (multi. BRM) 
minimised the size of the FP clusters that typically 
comprised less than 3 vertices. However, in up to 30% of 
the replicates (depending on the simulation scenarios) TP 
and FP clusters could not be separated by size.   

Using PCs in the GLMs resulted in an improvement 
over the use of standard covariates suggesting PCs can 
remove unaccounted factors associated with long-range 
vertex correlation. We did not observe any change in the 
results and conclusions after rank inverse normal 
transformation (RINT) of the vertices, which suggests the 
false positives are not caused by outliers. 

We estimated the morphometricity of age at MRI to be 
R2=0.83 (SE=0.026), and about half of this association 
resulted from large associations with global axes of grey-
matter size/surface (R2=0.41 with the first 10 global PCs). 
Consistent with this observation, “uncorrected” GLM 
yielded significant associations with 136,348 vertices 
(Table 1) from nearly all cortical and subcortical regions, 
while covarying the PCs removed signal of interest which 
resulted in a drop of number of associated vertices.  

As in the simulations, LMMs minimised the inflation of 
test statistics (lambda<1), and resulted in fewer and smaller 
associated regions (Table 1). The 8 significant clusters 
pointed towards associations with subcortical thickness and 
surface of the thalamus, caudate and putamen. Note that no 
vertex reached significance for age at MRI using a LMM 
with multiple BRMs, which may be due to the reduced 
power of this model, especially on subcortical structures.  

 

 
Figure 1: Main metrics summarising the MUVA results on 
simulated phenotypes (10 associated vertices).  
The 10 associated vertices were selected in single modalities 
(labelled at the top of each column) to explain 10% of the 
phenotypic variance. Bars represent +- SE from 100 replicates. 
 

4. DISCUSSION  
Our simulations revealed that using GLMs in mass 

univariate vertex-wise analyses of grey-matter structure 
resulted in a gross inflation of tests statistics and false 
positive rate. LMMs appropriately controlled the inflation of 
test statistics and offered a greatly reduced false positive 
rate, though they still failed at ensuring a vertex or cluster 
FWER below 5%. This is especially worrisome as the 
Bonferroni correction for multiple testing is considered 
overly stringent in presence of correlated features, though 
similar results have been reported on ‘omics’ datasets2. 
False positives were not attributable to outliers in the vertex 
wise measurements. 

Within a single modality, false positive clusters were 
found in more than 5% of the replicates, for most scenarios, 



though LMMs (especially multi. BRM) always minimised 
the false positive rate. Finally, most associated clusters 
found using GLMs may be false positive (e.g. up to 85% of 
the associated clusters were false positive using GLM with 
standard covariates, which dropped to below 26% when 
using LMM). 
 
Table 1: Summary of mass-univariate analyses for age at MRI 

 Adj. R2 with sex & ICV  0.012 

 Adj. R2 with first 10 PCs  0.41 

Uncorrected 
GLM 

N assoc. vertices 136,348 
N assoc. clusters 970 
Max cluster size 22,358 

sex, ICV 
GLM 

N assoc. vertices 130,189 
N assoc. clusters 1,270 
Max cluster size 19,450 

10 global 
PCs GLM 

N assoc. vertices 16,772 
N assoc. clusters 297 
Max cluster size 894 

Single 
random 
effect LMM 

N assoc. vertices 47 
N assoc. clusters 8 
Max cluster size 15 
Morphometricity (SE) 0.91 (0.021) 

Multiple 
random 
effect LMM 

N assoc. vertices 0 
N assoc. clusters 0 
Max cluster size NA 

	 Morphometricity (SE) 0.83 (0.026) 
 

Beyond their lower FWER, LMMs had lower statistical 
power than GLMs, which is attributable to the double fitting 
of the vertex, both as a fixed and random effect3,10. 
However, LMMs always resulted in a more precise 
localisation of the true positive (Figure 1). Between the 
GLMs considered, including PCs was superior to fitting 
standard covariates to reduce FWER and maximise 
precision (at a small cost in power).  

The empirical results obtained on age at MRI were 
consistent with our simulations. The limited number of 
findings using LMM (which jointly explain 28% of age 
variance) tend to suggest that the localised grey-matter 
associations with age may widespread (i.e. “complex 
architecture” with hundreds or thousands of associated 
regions).   

Our simulation results may not hold for trait 
architectures not considered here (we assumed a normal 
distribution of effect sizes). Note that in presence of 
large/outlying phenotype-vertex associations, one may 
include them as fixed effects in the LMMs.  

More work is needed to evaluate the FWER of MUVA 
using vertices or voxels derived from different processing 
(e.g. volume based processing of grey-matter), from 
different MRI images (e.g. diffusion weighted images), or 
when using non-normally distributed phenotypes (such as 
symptom scores).  

In conclusion, none of the current methods for mass-
univariate analyses appropriately control the FWER (at a 
vertex or cluster level) after applying Bonferroni correction 
for multiple testing. However, LMMs should be preferred to 

GLMs as they minimise the false positive rate and offer a 
more precise identification of the associated regions. Our 
simulations suggest that LMMs can, in part, separate long-
range correlations induced by unobserved confounding 
factors from the meaningful short-range correlations. This 
arises from LMMs controlling for the individuals’ pairwise 
brain similarities that capture unobserved factors (e.g. 
genetic, environmental, batch effects), which contribute to 
the correlations between vertices, hence the spread of the 
association signal. To note, LMMs may be overly 
conservative when the trait studies is itself associated with 
the correlation between vertices, such as when affecting 
different brain regions in cascade. Overall, associations on 
real phenotypes should be interpreted with caution, and 
replication or evaluation of prediction accuracy may be 
warranted to safely conclude about an association. 
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