
HAL Id: hal-02476965
https://hal.science/hal-02476965

Submitted on 13 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Building a student effort dataset: what can we learn
from behavioral and physiological data

Barbara Moissa, Geoffray Bonnin, Anne Boyer

To cite this version:
Barbara Moissa, Geoffray Bonnin, Anne Boyer. Building a student effort dataset: what can we learn
from behavioral and physiological data. Learning & Student Analytics Conference, 2019, Nancy,
France. �hal-02476965�

https://hal.science/hal-02476965
https://hal.archives-ouvertes.fr


LSAC 2018 

 

LSAC 2019 22-23 October 2019, Nancy France 

 

Building a student effort dataset: what can we learn from 

behavioral and physiological data 

Barbara Moissa, Geoffray Bonnin, Anne Boyer 

Université de Lorraine – LORIA, Nancy, France 

{barbara.moissa, geoffray.bonnin, anne.boyer}@loria.fr 

 

Track 

Academic research: comprehensive evaluations of recent innovations in learning and student 

analytics approaches. 

 

1 Purpose 

 Decades of studies have shown that student’s success is strongly dependent on their 

effort [1, 2, 3]. Recently, this concept made its way into the domain of Learning Analytics [4, 

5]. One of the major difficulties of these works is to correctly define the effort and to find 

relevant means of measuring it. Our approach is based on the Cognitive Load Theory [6], 

which provides a theoretical background issued from Learning Sciences, desired by the 

Learning Analytics domain [7]. The cognitive load is a multidimensional construct that 

represents the load that performing a given task imposes on the cognitive system [8], and is 

often considered by researchers as being equivalent to mental effort [9]. The cognitive load 

has long been studied in educational sciences, and several types of measures have been 

proposed that can be classified into four categories [10]: (1) subjective measures, i.e., 

students’ perceived effort, (2) performance measures, e.g., the outcome of student work 

assessments, (3) physiological measures, such as pupil dilation and heart rate, and (4) 

behavioral measures, such as points of fixations, and keyboard and mouse usage. 

In an exploratory work [11], we proposed a new cognitive load measurement model 

based on behavioral data. Our data consisted in keyboard and mouse usage, as well as page 

views and fixation points from an eye tracker, and were collected in the context of an online 

Esperanto course. Our results showed that eye tracking data provided a better indication of 

effort than keyboard, mouse and page view data, and that a slight complementarity exists 

between these two types of information. In the same spirit, Larmuseau et al. [12] investigated 

the correlation between the cognitive load and two physiological measures from smart 

watches: skin conductance and skin temperature. The participants were future school teachers 

taking a course as part of their training. One of their main findings is a moderate correlation 

between effort and skin conductance. However, both these last approaches are preliminary 

and only focused on small samples (less than 20 participants). 
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2 Design 

In order to propose a more meaningful and reliable model of cognitive load 

measurement, we undertook the collection of a much richer dataset involving 120 students 

from lower secondary education (from the 5th cycle in French schools, which is equivalent to 

the 7th grade in the United States). In this experiment, students wore a smartwatch to capture 

their hand movements and heart rate. We also collected gaze data using eye-trackers as well 

as mouse and keyboard usage data. We could therefore collect data related to all four types of 

aforementioned measures of the cognitive load. 

The participants had to complete a sequence of 15 English exercises, each of which 

was followed by a questionnaire evaluating how much effort they exerted. At the beginning 

and at the end of the session, they also answered an additional questionnaire related to their 

overall fatigue and stress. The sessions lasted between 30 and 60 minutes and the students 

completed the exercises at their own pace, i.e., each student solved a different number of 

exercises. Some students skipped a few exercises because they had not studied the content 

related to it. 

 

3 Results 

 The results of a preliminary analysis will be presented during the conference. Our 

analysis seeks to know if we can reproduce or enhance the results of the model presented in 

[11] by correlating behavioral measures with subjective measures (instead of scores). For this, 

we apply to our new dataset a similar methodology to that of the aforementioned paper [11]. 

We believe that our approach can be exploited to develop different effort-based tools to help 

both teachers and students. We are especially planning to incorporate the resulting 

measurements to a teacher dashboard with the goal to help teachers identify students who are 

not engaged into learning or students exerting too much effort, as well as teaching material 

tailored to the engagement of the students. The proposed model could also be used in fully 

automated tools. Especially, recommendation systems could be proposed that aim at 

maximizing students’ engagement based on how much effort they exerted and they can exert. 
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