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SPHERICAL SHALLOW WATER WAVES SIMULATION BY A CUBED SPHERE

FINITE DIFFERENCE SOLVER

M. BRACHET†AND J.-P. CROISILLE‡

Abstract. We consider the test suite for the Shallow Water (SW) equations on the sphere suggested in

[28, 29]. This series of tests consists of zonally propagating wave solutions of the linearized Shallow Water

(LSW) equations on the full sphere.
Two series of solutions are considered. The first series [28] is referred to as ”barotropic”. It consists

of an extension of the Rossby-Haurwitz test case in [35]. The second series [29] referred to as (Matsuno)

”baroclinic”, consists of a generalisation of the solution to LSW in an equatorial chanel introduced by
Matsuno [18].

The Hermitian Compact Cubed Sphere (HCCS) model which is used in this paper is a Shallow Water

solver on the sphere introduced in [4]. The spatial approximation is a center finite difference scheme based
on high order differencing along great circles. The time stepping is performed by the explicit RK4 scheme or

by an exponential scheme. For both test case series, barotropic and baroclinic, the results show a very good
agreement of the numerical solution with the analytic one, even for long time simulations.

Keywords: Spherical Shallow Water waves - Inertia-gravity wave - Rossby wave - Cubed Sphere grid -
Finite difference scheme - Exponential time scheme

1. Introduction

In this paper we consider the Shallow Water equations (SW) on a rotating sphere. These equations serve
as a reference system to be solved to assess the accuracy of dynamical cores for meteorology in spherical
geometry [10]. The linearized version of SW at an atmosphere at rest is called the LSW system. It represents
the minimal wave model of interest on the rotating sphere. It is of foremost importance in climatology and
oceanography. As mentioned in the monograph [20], LSW is still a topic with many open problems. One of
these problems is the derivation of quasi-analytic solutions to LSW. Such solutions are natural candidates
to serve as global test cases for SW. Along this line, two new series of test cases for SW have been recently
suggested in [28, 29].

The goal of this paper is to assess a particular finite difference method on the sphere using these two
series of test cases. The finite difference scheme under consideration uses the equiangular Cubed Sphere [25].
This scheme, called HCCS, 1 can be seen as an extension to the Cubed Sphere of the 4th order compact
scheme, widely used in Computational Aeroacoustics (CAA) [36]. The HCCS scheme for the SW equation
has been considered in [4, 3] and in [6, 7] for the linear convection equation. Very good accuracy and stability
properties were observed for a broad series of test cases [34, 9, 24]. As in the spectral method, although
the design of the spatial approximation is not ab initio conservative, excellent conservation properties are
numerically observed.

The purpose of the test cases for SW suggested in [28, 29] is to assess the accuracy of dynamical cores for
long time simulations. The physical and mathematical analysis of the test cases can be found in [8, 21] and
in [26, 27]. The family of solutions that are derived are doubly quantified with a couple of integers (k, n).
These integers stand for, respectively, the longitudinal wave number, which determines the wave periods in
the zonal direction, and the latitudinal mode number, which determines the number of zero crossings in the
meridional direction. Along the meridional direction, depending on the case, either the Gegenbauer or the
Hermite polynomial functions are involved. 2 Both test cases can be considered as new versions of the well

Date: February 17, 2020.
1HCCS stands for Hermitian Compact Cubed Sphere
2In contrast, for Spherical Harmonics, the associated Legendre polynomials are involved, see e.g. [1]
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known Rossby-Haurwitz test in [35]. The first test case is concerned with the barotropic context, (thick
atmosphere layer, ”fast” inertia-gravity waves). The second test is concerned with the baroclinic context,
(thin atmosphere layer, ”slow” inertia-gravity waves). For these two tests, the emphasis is on the fact that
a dynamical core must be able to maintain stability and accuracy, even after a very large number of time
iterations.

In the present paper, we show that the recently introduced HCCS solver [4] is able to accurately calculate
each of these tests. In all cases, the simulated final time corresponds to many wave periods, in particular for
the Rossby type solutions.

The outline of the paper is as follows. In Section 2 we recall the principle of the spherical approximation
with the HCCS scheme. In Section 3, we summarize the derivation of the quasi-analytical solutions for
LSW, as presented in [26, 27]. The set up of both test cases with the HCCS formalism is given in Section
4. The numerical results for the barotropic and the baroclinic cases are reported in Section 5 and Section 6
respectively. Conservation properties are reported in detail in Section 7. Concluding remarks ans perspectives
are given in Section 8.

2. The HCCS solver: a Cubed Sphere approximation for the Spherical Shallow Water
equations

In this section, the Hermitian Compact Scheme on the Cubed Sphere (HCCS) is summarized [6, 7, 3, 4].
Consider the spherical Shallow Water equations (SW):

(1) (SW)


∂h?

∂t
(t,x) +∇T · (h?(t,x)u(t,x)) = 0,

∂u

∂t
(t,x) +∇T

(
1

2
|u(t,x)|2 + gh(t,x)

)
+ (f(x) + ζ(t,x)) n(x)× u(t,x) = 0.

In (1), the unknown is (t,x) ∈ R+ × Sa 7→ q(t,x) = [h(t,x),u(t,x)]T , with h the height of the atmosphere
and u the tangential wind velocity. The relative vorticity is ζ = (∇T × u) · n and h?(t,x) = h(t,x)− hs(x)
with hs the bottom topography function. The subscript T denotes tangential operators. The Coriolis force
is f(x) = 2Ω sin(θ), where θ is the latitude angle and Ω the angular earth velocity. Equation (1) is rewritten
as

(2) ∂tq(t,x) = F (q(t,x)),

where q(x) 7→ F (q)(x) denotes

(3) F (q)(x) = −

 ∇T · (h?u)

∇T
(

1

2
|u|2 + gh

)
+ (f + ζ) n× u

 .
Consider a function q(t,x) = q̄ + q′(t,x), with q̄ = [h̄ = H, ū = 0]T an atmosphere at rest with fixed
height H. The perturbation is q′(t,x):

(4) q′(t,x) = [h′(t,x),u′(t,x)]T , u′ = [u′, v′].

With the notation

(5) J̄ = Jα,β = ∂βFα(q̄), α, β = 1, . . . , 3,

the linearization of (2) at q̄ is

(6) ∂tq
′
α(t,x) = J̄αβq

′
β(t,x), (summation over β),

or equivalently

(7) (LSW)


∂h′(t,x)

∂t
+H∇T · u′(t,x) = 0,

∂u′(t,x)

∂t
+ g∇Th′(t,x) + f(x)n(x)× u′(t,x) = 0.
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The HCCS scheme provides an approximation in space of (1). It is based on the equiangular Cubed Sphere,
which is a particular grid of the sphere. This grid is decomposed in six panels matching the six faces of a
cube [25]. A typical panel is shown in Fig. 1. In recent years, Cubed Sphere grids have become a standard
in numerical climatology. Different kinds of Cubed Spheres do exist [23]. Cubed Spheres are commonly used
as a tiling of the sphere for conservative approximations. In this case, the cells defined by the Cubed Sphere
serve for discrete averaging. Examples of conservative approximations on the Cubed Sphere include the finite
volume method [32], the discontinuous Galerkin method [2] and the spectral element method [11]. In the
contrary, in our case, the nodes of the Cubed Sphere serve as unknown location for finite differencing. The
nodes are denoted by

(8)

{
ski,j , k = (I), (II), ...(V I) = panel index,
−N/2 ≤ i, j ≤ N/2 = horizontal and vertical index.

Let q(x) be a function defined for x ∈ Sa, (a = earth radius). A gridfunction approximating q is denoted by
q = [qki,j ]

T with

(9) q(ski,j) ' qki,j , k = (I), (II), ...(V I), −N/2 ≤ i, j ≤ N/2.
In the HCCS scheme, advantage is taken of coordinate lines of the equiangular Cubed Sphere. These coor-
dinate lines are sections of great circles along which finite differencing is operated. The finite differencing is
the standard fourth order (compact) scheme which reads

(10)
1

6
uξ,j−1 +

2

3
uξ,j +

1

6
uξ,j+1 =

uj+1 − uj−1

2∆ξ
,

where ξ ∈ [0, 2π) stands for an angle along a great circle and ∆ξ = 2π/N is the angular step size. This permits
to define centered approximations to the gradient, the divergence and the curl, denoted with subscript ∆:

(11) ∇Th(ski,j) ' ∇T,∆h(ski,j), ∇T .u(ski,j) ' ∇T,∆.u(ski,j), ∇T × u(ski,j) ' ∇T,∆ × u(ski,j).

The analytical solution q(t,x) = [h(t,x),u(t,x)]T is approximated by the numerical solution

(12) q(t) = [hki,j(t), u
k
i,j(t)]

T , k = (I), (II), ...(V I), −N/2 ≤ i, j ≤ N/2.
The discrete system for q(t) is deduced from (1) by

• replacing q(t,x) by q(t).
• replacing all differential operators ∇T by their discrete approximations ∇T,∆ defined in (11).

This provides the semi-discrete HCCS solver, which reads

(13) ∂tq(t) = F∆(q(t)),

where F∆(q) is defined by

(14) F∆(q) = F∆([hki,j , u
k
i,j ]

T ) = −


∇T,∆ ·

[
h?ki,ju

k
i,j

]T
∇T,∆

[
1

2
|uki,j |2 + ghki,j

]T
+
[
(fki,j + ζki,j)n

k
i,j × uki,j

]T
 .

In (14), ζki,j =
(
∇T,∆ × vki,j

)
· nki,j is the semi-discrete relative vorticity. The main properties of the HCCS

solver, reported in [4], are the following:

• It is fully centered for the vector qki,j .
• It is fourth order accurate with respect to ∆ = ∆ξ = ∆η, where (ξ, η) stands for the local coordinate

system on a panel.

Several time stepping schemes have been proved to be efficient to integrate (14) in time. Specifically in this
paper, we display results obtained with two time schemes. First the explicit RK4 scheme is used, subject to a
stability condition CFL ≤ 1. The second time stepping is a particular exponential scheme of the Rosenbrock
family, [12, chap.7], referred as ERK2 in the sequel. Several studies have found this scheme as a relevant
option for spherical SW problems. Refer to [5, 4]. The efficiency of the ERK2 scheme for the test series
presented is confirmed here. In all cases a spatial filtering is added at each time step. This filter consists in
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ξ

η

Figure 1. The points of a typical panel of the Cubed-Sphere are classified in three categories
as follows: (i) the (N−1)2 circles correspond to the internal points; (ii) the 4(N−1) squares
correspond to the edge points ; (iii) the 4 pentagons correspond to the corner points. The
coordinate system consists of the two ”equatorial” angles (ξ, η), −π/4 ≤ ξ, η ≤ π/4, with
origin at the panel center. The angles ξ is analog to the longitude angle λ. The angle η is
also a ”longitude” angle, deduced from ξ by a 90 degrees rotation.

an hyperdiffusion term operated along the great circles of the Cubed Sphere. This hyperdiffusion step has
been found a suitable way to enhance stability without destroying high accuracy. Details on recent results
with the HCCS solver and various time steppings are reported in [4].

3. LSW solutions as approximations of SW equations

3.1. Zonally propagating waves. Assessing accuracy and stability of dynamical cores with suitable test
cases has become an essential task in numerical meteorology. A well known test series for SW over the sphere
is [35]. This test series is a standard that any SW solver must successfully pass. Number 6 in [35] is the well
known Rossby-Haurwitz (RH) test case. This test consists in comparing the SW solution to an analytically
known solution of the non divergent barotropic equation (BV). The goal is to observe how the numerical
code at hand behaves when simulating the hydrodynamics mode. However, since the BV equation is not the
SW equation, when using the initial data of test 6 of [35] in a SW solver, acoustic waves are superimposed to
the hydrodynamics mode. Thus one does not expect a numerical behaviour conforming to the exact solution
of the BV equation: in fact, numerical evidence has shown [30, 20, 33] that the RH initial data evolves in
an instability when plugged in a SW numerical solver. As observed in [33], the time of apparition of the
instability depends on the particular approximation in space. This instable behaviour was also observed with
the HCCS solver [4].

This makes the RH test case not suitable to evaluate a SW solver over long times. Overcoming this flaw
was the main purpose for introducing a new series of test cases. In [28, 29], the idea is to consider a zonally
propagating simple wave solution of (6) of the form:

(15) q′(t,x) = q̃(θ) exp(ik(λ− Ct)).
In (15), (λ, θ) is the lon-lat coordinate and k is the wave number in the zonal direction, C is a velocity

parameter and q̃(θ) = [h̃(θ), ũ(θ), ṽ(θ)]T is the amplitude depending on the latitude only. Substituting (15)
in (6) leads to the following spectral problem for the LSW equation, which reads:

(16) J(q̃(θ)) = −ikCq̃(θ).

The spectral problem (16) contains the amplitude θ 7→ q̃(θ) and the constant C as unknowns. This is solved
by a dispersion analysis. Let the zonal wavenumber k be fixed. The corresponding possible values of the
couple eigenvalue/eigenvector are found. In the geophysical context, such a spectral analysis is commonly
performed assuming specific a priori hypothesis. Typically, one may assume propagation in an equatorial
or midlatitude channel, and the β− plan for the Coriolis force. Here there is no such assumption. The
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eigenfunction q̃(x) in (16) is defined on the full sphere: the latitude angle θ ∈ (−π/2, π/2) extends up to the
poles and is not limited to a channel. In the course of this analysis, one could expect to see emerge in one
form or another the set of orthogonal eigenfunctions associated to LSW, which is known as the set of Hough
functions. This is the canonical set of eigenfunctions associated to (7). This system has been studied by
many authors 3. However, due to the lack of closed form, the Hough functions are difficult to use in practice.
Refer to [15, 16] for an attempt to use them for defining (quasi-)exact solutions to LSW.

3.2. Meridional Schrödinger equation. In a series of works [8, 21], Paldor et al. suggested to solve the
eigenproblem (16) as follows. The problem is approximated by a differential equation along the meridional
direction θ ∈ (−π/2, π/2). This equation is of Schrödinger type. It is expressed as

(17)
d2

dθ2
ψ(θ) + F (k,C, θ)ψ(θ) = 0, θ ∈ (−π/2, π/2), ψ(±π/2) = 0.

In (17), the unknown is the function ψ(θ). The three components of the vector amplitude q̃(θ) = [h̃(θ), ũ(θ), ṽ(θ)]T

are expressed explicitely in terms of ψ(θ). The equation (17) leads to a quantification with two integers k and
n corresponding to the zonal and latitudinal behaviour. As already mentioned, k stands for a longitudinal
wave number and n for a number of zero crossings in the meridional direction. These two parameters are
here independent. This is in contrast to the standard representation of the Spherical Harmonics, where k
and n are related by |k| ≤ n. For each couple (k, n), the characteristic equation of (17) leads to three distinct
phase speeds. These speeds are identified as

• two inertia-gravity waves (propagating eastward and westward)
• a Rossby wave

This is of course no surprise, since in most wave analysis, whatever the particular a priori hypothesis are,
these three kinds of waves emerge.

A second step in the spectral analysis of (17) in [26, 27] is to give a suitable approximation of the wave
speeds and of the eigenfunctions. The idea is to expand the amplitude q̃(θ) in a discrete basis of orthogonal
polynomials. This leads to an approximation which is considered as quasi-exact. How to select a relevant
set of polynomials is based on the physical wave regime. Two cases of interest are emphasized, the ”thick
ocean” and the ”thin ocean” regimes, respectively.

(1) Thick ocean regime [27]: This regime corresponds in (7) to a depth with magnitude H ' 1000m.
It is referred to as ”barotropic”. It corresponds to ”fast” acoustic (inertia-gravity) waves with velocity
of magnitude 100m s−1.

(2) Thin ocean regime [26]: This regime corresponds in (7) to a depth with magnitude H ' 10m. It is
referred to as baroclinic. This corresponds to slow acoustic waves with velocity of magnitude 10m s−1.
This is a more ”hydrodynamic” regime. This corresponds to an amplitude function localized near
the equator, vanishing close to the poles.

In general, the validity of the approximations provided by (15)-(17) depend on the values of k, n and H.
Let us only mention here that for moderate values of k and n, the thick ocean regime becomes valid for large
values of H of the order of 1000 m or more. A detailed discussion on the choice of polynomial approximations
using either the Gegenbauer polynomials or the Hermite polynomials, is presented in [28, 29].

Remark 3.1. As in Matsuno [18], the resolution of (17) provides three roots corresponding to three kinds of
waves. But, whereas in [18] the dispersion analysis is considered in an equatorial channel (and with the β−
plan hypothesis), it is considered here on the full sphere.

3.3. Design of the numerical test cases. Distinguishing these two physical regimes led to the design of
two series of test cases introduced in [28] and [29] respectively. These tests aim to give a standardization of
two particular solutions of the form (15). The main idea on which these two test suites are based is that
spherical waves must be approximated with high fidelity by dynamical core models. This underlines the
importance of the ”pure wave regime” for numerical meteorology and climatology [19]. The emphasis for
these test cases is on accurately evaluating the dispersion and dissipation properties of the numerical method

3Longuet-Higgins [17] is a well known reference on this topic

5



to be assessed, in particular over a long physical time. The notation for the tests and for the error analysis
is given in Section 4. There are four tests in all. In Section 5, the results with the HCCS solver are displayed
for the first test case (barotropic waves). The tests for the thick ocean regime are called Test 1-a (EIG wave)
and Test 1-b (Rossby wave). In Section 6, the results for the baroclinic waves are presented, with Test 2-a
(EIG wave) and Test 2-b (Rossby wave). To assess the accuracy and stability of the spatial approximation,
both cases are considered with different time stepping schemes. Our numerical results were obtained with
the explicit RK4 scheme and with a particular exponential scheme (the ERK2 Rosenbrock scheme). 4

4. Test case setting and numerical notation

4.1. Setting up the test cases. The implementation of the two series of test cases presented in Section
3.3 proceeds as follows. Test 1 and Test 2 series correspond to the barotropic and the baroclinic waves
respectively. Each series contains an eastward propagating inertia gravity wave referred to as ”Test 1-a EIG”
(barotropic) and ”Test 2-a EIG” (baroclinic) waves respectively. The Rossby wave in each series is referred to
as ”Test 1-b Rossby” (barotropic) and ”Test 2-b Rossby” (baroclinic) respectively. In all cases, the analytic
solutions is of the form (15) where parameters specifying the function q′(t,x) in (15) are

(1) The depth H of the atmosphere at rest.
(2) The zonal wave number k and mode number n.
(3) The wave number k is the wavenumber along the zonal direction λ, (longitude direction). The

mode number n corresponds to the meridional direction θ (latitude direction). The analytic solution
involves for the meridional modulation a Gegenbauer polynomial in the barotropic case and a Hermite
polynomial in the baroclinic case. The dispersion analysis with the eigenmodes and the (vector)
eigenfunctions is given in [26, 27] and is not reproduced here. In the Test 1 and and Test 2 series, we
have used the routines provided as supplementary material in [28, 29] respectively 5. The routines
calculate the analytic solutions in the four cases (1a, 1b, 2a and 2b). In all cases, the constants in
front of the amplitude must be chosen small enough to ensure that the wave (15) be effectively a
(quasi) analytic solution.

(4) In all cases, the numerical solver is the HCCS scheme (13). The initial data at t = 0 is the analytic
value given by the matlab routine. It is evaluated at t = 0 at the nodes ski,j of the Cubed Sphere.
As already mentionned, the time stepping is performed using various time schemes for comparison.
The explicit fourth order RK4 is our reference scheme. The second order Rosenbrock scheme ERK2
was used as well. Refer to [5, 4] for comments on using these time schemes in the context of the SW
equations (1).

4.1.1. Test Case 1: barotropic waves. The input parameters are selected as follows:

• The atmosphere mean depth is:

(18) H = 5000m.

• The wave numbers k (zonal wave number) and n (meridional wave number) are:

(19) (k, n) = (5, 10).

• The wave solutions are as follows:
(1) Test 1-a is a barotropic inertia gravity wave. It is an Eastward Inertia Gravity wave called EIG

with period 3.16h. Thus 100 periods represent 13.5 days.

(2) Test 1-b is a barotropic Rossby wave. It has a period of 12.03 days, (100 periods = 1203 days).

The reference Courant number for the EIG wave at the equator is

(20) CFL =

√
gH∆t

a∆ξ
,

4This kind of numerical assessment is also used in gas dynamics (Euler or Navier-Stokes sequations). The accuracy of the
nonlinear scheme is assessed when used for wave propagation problems, e.g. occuring in aeroacoustics or turbulence.

5This supplementary material is also provided in matlab, python and FORTRAN for the Test 1 series and in python for the
Test 2 series
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where a = 6371.22km is the earth radius and ∆ξ = aπ/2N . The integer N represents the Cubed Sphere
resolution. For example, the reference Courant number CFL = 1 corresponds with N = 64 to a time step of
∆t = 699s.

4.1.2. Test Case 2: baroclinic waves (Matsuno). The input parameters are selected as follows:

• Atmosphere mean depth:

(21) H = 30m.

• The wave numbers k (zonal wave number) and n (meridional wave number) are

(22) (k, n) = (5, 1).

The two waves are
(1) Test 2-a is an EIG (Eastward Inertia Gravity) wave. The period is 1.9 days. Thus 100 periods

represent 190 days.

(2) Test 2-b is a Rossby wave with a period of 18.5 days, (100 periods = 1850 days).

Compared to (20), the Coriolis force is larger. In this case, the reference Courant number is

(23) CFL =
∆t

a∆ξ

√
gh0 +

4Ω2a2∆ξ2

6
.

The Courant number CFL = 1 corresponds (with a Cubed Sphere resolution 6 × 64 × 64) to a time step
∆t = 8013s. This is 10 times larger than for Test 2-a.

4.2. Error notation. In Sections 5 and 6, the shape of the numerical solutions are shown at initial and
final times. In addition, various errors between the analytical and the calculated solutions are reported. The
analytical solution of (1) is

(24) q(t,x) = [h(t,x),u(t,x)]T ,

where the velocity u is decomposed in zonal and meridional components as

(25) u = uλeλ + uθeθ.

The numerical solution (12) is

(26) q(t) = [hki,j(t), u
k
i,j(t)]

T , k = (I), (II), ...(V I), −N/2 ≤ i, j ≤ N/2.,

where the numerical velocity u is decomposed as

(27) u = uλeλ + uθeθ.

(1) Relative errors: The relative error on each component is

(28) errθ =
‖uθ − uθ‖2
‖uθ‖2

and errλ =
‖uλ − uλ‖2
‖uλ‖2

,

where ‖.‖2 denotes the l2 norm. Similarly for relative error on the height h is given by

(29) errh =
‖h− h‖2
‖h−H‖2

,

with h the numerical total height.
(2) Dispersion error: As in any discrete approximation of a convective equation, there is a dispersion

error in the HCCS scheme. This dispersion is apparent when one shows the maximum of the error in
function of time. In particular, when the scheme is used over 100 periods, the dispersion is visible.
In this case, as mentioned in [20], one is more interested in the preservation of the global shape of the
wave that is represented by the grid than by the numerical velocity which necessarily slightly differs
from the exact one. As suggested in [28], the dispersive error is represented as follows:
• First the maximum error is plotted.
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Figure 2. Test 1-a (barotropic EIG wave). The final time is t = 13.5 days. Left panel: total
height at final time. Right panel: Histories of relative errors (28-29) for the zonal velocity is
uλ, the meridional velocity uθ and the total height h. The time scheme is the ERK2 scheme
with 407 time iterations and CFL = 4, see (20). The resolution of the Cubed-Sphere is
6× 64× 64.

• Second, the dispersion is estimated by the numerical velocity Cn with a Fourier analysis per-
formed on 100 periods and compared to the theoretical velocity C. The relative velocity is
defined by

(30) |∆C| = |C − Cn|
|C|

× 100.

• Third, Hovmöller diagrams [13] are given. Such diagrams provide a suitable way to represent
the accuracy of a numerical scheme for a propagation phenomenon. There are two variants of
Hovmöller diagrams: time/longitude and latitude/time. Both are used in the sequel.

(3) Dissipation error: The dissipation is simpler to represent than the dispersion. Here we limit ourselves
to plot the history of the extrema of the total height h. Due to the form (15), the analytical solution
obviously does not have any dissipation and the extrema at any time are the extrema at time t = 0.
Therefore, plotting the minimum and maximum of the numerical solution h over a long physical
period of time is a simple and reliable way to represent the dissipation of the numerical solver.

5. Test cases 1: barotropic waves

5.1. Test 1-a: barotropic Eastward Inertia-Gravity (EIG) Wave. Here, we show numerical results
obtained with the HCCS solver for Test 1-a in Section 4.1.1. It is an eastward propagating wave, referred as
EIG. In Fig. 2, the left panel displays the total height h at time t = 13.5 days. The time stepping scheme
is the second order accurate Rosenbrock Exponential Integrator (ERK2), [12, chap.7]. Refer to [5, 4] for
more details on using ERK schemes for SW equations. The right panel displays the history of the relative
error. This error increases in function of time and behaves periodically. This reflects the fact that some error,
dispersive and/or dissipative, is necessarily present in any numerical approximation for convection. On this
topic, refer to [28]. Still regarding dispersion, the Table 1 reports the magnitude of the relative error on the
velocity |∆C| defined in (30). In all cases, the magnitude is smaller than 1%. Another representation of the
dispersion is given in the left and middle panels in Fig. 3. In the left panel, a time longitude Hovmöller
diagram is shown. This diagram is a suitable representation of the characteristics lines of the convection
phenomenon at hand (here the EIG wave) emanating from a parallel at a given latitude. The dashed line
represents the numerical slope, with CFL = 1 (RK4 scheme) and CFL = 4 (ERK2 scheme) respectively. A
very good alignement of the exact and numerical slope can be observed. In the middle panel, a latitude-
time Hovmöller diagram is shown. This second kind of Hovmöller diagram allows to illustrate the temporal
changes as opposed to an instantaneous snapshot. Such a representation was used in [29]. Finally in the
right panel, the dissipation of the HCCS solver is represented using the history of the extrema (maximum
and minimum) of the total height h. As can be observed, the maximum and the miminum values are almost
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Figure 3. Test 1-a (barotropic EIG wave). HCCS solver in space at final time is t = 13.5
days. First line : RK4 time scheme at CFL = 0.9. Second line, ERK2 scheme at CFL =
4. The first column corresponds to time-longitude Hovmöller diagrams of the numerical
solutions obtained by intersecting the zonal velocity at latitude θ = 36 deg. The second
column is corresponds to latitude-time Hovmöller diagrams obtained by intersecting the
zonal velocity at longitude λ = −18deg. The third column displays the maximum and the
minimum history of the total height h over the full simulation. No significant damping is
observed. The Cubed-Sphere resolution is 6× 64× 64.

constant during 100 time periods. This shows that the center solver HCCS is almost dissipation free in this
case.

Time scheme Courant Number CFL barotrop. EIG wave

ERK2 1 0.6389%
4 0.6999%
8 0.4405%

RK4 1 unstable
0.9 0.1468%

Table 1. Test 1-a (barotropic EIG wave). Dispersion analysis at final time is t = 13.5 days
(100 periods). The relative velocity errors |∆C| in (30) are reported for various values of
CFL. The relative error on the velocity is smaller than 1% in all cases after 100 periods.
The RK4 scheme with CFL = 0.9 corresponds to 1808 time iterations and the ERK2 time
scheme with CFL = 4 corresponds to 407 time iterations, see (20). Note that the ERK2 is
stable with a CFL number as high as CFL = 32. This is not reported in the table since
in this case the sample rate is too low to accurately evaluate |∆C|. The resolution of the
Cubed-Sphere is 6× 64× 64.

Remark 5.1. The results obtained with a second ERK scheme (the ERK3 scheme), for which we refer to
[5, 4], are similar with the RK4 time scheme or with the ERK2 scheme. These results are not reported here.
For a given scheme assumed to be stable, the results are not sensible to the value of the Courant number.
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Figure 4. Test 1-b (barotropic Rossby wave), HCCS solver in space. The final time is
t = 1203 days (100 periods). The time scheme is the ERK2 time scheme with 9289 time
iterations and CFL = 16, see (20). Left panel: total h at final time. Right panel: history of
the relative errors for h, uλ (zonal velocity) and uθ (meridional velocity). The three curves
are almost superposed. The resolution of the Cubed-Sphere is 6× 64× 64.

5.2. Test 1-b: barotropic Rossby Wave. Here we consider the so called barotropic Rossby wave, whose
setup is given in Section 4.1.1. Again the HCCS solver is used to operate the simulation during 100 periods
(1203 days). In Fig. 4, left panel, the total height at final time is reported. In the right panel, the maximum
error history for h, uλ, uθ is reported. As expected, (see [28]), due to a small dispersion error, these errors
oscillate periodically. The velocity error is |∆C| = 2.2722% with the ERK2 scheme and a Courant number
CFL = 16. With the RK4 scheme and a Courant number CFL = 0.9, the error is |∆C| = 1.7661%. In both
cases, this is slightly larger than the results for the EIG wave reported in Table 1. However, the level of the
error remains quite good.

As for the EIG wave, we also report in Fig. 5 a dispersion analysis based on the time/longitude and
latitude/time Hovmöller diagrams in the left and middle panels respectively. In both cases, the numerical
(dashed line) and theoretical slopes are well aligned. The dissipation of the HCCS solver is reported in
the right panel using the history of the extrema of the total height over the full simulation (1200 days, 100
periods). As for the EIG wave, this shows that the HCCS is visually dissipation free at final time when using
the Cubed Sphere with resolution 6× 64× 64.

Remark 5.2. The Cubed Sphere resolution 6 × 32 × 32 is not sufficient in this case and gives a significant
dissipation.

6. Test case 2: Matsuno baroclinic waves

In this section, we display numerical results obtained with the HCCS solver in the case of the baroclinic
waves test cases presented in Section 4.1.2. As in Section 5, numerical results with the HCCS solver are
reported for two waves: an EIG wave (Test 2-a) and a Rossby wave (Test 2-b). The numerical results for the
total height h for both the EIG and the Rossby waves are shown in Fig. 6. The final time is 190 days and
1850 days, respectively, and corresponds to 100 periods in both cases. The history of the errors is shown in
Fig. 7. As in the barotropic test series, the increasing error history expectedly reflects the (small) dispersion
of the scheme, see [28]. As before, Figs. 8, 9 report the two Hovmöller, time/longitude and latitude/time, to
better visualize the dispersion (left and middle panels). The RK4 and the ERK2 time stepping schemes are
compared. The RK4 scheme is used with a Courant number CFL = 1 and the ERK2 scheme is used with a
Courant number CFL = 5. For both time schemes, the dispersion is very good. Note that some irregularities
are apparent in the latitude/time Hovmöller diagrams when using the ERK2 scheme. This reflects the choice
of the CFL number CFL = 5, which is larger than CFL = 1. The history of extrema of h in the right panels
reflects the dissipation. As before, the HCCS solver appears to be dissipation free with the 6 × 64 × 64
Cubed Sphere. Table 2 reports the relative error on the velocity ∆C. Notice that different values of |∆C|
are obtained whenever different time schemes and different Courant numbers are used. In all cases, the error
on |∆C| is small, which is the sign of a small numerical dispersion.
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Figure 5. Test 1-b (barotropic Rossby wave). Dispersion and dissipation analysis of the
HCCS solver at final time (1203 days, 100 periods). First line : RK4 time scheme at CFL =
0.9 and 165143 time iterations. Second line, ERK2 time scheme at CFL = 16 and 9289
time iterations. Left column: time-longitude Hovmöller diagrams of the numerical solutions
by intersecting the zonal velocity at θ = 44 deg. Middle column: latitude-time Hovmöller
diagrams by intersecting the zonal velocity at λ = −18 deg. Right column: dissipation
analysis showing the maximum and minimum values of the total h over the full simulation.
There is no visible dissipation after 100 periods. The Cubed-Sphere is 6× 64× 64.

Figure 6. HCCS solver in space and the ERK2 time scheme. Left panel: Test 2-a (baroclinic
EIG wave). The total height h is shown at final time t = 190 days (100 periods) with
CFL = 5 and 431 time iterations. Right panel: Test-2b (baroclinic Rossby wave). The total
height is shown at final time t = 1850 days (100 periods) with CFL = 5 and 4313 time
iterations. The solution is more concentrated near the equator than in the barotropic case.
The Cubed-Sphere grid is 6× 64× 64.

Remark 6.1. In these cases, the resolution of the Cubed Sphere in space for the HCCS solver is 6× 64× 64.
This is the maximum allowed on our computer. This is below the resolution in [29].

Remark 6.2. The four test cases are performed with a matlab code on a simple laptop. Typical run time are
30min for Test1-a (barotropic EIG wave) 24h for the Test1-b (barotropic Rossby wave), 30min for Test2-a
(baroclinic EIG wave) and 5h for the Test2-b (baroclinic Rossby wave) for 100 periods in each case.
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Figure 7. Left panel: Test 2-a (baroclinic EIG wave). Right panel: Test 2-b (baroclinic
Rossby wave). The HCCS solver in space and the ERK2 time scheme are used in both cases.
In both cases, the history of the relative errors for the total height h, the zonal velocity uλ
and the meridional velocity uθ is shown. For the EIG wave, (left panel), the final time is
t = 190 days (100 periods) with CFL = 5 and 431 time iterations. For the Rossby wave,
(right panel), the final time is t = 1850 days 9100 periods) with CFL = 5 and 4313 time
iterations. The Cubed-Sphere grid is 6× 64× 64.

Figure 8. Test 2-a (baroclinic EIG wave). The HCCS solver in space is used. First line :
RK4 time scheme with CFL = 1. Second line, ERK2 time scheme with CFL = 5. The first
column represents time-longitude Hovmöller diagrams of the simulated solutions obtained
by intersecting the zonal velocity at latitude θ = 9 deg. The second column is a latitude-
time Hovmöller diagram obtained by intersecting the zonal velocity at λ = −18 deg. The
third column displays the maximum and minimum values of the total height h over the
full simulation (final time: 190 days). The distortion in the middle panel, bottom line, is
attributed to the Courant number CFL = 5. The Cubed-Sphere is 6× 64× 64.

7. Conservation

7.1. Invariants. In what follows, the conservation properties obtained in the Test-1 series (Section 5) and in
the Test-2 series (Section 6) are numerically analyzed. The constants are a = 6.37122× 106m (earth radius),
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Figure 9. Test 2-b (baroclinic Rossby wave). First line : RK4 time scheme with Courant
number CFL = 1. Second line, ERK2 time scheme with CFL = 5. The first column displays
a time-longitude Hovmöller diagrams of the simulated solutions obtained by intersecting
the zonal velocity at θ = 0 deg. The second column displays a latitude-time Hovmöller
diagrams obtained by intersection the zonal velocity at longitude λ = −18 deg. The third
column represents the maximum and minimum values of h over 1850 days (100 periods).
The Cubed-Sphere is 6× 64× 64.

Time scheme Courant Number EIG wave Rossby wave

RK4 1 0.11156% 0.16333%

ERK2 5 0.44187% 0.18185%
10 0.44187% 0.28027%

Table 2. Test 2-a (baroclinic EIG wave) and Test 2-b (baroclinic Rossby wave). Dispersion
analysis. The table reports the relative error |∆C| in (30) for the EIG and Rossby waves
with the two time schemes RK4 and ERK2. The results are obtained using a Fourier analysis
(see [28]). For the EIG wave, the final time is t = 190 days, (100 periods). The number of
time iterations are 2156 (CFL = 1), 431 (CFL = 5) and 215 (CFL = 10). For the Rossby
wave, the final time is t = 1850 days (100 periods). The number of time iterations are 21565
(CFL = 1), 4313 (CFL = 5) and 2156 (CFL = 10). The Cubed-Sphere grid is 6× 64× 64.

Ω = 7.292 × 10−5s−1 (earth angular velocity), and g = 9.80616m s−2 (gravity constant). The Coriolis force
is f(x) = 2Ω sin θ. The following averaged values are preserved by SW at the continuous level.
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(31)



mass: I1 =

∫
S2a
h?ds,

energy: I2 =

∫
S2a

1

2
h?v2 +

1

2
g
(
h2 − h2

s

)
ds,

potential enstrophy: I3 =

∫
S2a

(ζ + f)
2

2h?
ds with ζ the relative vorticity ,

divergence: I4 = 1
|Sa|

∫
S2a
∇T · vds,

relative vorticity: I5 = 1
|Sa|

∫
S2a

(∇T × v) · nds.

The numerical error for I1, I2 and I3 is reported using the relative (algebraic) value

(32)
Ip(t)− Ip(0)

Ip(0)
, p = 1, 2, 3.

The value I4 and I5 are reported without scaling.

7.2. Spherical quadrature. The integral

∫
S2a
f(x)dσ(x) is approximated by QN (f), a particular quadrature

rule on the Cubed Sphere. We have used the rule (20) in [22], which is

(33) QN (f) = a2

(V I)∑
k=(I)

N/2∑
i,j=−N/2

αi,jF (ski,j).

We refer to [22] for the definition of the weights αi,j . The numerical integrals in (31) are evaluated by (33).

7.3. Conservation with the HCCS scheme. Table 3 and Figs. 10, 11, 12 and 13 report the conservation
of the five quantities mass, energy, enstrophy, divergence and vorticity at final time for the Test 1 and Test
2 series. It can be observed that the relative conservation error is excellent in the four cases, ranging from
computer accuracy in Fig. 12 to 5.10−8 in Fig. 11.

Test case 1 Test case 2
EIG wave Rossby wave EIG wave Rossby wave

CFL 4 16 5 5
Relative Mass Error 1.7666 (-14) 2.4476 (-8) 2.8297 (-15) 1.6564 (-12)

Relative Energy Error 2.6838 (-14) 4.8947 (-8) 2.2746 (-16) 3.2573 (-12)
Relative Enstrophy Error 2.5541 (-14) 3.0250 (-8) 2.0419 (-14) 2.9696 (-13)

Mean value divergence 1.5840 (-17) 3.6990 (-16) 3.6539 (-20) 6.8451 (-20)
Mean value vorticity 2.9723 (-19) 5.7501 (-25) 9.3416 (-21) 8.3526 (-21)

Table 3. Test 1-a, Test 1-b, Test 2-a and Test 2-b: conservation of the values in (31):
mass (relative), energy (relative), enstrophy (relative), mean divergence and mean vorticity
with the HCCS solver in space with the ERK2 scheme. Test 1-a (barotropic EIG wave):
CFL = 4, t = 13.5 days, (100 periods), 407 time iterations. Test 1-b (barotropic Rossby
wave): CFL = 16, t = 1203 days, (100 periods), 9289 time iterations. Test 2-a (baroclinic
EIG wave): CFL = 5, t = 190 days, (100 periods), 431 time iterations. Test 2-b (baroclinic
Rossby wave): CFL = 5, t = 1850 days, (100 periods), 4313 time iterations. In all cases, the
conservation properties are very good, ranging from computer accuracy to values less than
5.10−8.

14



Figure 10. Test 1-a (barotropic EIG wave). Left panel: History of the mass relative error
(32) for I1. Right panel: History of the energy relative error (32) for I2. The solver is the
HCCS scheme in space with the ERK2 time scheme with CFL = 4 and 407 time iterations.
The conservation accuracy is excellent in all cases, below 2.10−13. The Cubed-Sphere grid
is 6× 64× 64.

Figure 11. Test 1-b (barotropic Rossby wave). Mass and energy relative error (31). HCCS
solver in space with ERK2 scheme time scheme with CFL = 16. The conservation accuracy
is very good, even after 1203 days, (100 periods) with a level below 5.10−8 in both cases.
The Cubed-Sphere is 6× 64× 64.

8. Concluding remarks

The design of test cases based on SW wave (quasi-)solutions of the equations of meteorology is not a new
topic, in 2D or 3D. For a comprehensive history of this approach, refer to [14, 31, 28] and the references
therein. The interest of such solutions is multifaceted. Although being academic, these solutions have the
advantage to be close to ”real” meteorological models. They also have the interest to have a mathematical
basis. In fact, such solutions offer an excellent platform for various mathematical aspects of the equations
under study. On the one hand, the design of the solutions is interesting in itself. Testing numerical solvers
often allows to learn more about the numerical method and its limitation, or about the test case itself. In
addition, since very few mathematical results are known on the PDE’s (even in the 2D tangential setting),
the numerical convergence behaviour of the solver towards ”exact” solutions is also a way to learn more.

The two new test series suggested in [28, 29] are a new stimulating family of quasi-analytic solutions of the
2D SW equations. In the present study, they were used to assess the HCCS finite difference solver capability
to accurately capture essential features, even after as much as 100, 000 time iterations. The numerical results
obtained so far confirm what was already observed in [4]. This was our initial objective. Furthermore, as
mentionned above, the solver behaves remarkably well regarding conservation.
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Figure 12. Test 2-a (baroclinic EIG wave). HCCS solver in space with the ERK2 time
scheme with Courant number CFL = 5. Left panel: Mass relative error. Right panel:
Energy relative error. In both case, the level is below 5.10−15, (machine accuracy). The
Cubed-Sphere grid is 6× 64× 64.

Figure 13. Test 2-b (baroclinic Rossby wave). HCCS solver in space with the ERK2 time
scheme with Courant number CFL = 5. Left panel: history of the relative mass error. Right
panel: history of the relative energy error. 1850 days represent 100 periods. The conservation
error is below 5.10−12 in both cases. The Cubed-Sphere grid is 6× 64× 64.

Clearly, future work is required to complete the mathematical analysis, in particular to analyse the con-
servation properties observed so far in the wave regime of the spherical SW equations. Finally, extending the
HCCS solver to the full 3D SW equations is clearly a desirable perspective.
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