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Abstract

Highly anisotropic elliptic problems occur in many physical models that need be
solved numerically, and in this case regular, structured mesh methods are generally not
designed to provide an optimal discretization. Starting from the experience gained in the
simulation of turbulence in magnetized fusion plasmas, we propose a new finite-difference
scheme based on aligned interpolations that can be applied for the resolution of a large
class of highly anistropic elliptic problems beyond magnetic fusion. Numerical tests
on manufactured solutions show accurate and stable numerical approximations in not
aligned cartesian or cylindrical grids. For a given accuracy, results show that mesh points
can be saved with respect to non-aligned approaches when the anisotropy is increased.
Compared with the existing literature, this new scheme is shown to be conservative, and
is able to deal accurately and efficiently with any Dirichlet, Neuman or Robin boundary
conditions in the direction of anisotropy at the border of the domain.
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1. Introduction

Elliptic partial differential systems are ubiquitous in physical models and numerical
simulations. They occur in fluid models used in mechanics, geophysics, plasma physics,
but also in other fields of research as in microelectronics, optics, image processing, and
so on, the list being not exhaustive.

A typical problem to solve with appropriate boundary conditions is the Poisson’s
equation that writes as:

∇ · ([K] ·∇)T = S, in Ω ⊂ R3 (1)

where [K] is the diffusion tensor that can be written in a coordinate system whose axes
coincide with the principal axes of the tensor such as: Kb‖ 0 0

0 Kb⊥ 0
0 0 Kz

 (2)

where Kb‖ , Kb⊥ and Kz are given functions along these axes.
In many configurations the isotropy of the problem can be broken, and a preferred

direction (direction of anisotropy) is thus introduced that leads to an anisotropic diffu-
sion tensor. Regular, structured mesh methods for conservation laws are generally not
designed to discretize such anisotropic operators in an optimal way. They feature inher-
ently preferred directions which can introduce systematic errors, even at high resolution,
if physical anisotropies are not aligned with the grid axes. The discretization can in par-
ticular produce a significant spurious numerical diffusion in the direction orthogonal to
the anisotropy direction, which can significantly impact the perpendicular dynamics [?
]. As recalled in van Es et al. [1], other problems can also arise as the non-positivity near
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high gradients [? ] or the convergence stagnation or loss of the solution [2, 3]. Such spu-
rious effects can be reduced by using high-order approximations for contribution related
to the direction of anisotropy but larger stencils are then required.

Many mathematical and numerical works have been devoted to the discretization
of anisotropic diffusion operators (see a quite exhaustive list of references in van Es et
al. [1]). More specifically in the frame of finite-difference methods, support operator
methods (SOM) [4, 5], also known as Mimetic finite-difference [6], allow to conserve
the self-adjointness of the divergence and the flux operator and the positive definiteness
of the continuum problem when discretizing second-order partial differential equations.
Hyman et al. [6], set the conditions to define Dirichlet, Neuman and Robin boundary
conditions preserving SOM properties. In Morel et al. [7] a new local version of SOM
was proposed, which yields a sparse matrix for diffusion equation.

The initial motivation of this work being related to magnetic confinement fusion and
to the simulation of edge plasma turbulence, the direction of anisotropy corresponds
to the parallel direction along the magnetic fied lines that defines the privileged flow
direction (the magnitudes of the two components of the magnetic field in the toroidal and
poloidal directions verifiy |Bp|� |Bt| in a tokamak) along which the governing equations
are usually projected [8]. For the simulation of magnetized fusion plasmas, Gunter et al.
[3] proposed a finite-difference method with SOM conditions in not-aligned coordinates in
rectangular grids, reducing the perpendicular pollution due to the parallel discretization.
Ottaviani [9] and Hariri & Ottaviani [10] introduced the Flux-Coordinate Independent
approach, a field-aligned approach in not aligned cartesian and polar grids, interpolating
the field value on the magnetic field line (parallel diffusion direction). This method is
able to reduce the number of grid points in rectangular and cylindrical grids (reducing
drastically the grid unknowns). The parallel numerical diffusion is shown to decrease, and
to be subdominant with respect to the perpendicular second-order dynamics calculation
based on a classical Arakawa scheme [11]. In Stegmeir et al. [12] the Field Line Map
(FLM) approach is presented. Based on the magnetic field lines trace geometry, Stegmeir
et al. present an integration method for the gradient operator from interpolated field
values in the magnetic field lines, before deriving the full diffusion operator with SOM.
The resulting approach presents lower numerical diffusion, higher convergence tendency
and the grid unknowns reduction presented in [9]. Finally van Es et al. [1] compare
the accuracy properties of Gunter et al.’s schemes with field lines tracking approaches
in regular cartesian grids using the surrounding points. The comparison is made in
anisotropic cases. What’s the conclusion?????????????-¿ In general, aligned
approaches present a natural operator discretization generaly not aligned
with a grid for highly anisotropic problems in a nu parler des résultats, range
d’applications (grille, anisotropie, etc),

In this work, we propose a new finite-difference scheme based on interpolations aligned
with the direction of anisotropy. Compared with the existing literature, it is shown
to be conservative and able to deal accurately with non-periodic boundary conditions
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in the anisotropy direction at the border of the domain. The paper is organised as
follows: in Section 2 the mathematical model related to an elliptic problem is presented,
the numerical scheme is detailed in Section 3 for the discretization of the parallel and
perpendicular operators in the interior of the computational domain and in Section 5
for the boundaries. In Section 6, the problem of grid limitation on not aligned grids
is addressed depending on the numerical approach is aligned or not. Finally, results
showing the accuracy and the efficiency of the new scheme are presented in Section 7
on the elliptic problem Eq. 3 and in Section 8 for the special case of Poisson’s equation
(µ = 0) depending on Dirichlet, Neuman or Robin boundary conditions are used.

2. Mathematical model

An elliptic problem with general boundary conditions is considered as :{
−∇ · [K]∇T + µT = S on Ω

β∇‖T + γT = s in Γ
(3)

where Ω is a domain of boundary ∂Ω in R3 provided a cartesian frame of reference
(x, y, z). We assume the variables of the problem satisfy the usual ellipticity and regu-
larity assumptions. µ is a positive (or zero) constant, and S and s are some given source
terms. β and γ can be equal to zero or one, depending on Dirichlet, Neumann or Robin
boundary conditions are considered. This problem allows us to decollerate the treatment
of the equation in the interior of the domain (periodic domain) and at the boundaries.

The anisotropy of the problem is taken into account via the definition of the diffusion
tensor [K]. In the present work the anisotropy direction is fixed, and is aligned with the
first main axis of the tensor denoted Kb‖ .

Thus, in the (x, y, z) non aligned-coordinate the system can be written as:

−∇ ·

[π]

 1
ε
Kb‖ 0 0

0 Kb⊥ 0
0 0 Kz

 [π]−1

∂T/∂x
∂T/∂y
∂T/∂z

+ µ[I][T] = S (4)

where [I] is the identity matrix and [π] defines the rotation matrix of angle α:

[π] =

 cosα − sinα 0
sinα cosα 0

0 0 1

 (5)

In this work, we will assume that Kb‖(x, y), Kb⊥(x, y) and Kz(z) are terms with
comparable order of magnitude, and ε is a small parameter defining the anisotropy. α
is the angle that the unit vector b along the privileged direction (Fig. 1) subtends with
the x-axis. Thus, in the (x, y)-plane, b = (cosα, sinα)t. Gradients along the parallel and
perpendicular direction are then defined as ∇‖ = b ·∇ and ∇⊥ = ∇−b∇‖, respectively.
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Great simplifications can be obtained by choosing a coordinate system whose axes
coincide with the principal axes of [K]. If we consider the (b‖, b⊥, bz) aligned-coordinate
system, the algebraic system Eq.4 simplifies as:

−∇ ·

 1
ε
Kb‖ 0 0

0 Kb⊥ 0
0 0 Kz

∂T/∂b‖
∂T/∂b⊥
∂T/∂z

+ µ[I][T] = S (6)
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Figure 1: Directions of the principal axes of the diffusion tensor in the (x, y)-plane. α defines
the misalignment angle of the principal axes with respect to grid points directions.

3. Numerical discretization in the interior of the domain

The computational domain is the cube ]0, 2π[×]0, 2π[×]0, 2π[ in the (x, y, z) direc-
tions, respectively. It is considered as open, the discretization of the boundary conditions
at the border of the domain being considered thereafter.

3.1. Grid definition

The grid is structured and uniform. Each cell in the grid can be addressed by indexes
(i, j, k), and each vertex has coordinates xi = i(2π/Nx), yj = j(2π/Ny), zk = k(2π/Nz)
for (i, j, k) ∈]1, Nx[×]1, Ny[×]1, Nz[, where Nx, Ny, Nz is the number of points in each
direction. Distances between grid points are defined as ∆x = xi+1 − xi, ∆y = yj+1 − yj
and ∆z = zk+1 − xk.

In the following, the discretization will be oriented, the local sense of b defining the
positive sense at any (i, j, k) point. Quantities to discretize may thus eventually be
superscripted with + or − when needed.
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3.2. A conservative discretization of the parallel gradient ∇‖
The discretization is made conservative by using a finite-volume formulation. By

simplicity, we will assume ∇ · b = 0. If b was not divergence free, it would be always
possible to find a divergence-free vector field everywhere co-linear to b. Under this
assumption, the following integral definition of ∇‖ can be used on each control volume
K, of volume V and surface S that allows us to estimate the parallel gradient from the
flux through S:

∇‖T = ∇ · (Tb) ≡ lim
V (K)→0

1

V (K)

∫
S

Tb · ndS (7)

The control volume K around each grid point Ti,j,k is defined by the polygon limited
in (i, j ± 1

2
, k ± 1

2
) in the y − z-plane Xi, and extruded along the parallel direction up

to the planes Xi± 1
2

(Fig. 2). At these planes, it contacts neighbouring control volumes
defined from grid points located in both adjacent planes Xi+1 and Xi−1. In the following,
we will only consider by simplicity neighbouring control volumes defined in Xi+1, the
discretization being similar for control volumes defined in Xi−1.

Figure 2: Sketches of control volumes used in this work. In black full line the control volumes
defined around Ti,j,k ∈ Xi. In grey, the neighboring control volumes in Xi± 1

2
. General case

with b(x, y, z).

The contact surfaces between the control volume and its N neighbors are denoted
ap, p = 1, ..., N (Fig. 3). For each contact surface ap, we consider the line passing by its
geometric center that follows the parallel direction, as illustrated in Fig. 3b. It intercepts
the two planes Xi and Xi+1 at two points of coordinates (xi, y

−, z−) and (xi+1, y
+, z+),

where (y±, z±) can be defined between (xi+1/2) and (xi±1) as :
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y± = y +

∫ xi±1

xi+1/2

by
bx
dx, z± = z +

∫ xi±1

xi+1/2

bz
bx
dx (8)

bx, by and bz being the components of b in the Cartesian frame (x, y, z).

(a) (b)

Figure 3: Zoom on Fig. 2 showing contact surfaces between control volumes for N = 4 (b(x)
here for simplicity) (a), and construction of a control volume used to evaluate the parallel flux
q3 at xi+1/2 through the specific surface a3 (b).

The field value at these points are obtained by interpolation of the field values at the
surrounding points in the corresponding planes. We can write for each p :

T inti,p = f inti,p

(
{Ti,j,k}i,j=1,...Ny ,k=1,...Nz

)
(9)

T inti+1,p = f inti+1,p

(
{Ti+1,j,k}i,j=1,...Ny ,k=1,...Nz

)
(10)

Where f inti,p and f inti+1,p represents the linear interpolation function applied in the grid
points. For a lineal interpolation order in yj < y < yj+1 and zk < z < zk+1 points leads:

Thus, the second-order local flux balance through the plane ap can be discretized as:

(∇‖T )p =
1

∆̃Vp

(
T inti+1,p ai+1,p bi,p · ni,p − T inti,p ai,p bi+1,p · ni+1,p

)
(11)

Where ∆̃Vp is the volume obtained by integrating the surface ap along the parallel
direction between Xi and Xi+1.
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The previous discretization can be rewritten as a matrix product of a numerical
application qp,λ to the discretized field for the whole domain as follows:

(∇‖T )p =
∑
λ

qp,λTλ (12)

Where for clarity λ = (i− 1) ·Ny ·Nz + (j − 1) ·Nz + k labels (i, j, k).

3.3. Discretization of the parallel Laplacian ∇ ·Kb‖∇‖
The parallel Laplacian is obtained using the support-operator method (SOM) [5].

For any functions T and Ψ as well as suitable boundary conditions (bi-periodic or homo-
geneous Dirichlet), the Green formula allows us to define the parallel diffusion operator
directly from the parallel gradient as:

〈∇ · [K]∇‖T,Ψ〉 = −〈[K]∇‖T,∇‖Ψ〉 (13)

where 〈·, ·〉 defines the L2-inner product. Though Eq. 13 is unambiguous at the
continuous level, it involves two inner products defined in the gradient space (GS) and
in the fluxes space (FS) for any functions f and g as:

〈f, g〉 =
∑
k

fkgk∆Vk (14)

〈̃f, g〉 =
∑
p

fpgp∆̃Vp (15)

According to Eq. 11, the inner product in (FS) can be estimated at the discrete level
using evaluations of the diffusivity on flux points denoted by {Kb‖,p} as:

〈[K]∇‖T,∇‖Ψ〉 ≡
∑
p

(
Kb‖,p

∑
λ

qp,λTλ

)
×
(∑

µ

qp,µΨµ

)
∆̃Vp (16)

For each λ, N values of flux are associated and the flux space generated by all qλ,p is
labeled by (λ, p) .

As shown in Eq. 11, qλ,p in (FS) is estimated from (GS). The adjoint operator defined
by the matrix qλ,p is a discretization of the divergence operator defined from (FS) into
(GS). Then, the operator (∇ · [K]∇‖) is defined from (GS) into (GS).

The left-hand side of Eq. 13 leads at the discrete level to:

〈∇ · [K]∇‖T,Ψ〉 ≡
∑
λ

(∇ · [K]∇‖T )λΨλ∆Vλ (17)

According now to Eqs. 13, 16 and 17, one deduces by identification that:
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(∇ · [K]∇‖T )i = − 1

∆Vi

∑
p

(
Kb‖,pqpi

∑
k

qpkTk∆̃Vp

)
(18)

Upon multiplication by the cell volume, the SOM provides a symmetric discrete
matrix since:

Aλµ∆Vλ =
∑
p

qpλqpµ[K]p∆̃Vp =
∑
p

qpµqpλ[K]p∆̃Vp = Aµλ∆Vµ (19)

where [K]p∆̃Vp = [K∆̃V ]p,p is a p× p diagonal square matrix.

The parallel approach has been described for a full three-dimensional operator. In
the following, and according to Eqs. 5 and 2, the problem can be decomposed into a
two dimensional problem in the b‖ and b⊥ directions, not aligned with the grid, plus an
additional dimension bz, aligned with the grid.

The discretization being not aligned with the grid, the points needed for the dis-
cretization are shifted with respect to the Cartesian grid. This shift is equal to:

ξ = b
∫ xi±1

xi

by
bx
dx

∆y
c (20)

which simplifies as:

ξ = b∆x
∆y

tanαc (21)

when the diffusivity tensor is uniform in space.

Figure 4: Example of shifted points for a 9-points stencils in the (x, y) plane: not oriented
stencil (dashed lines) and oriented stencils (full lines) for a shift ξ = 3. The arrow along b
shows the positive sense.

9



3.4. A conservative discretization of the perpendicular gradient ∇⊥ and Laplacian

In this paper, we also propose a conservative approach to discretize the perpendicular
direction. The perpendicular gradient ∇⊥ at (i, j ± 1

2
) is expressed as a combination of

the parallel gradient and of a contribution coming from the gradient in the y-direction
as follows:

(∇⊥Ti,j±1/2) =
∇yTi,j±1/2 −∇‖Ti,j±1/2 sinα

cosα
(22)

where ∇‖ is obtained using an aligned approach as:

∇‖Ti,j±1/2 =
T inti+1,j±1/2 − T inti−1,j±1/2

d±‖
(23)

where T inti±1,j±1/2 are the values of T obtained by a polynomial interpolation (Vander-

monde) in the plane Xi±1, and d‖ is the distance in the parallel direction between two
successive planes (Xi −Xi±1):

d±‖ =

∣∣∣∣∣
∫ xi±1

xi

√
b2x + b2y + b2z
|bx|

dx

∣∣∣∣∣ (24)

The contribution of the gradient in the y-direction is easily obtained between two
adjacent grid points at (i, j ± 1) by centered finite-differences:

(∇yTi,j+1/2) =
Ti,j+1 − Ti,j

∆y
(25)

(∇yTi,j−1/2) =
Ti,j − Ti,j−1

∆y
(26)

4. Conservativity

The conservativity of the new scheme is shown for the parallel operator which is
the privileged direction of the problem. The discretization of the perpendicular op-
erator shown previously guarantees the conservativity in this direction. To show the
conservativity, a test case avoiding the interpolation step is considered. It is based on a
manufactured solution Ta, constant in the interpolation direction (Ta = sin(xi)), and a
variable diffusivity such as 1/ε = Ksin(xi) sin(yj). Eq. 3 is solved with µ = 1 and with
bi-periodic boundary conditions, varying the angle α = tan−1 (mx/my), for my = 8 and
mx ∈ [1, 8]. Only straight parallel diffusion lines are considered. Results are compared
to the Flux-Coordinate Independent approach of Ottaviani [9] and Hariri & Ottaviani
[10], referred here as the Ottaviani’s scheme.
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Figure 5: Grid points distribution needed to discretize the perpendicular operator. T inti±1,j±1/2
are the values of T along the parallel direction obtained by a polynomial interpolation (Van-
dermonde) in the plane Xi±1. ξ is the shift value calculated from Eq. 20.
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Figure 6: a) Sketches of the flux discretizations between adjacent control volumes for the
Ottaviani’s scheme (aligned to the grid points [9]) and the present scheme (centered to the
contact surface between control volumes). (b) Plot of the difference ∆T between the averaged
values of the analytical solution Ta and of the discretized solution of Eq. 3 over the domain for
different values of the anisotropy coefficient 1/ε with 1/ε = Ksin(xi) sin(yj). ∆T is averaged
when varying the inclination angle α for my = 8 and mx ∈ [1, 8].

The conservativity of the present scheme is ensured by the discretization of the fluxes,
calculated at the center of the common faces of two adjacent CVs. It was not the case
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with the Ottaviani’s scheme where the fluxes were calculated at the center of the control
volume faces for each plane Xi leading to a misalignement of these between adjacent
CVs, as shown on Fig. 6 (a).

The difference, denoted ∆T , between averaged values over the domain of the ana-
lytical solution Ta and the discretized solution is plotted on Figure 6 (b) for both the
Ottaviani’s scheme and the present one. ∆T is also averaged for different angles of incli-
nation α corresponding to my = 8 and mx ∈ [1, 8]. For the Ottaviani’s scheme (dashed
line) this difference is non zero, and the bars indicate the extreme values obtained when
varying α. With the present scheme on the contrary, the difference is zero showing the
conservativity of the discretization whatever the angle α and the anisotropy.

5. Numerical discretization of the boundaries

In bounded domains when the flow in the dominant direction (parallel direction)
intercepts the boundary of the physical domain, the discretization must be adapted
to keep the accuracy while remaining compatible with the discretization adopted for
inner nodes. For non-aligned approaches like in Ref.[3], or for some aligned approaches
like in Ref.[1], in which the stencil is based on surrounding grid points, the methods
keep working near the boundaries, possibly using some ghost points. However, aligned
approaches, involving oriented stencils as the present work or others proposed in Refs.
[9, 10, 12] for example, require a certain number of points possibly located far outside
the physical domain (the number of ghost points needed is related to ξ defined in Eqs. 20
and 21), as illustrated on Fig. 7a. The weakness of such approaches is that the accuracy
of the extrapolation in the y-direction to estimate T int is low. Indeed, such point may
be located far outside the domain whereas solutions exhibit short-wavelengths in this
direction.
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(b)

Figure 7: Numerical discretization for aligned approaches near the grid limits. (a) Classical
approach with ghost points T int,− located along the parallel direction and possibly far outside
the domain. (b) Present method with ghost points T add added on the boundary of the domain.

According to what mentioned above, we propose to add ghost points directly on the
boundary of the domain, as shown in Fig. 7b. Such points are needed since we may

12



have at the two boundaries of the domain, depending on the resolution and the incidence
value α: ∫ xi−1

xi

by
bx
dx < 0 at y = 0 and

∫ xi+1

xi

by
bx
dx > 2π at y = 2π (27)

For any point Ti,j located close to the grid limits at y = 0 and y = 2π, extra points
are added in the x-direction at the coordinates:

xadd = i∆x+

∫ yi

0

bx
by
dy at y = 0 and xadd = i∆x+

∫ 2π

yi

bx
by
dy at y = 2π

(28)
These points being now located on the boundary, the value of the field may be directly

obtained from the boundary conditions of the problem Eq. 3. For Dirichlet boundary
condition (β = 0 and γ = 1) the results is immediate. For Neumann boundary condition
(β = 1 and γ = 0), the derivative in the parallel direction has to be evaluated using
interior grid points. In this case, we get:

T addy=0 =
∇‖T addy=0(d‖,1 + d‖,2)− 4Ti,j + T inti+1

3
(29)

T addy=2π =
−∇‖T addy=2π(d‖,1 − d‖,2) + 4Ti,j − T inti+1

3
(30)

where d‖,1 and d‖,2 (Eq. 24) are the arc lengths in the parallel direction between T add

and Ti,j, and between Ti,j and T int,+, respectively, T int,+ being the interpolated value of
the field in the plane Xi+1.

Since the values of T add at y = 0 and y = 2π are located along b, the CV associated
to Ti,j (See on Fig. 2) is aligned with the control volume associated to T add. The
flux discretized using finite-differences between Ti,j and T add remains conservative. The
complete operator can be calculated by considering the fluxes balance in the CV of Ti,j,
i.e.:

∇ · [K]∇‖Ti,j =
Q+ −Qadd

y=0

1
2

(
d‖,1 + d‖,2

) (31)

∇ · [K]∇‖Ti,j =
Qadd
y=2π −Q−

1
2

(
d‖,1 + d‖,2

) (32)

where Qadd
y=0 and Qadd

y=2π are the fluxes between the added grid points and Ti,j:

Qadd
y=0 =

Ti,j − T addy=0

d‖,1
and Qadd

y=2π =
T addy=2π − Ti,j

d‖,1
(33)
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and Q± is the total flux considering the fluxes obtained in Eq. 11, as follows:

Q± =
1

A±i,j

∑
i,j,p

qi,j,pTi,j ap where A±i,j =
∑
p

ap (34)

In Eq. 33, the matrix product qi,j,pTi,j gives the fluxes trough the CV, and ± repre-
sents the relative position into the CV associated to Ti,j. Note than in Eq. 34 A±i,j and
ap reduce to lengths since the problem is 2-D.

6. Grid limitations study using a manufactured solution

The problem being highly anisotropic it is worthwhile to investigate the representa-
tion of the solution with respect to the stencil in a Cartesian grid. The results presented
in this section solves the Eq. 3 with µ = 1 with bi-periodic boundary conditions and
1/ε = 1, considering only Kb contribution in Eqs. 4, 6.

6.1. Nyquist-Shannon theorem

The Nyquist-Shannon theorem [13, 14] demonstrates that the minimal resolution
N in an arbitrary direction is equal to N = 2m, where m is the highest wavenumber
of the solution in this direction. Thus, this theorem provides a criterium to identify
certain numerical behaviours of the solution found depending on the grid used. To
illustrate this result, we have firstly performed the polynomial reconstruction of the
function f(x) = sin(mxx), with mx = 50. As expected from the theorem, the error made
in the signal reconstruction when increasing the resolution starts to decrease exactly for
N = 2mx, and this feature is independent of the degree of interpolation. This provides
the minimal resolution needed for a given wavelength.

Problem Eq.3 with µ = 1 is now considered with periodic boundary conditions and
for the two-dimensional manufactured solution:

Ta (x, y) = 1 + cos (myy +mxx) , (35)

with my = 13 and mx = 2. This leads to an inclination angle α = 8.75◦ , α =
tan−1 (mx/my). As shown on Fig. 8, the field remains constant in the parallel direction
defined by b = (cosα, sinα, 0), while rapid variations can be observed in the perpendic-
ular direction.

Tests are performed keeping the resolution fixed in the x-direction. The ‖T − Ta‖L2-
error is plotted on Fig.9 for various numerical schemes with aligned and non-aligned
interpolations, when increasing the resolution in y-direction:

• The asymmetric approach (not oriented stencil) [1], referred here as the classic
scheme.
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(a) (b)

Figure 8: (a) 2D plot of the manufactured solution T (x, y) [Eq. 35] with Nx = Ny = 1000.
The computational domain is [0, 2π] × [0, 2π]. (b) Misalignment representation between the
solution pattern φ, and the parallel diffusion direction α out of the range Eq. 37.

• The symmetric approach presented in Gunter et al. [3] (not oriented stencil),
referred here as the Gunter’s scheme.

• The aligned approach (oriented stencil) based on a second order polynomial inter-
polation, and a second order finite-difference scheme presented in [10, 9], referred
here as the Ottaviani’s scheme.

• The aligned approach (oriented stencil) based on a linear interpolation proposed
in Stegmeir et al. [12], referred here as the Stegmeir’s scheme.

• The present scheme with linear interpolation and oriented stencil.

6.2. Numerical schemes with non-aligned interpolation

Problem Eq.3 is discretized in the two x and y directions using both a classical
finite-difference method (also known as asymmetric scheme in [3, 1]) and the symmetric
Gunther’s scheme [3]. Stencils of both schemes are not oriented.

Fig. 9a shows the L2-norm when increasing the resolution in the y-direction only
(N˙x=32). The dotted line shows the minimal resolution expected from the Nyquist-
Shannon theorem. This allows us to relate oscillations to aliasing effects with two extrema
at Nx ×Ny = 2.88× 102. For grid resolutions between the dotted and dashed lines, the
convergence is dominated by the discretization error in the y-direction. The dashed line
shows the lowest error, and corresponds to a resolution where the grid and the direction
of the parallel diffusion are perfectly aligned. Beyond this resolution, increasing the
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number of points in the y-direction does not lead to an error decrease, the error being
now dominated by the discretization in the x-direction, which is fixed.
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Figure 9: ‖T − Ta‖2L2 and ‖T − Ta‖2H1
-norms when increasing resolution. (a) Non-aligned

approaches: classic scheme and symmetric Gunter’s scheme [3]. The resolution in the x-
direction is fixed, with Nx = 32. The dotted line corresponds to the minimal resolution
prescribed by the Nyquist-Shannon theorem. The dashed line corresponds to the resolution
where the grid is perfectly aligned with the direction of the parallel diffusion. (b) Aligned
interpolation schemes for Nx = 8 (thin lines) and Nx = 32 (thick lines) for Ny = [50, 250].

To better take into account these discretization features and avoid false optimal
performance points, we will consider the H1-norm, which is a upper bound of L2-norm
integrating the norm of the gradient in the x, y−directions. Thus,

‖T − Ta‖2H1= ‖T − Ta‖2L2+‖∇T‖2L2> ‖T − Ta‖2L2+‖∇xT‖2L2+‖∇yT‖2L2 (36)

6.3. Numerical schemes with aligned approach

Tests are carried out with the present scheme together with the Ottaviani’s dis-
cretization [9, 10] based on a 2nd-order polynomial interpolation and the Stegmeir’s
discretization [12] based on a linear interpolation.

Accurate interpolation in the y-direction in the calculation of the parallel derivative
needs a number of grid points at least equal to the value provided by the Nyquist-Shannon
theorem.

In oriented stencils to the parallel diffusion direction, the Nyquist-Shannon theo-
rem provides the misalignment limit between the orientation angle of the local solution
pattern Fig. 8, denoted by φ, and the parallel diffusion direction α, Eq.37. The Nyquist-
Shannon criterium must be verified for the values of the solution on the grid along the
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parallel direction, to accurately estimate the parallel derivative. This saves grid points in
the x-direction since the wavenumber of the solution is smaller in the parallel direction
than in the x-direction. They are trivially equal when α = 0.

tan−1

(
4 ∆x tanφ− λy,min

2

4 ∆x

)
≤ α ≤ tan−1

(
4 ∆x tanφ+

λy,min
2

4 ∆x

)
(37)

Note that the misalignment angle limit is not symmetric with respect to the diffusion
direction given by α.

The interpolation step when using oriented stencils introduces an additional error
to the finite-difference scheme. Figure 9b shows the oscillations due to this. Here, the
number of points only varies in the y-direction, and the resolution in the x-direction is
kept fixed at Nx = 8 or Nx = 32. The various local minima of the errors correspond to
resolutions where the grids are aligned along the parallel diffusion direction, while the
local maxima of the errors correspond to the largest grid-misalignment.

Note since interpolation error is proportional to d−2‖ = (∆x cos−1 α)−2 using a finite-

differences discretization, Figure 9b shows how a higher x-resolution (i.e.a lower d‖ value)
increases the error of interpolation for the same number of grid points in the y-direction.

7. Numerical tests in periodic domain

Eq. 3 is solved considering only the parallel contribution in the diffusion tensors Eq.
2.

The analytical soltuion Ta Eq. 38 is characteristic of a realistic highly anisotropic
diffusion flow as those occuring in magnetized fusion models [9]. It exhibits long struc-
tures oriented to the main diffusion direction in combination to rapid variations in the
perpendicular direction (Figure 10):

Ta(x, y) = C1 + C2 cos (myy +mx,1x) + C3 sin (mx,2x) (38)

where C1, C2, my, mx,1 and mx,2 are constants of the problem.
The pitch angle α is rewritten as:

α = tan−1
(

1

q

)
= tan−1

(
mx,1(xmax − xmin)

my(ymax − ymin)

)
(39)

Test cases have been launched for a wide range of grid points, setting the number of
unknowns in each direction as multiples of two, with a maximum equal to 262144. Plotted
results correspond to the lowest value of the H1-norm when varying independently the
resolution in each direction, only the total number of points being fixed.

The sensitivity in the resolution of problem Eq. 3 to µ is shown on Figure 11 for vari-
ous values of the parameter smaller or equal than 1. The results show that the resolution
of Eq. 3 is little sensitive to µ, except for very small values where the problem becomes
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Figure 10: Plot of Ta Eq. 38 with C1 = 0, C2 = 1, C3 = 1, my = 27, mx,1 = 4 and mx,2 = 2.

singular (Poisson’s equation with periodic boundary conditions). In the following, we
will only consider µ = 1 in all tests.
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Figure 11: H1-norm convergence in a periodic domain of the discretized solution to Ta when
increasing the resolution, for µ values smaller or equal than one, µ ∈ [10−6, 1]. α = tan−1(4/27),
my = 27, mx,1 = 4, mx,2 = 2, and 1/ε = 1.

Convergence results are presented on Figure 12 for an isotropic (1/ε = 1) and
anisotropic (1/ε = 106) diffusion tensor. For all cases, the plots show a better accu-
racy of the aligned schemes for a given number of grid points. As expected, when the
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anisotropy becomes stronger only the aligned schemes converge, Figure 12(b) and Figure
13. For a prescribed accuracy, the present scheme as well as the Stegmeir’s scheme save
points with respect to the Ottaviani’s scheme.
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Figure 12: H1-norm convergence in a periodic domain of the discretized solution to Ta when
increasing the resolution. (a) 1/ε = 1 and (b) 1

ε = 106.

kk

10 2 10 4 10 6 10 8 10 10

H
1
!

n
or

m

10 -3

10 -2

10 -1

10 0

10 1

10 2

Classic
Gunter
Ottaviani
Stegmeir
Present S.

(a)

Figure 13: H1−norm evolution in a periodic domain with respect to the anisotropy intensity
1/ε for the grids leading to the lowest errors (128× 4096 for the classic scheme, 128× 1024 for
Gunter’s scheme, and 16× 4096 for all aligned approaches.

8. Numerical tests in bounded domains

In bounded domains, oriented stencil approaches are combined with the proposed
approach near the boundary. For not oriented stencil approaches, the same approach
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is used in the whole domain. In particular, for Neumann boundary conditions, Gunter
approach parallel derivative is obtained by interpolation in the grid nodes, and by crossed
differentiation to the grid point.

8.1. Elliptic problem with Dirichlet boundary condition

The addition of aligned points in the boundary limits plays a key role in the con-
vergence of oriented stencil approaches in highly anisotropic grids. As seen in Fig. 12,
oriented stencil approaches reach the best performance when Nx � Ny, which determines
a higher shift value ξ for a given pitch angle α > 0. In Fig. 14a , different approaches
near the boundary limits has been tested for the test case Eq. 35 in combination with
presented approach for the interior grid points. Extrapolated grid points in y-direction
presents a poor performance, since the rapid frequencies in this direction limits the ex-
trapolation quality as explained in Sec. 5. The use of a not oriented approach like Gunter
approach demands the use of only one ghost point in y-direction, but the Nx/Ny rate
is out of the limit of Nyquist-Shanon theorem for not oriented stencil approaches when
oriented stencils reach the higher performance. Added points increase lightly the number
of global unknowns (added points=2Nxξ � Nx × Ny), and maintains the convergence
founded on bi-periodic cases. Fig. 14b shows the condition number associated Fig. 14a
points: the use of Gunter or extrapolated points arise the condition number in general
(since these approaches requires a bigger number of unknowns in x-direction).
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Figure 14: (a): L2-norm for α = tan−1
(

4
27

)
(my = 27; mx = 4) in Eq. 35 for Dirichlet

boundary conditions with 1
ε = 100 (black lines) and 1

ε = 106 (gray lines) for the presented
scheme in the inside grid points and combined with the specified approach near the boundary.
In (b), the condition number of the numerical matrix is presented for the values of chart (a).

Precision-resolution comparison. Dirichlet boundary conditions with added aligned
points on the toroidal direction in the limits.

20



Number of grid points
10 2 10 3 10 4 10 5 10 6

H
1
!

n
or

m

10 -3

10 -2

10 -1

10 0

10 1

Classic
Gunter
Ottaviani
Stegmeir
Present S.

(a)

Number of grid points
10 2 10 3 10 4 10 5 10 6

H
1
!

n
or

m

10 -4

10 -3

10 -2

10 -1

10 0

10 1

Classic
Gunter
Ottaviani
Stegmeir
Present S.

(b)

Figure 15: Minimal number of grid points for a given H1-norm for α = tan−1
(

4
27

)
,(my =

27; mx,1 = 4 and mx,2 = 2) in test case eq. 38 with Dirichlet boundary conditions: In (a)
1
ε = 100 and (b) for 1

ε = 106.

8.2. Special case of the Poisson’s equation with Robin boundary condition

Poisson’s equation:
∇ · ([K] ·∇))T = S on Ω

1
R
∇‖T + T = s in Γ

(40)
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Figure 16: H1 norm for α = tan−1
(

4
27

)
(my = 27; mx,1 = 4; mx,2 = 2 in eq. 35) for R = 100

and R = 10−3 with 1
ε = 100 in Eq. 40.

9. Conclusion
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