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Abstract

The aim of this paper is to provide, for a reader not familiar with the non-intrusive coupling
method, the simplest possible example on which all the different iterative coupling strategies can be
solved by hands. Among them, the basic algorithm, Aitken’s method, mixed interface conditions. . . A
drawback of this example is that, for some acceleration techniques, the convergence can be achieved
in one iteration after the initialization. Nevertheless it allows to easily become acquainted with
the different techniques. Some examples from previous papers are then used to illustrate the same
properties on more complex examples involving nonlinearity.

1 Introduction

In the last decade, many innovative modeling or solution techniques have been introduced in the field
of computational mechanics. These techniques, such as enriched finite elements or multiscale modeling,
enable to perform complex simulations that are out of the reach of conventional finite element analysis
(FEA) tools, in terms of computational or human costs. Although these techniques have proved their
performance by extensive testing on academic applications, they are scarcely applied on actual industrial
problems because they cannot be conveniently implemented into commercial FEA software packages.
Therefore, a scientific and practical challenge is to allow realistic simulation of complex industrial problems
including all their physical and technological complexity. A view on this issue can be found in a prospective
document of the NSF blue-ribbon panel Oden et al. (2006):

“If an industry is to replace testing with simulation, the simulation tools must undergo robust
verification and validation procedures for effectiveness. Overall, simulation in industry has
yet to meet its full potential. The following list is a summary of its current limitations:

1. The development of models is very time-consuming, particularly for geometries of com-
plex engineering systems [. . . ]

2. Methods are needed for linking models at various scales and simulating multi-physics
phenomena.”

We are interested in the case where the complex phenomenon to be analyzed concerns one or several
reduced parts (called local models) of the whole body (call global model). Those parts often correspond
to very fine structural details that can not be taken into account in the global mesh of the structure,
details which in turns can induce nonlinearity such as plasticity, visco-plasticity or damage. A typical
example is presented in Figure 1 where one can see that a proper description of the local parts may
require meshes larger than the mesh used for the global model Blanchard et al. (2019).

A method often used by engineers to tackle such problems is the submodeling approach Cormier et al.
(1999): after the global computation, structural zooms are applied on the local critical zones, with details
represented exactly. An advantage of this approach is that it allows to easily connect research software
and commercial code, as was done for example to deal with the prediction of delamination under low
velocity impacts Allix (2001). Unfortunately, it implies neglecting the influence of the local zones on
the whole structure. This may lead in turn to quite important local errors. The problem becomes more
crucial when nonlinearity initiated locally spreads over the whole structure.
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Figure 1: Illustration of global and locals models.

To correct the drawback of submodeling while keeping its simplicity and flexibility, a non-invasive
method was proposed in order to allow exact local/global analysis, embedding the same basic tools as
those used in the submodeling inside an iterative procedure. The prerequisite of the proposed framework
is to keep unchanged the global numerical model as well as the solver used for its treatment. Therefore,
two or several models are used concurrently, the untouched global model and the local ones which are
iteratively substituted where needed. The exchanges between the models are such that the data should
be “natural” to the software, such as prescribed nodal reactions or displacements.

The proposed method aims therefore at converging by iterations toward the reference problem by
means of submodeling-like steps. The formulation of the method and its numerical optimization have
first been derived in the case of global linear models and local plasticity Gendre et al. (2009, 2011). A
number of other applications and extensions have been proposed: use of XFEM at the local scale Passieux
et al. (2013), treatment of non-matching interfaces Liu et al. (2014), coupling between a global plate
model and 3D parts for bolted assemblies Guguin et al. (2014), geometrically non conforming coupling
Guinard et al. (2018), multiscale time and space computation in explicit dynamic Bettinotti et al. (2014)
with implementation in Abaqus Explicit for the analysis of delamination under impact Bettinotti et al.
(2017), non-invasive domain decomposition approach Duval et al. (2016). Mesh refinement based on error
estimation may also be cast in the proposed non-intrusive framework Duval et al. (2018).

Alternative proposals exist, based on volume coupling as for example the Arlequin method Dhia
(1998). The implementation of such methods in a legacy code is not straightforward, mainly because
the creation of the coupling operators between the two models in the transition zone requires complex
integration operations. The volume coupling may also be performed by means of a non-invasive version
of the Partition of Unity method Plews et al. (2012); Fillmore and Duarte (2018), by using projection
techniques between the local and global models Temizer and Wriggers (2011); Holl et al. (2013) or by
means of homogenization-like techniques Hühne et al. (2016).

The aim of this paper is to provide, for a reader not familiar with the non-intrusive coupling method,
the simplest possible example on which most of the different iterative coupling strategies used in the
previously cited papers can be solved by hands. Among them, the basic algorithm, Aitken’s method,
mixed interface conditions. . . A drawback of this example is that, for some acceleration techniques, the
convergence is achieved in one iteration after the initialization. Nevertheless, it allows to easily become
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acquainted with the different techniques. For this we consider the case of a bar in tension as described
on Figure 2.

uL

p
uL

Reference

Global model

Local model uFl

Figure 2: Reference, Global and Local models

2 Reference model

Let us consider a unit-section beam, clamped on its left side (x = 0) and with imposed traction displace-
ment uL on its right side (x = L). The beam is made out of two components: the Young modulus of the
left part [0, l] is EF , while it is EG on the right side [l, L]. We use the ′ notation for the derivative with
respect to the axial coordinate x. The subscript R is used for the reference solution. In what follows we
separate the left (−) and right (+) sides of the interface point x = l. The system of equations satisfied
by the Reference displacement uR and the Reference tension σR, can be written as:

σR = EF (uR)′ in ]0, l[ σR = EG(uR)′ in ]l, L[

σR′
= 0 in ]0, l[ and in ]l, L[

uR(0) = 0 uR(L) = uL

uR−(l) = uR+(l) σR
−(l) = σR

+(l)

(1)

The solution is uniform in tension, and continuous piecewise-linear in displacement:

uR(x) = uRl
x

l
in [0, l]

uR(x) = uRl + (uL − uRl )
x− l
L− l

in [l, L]

uRl = uL
1

1 + EF

EG
L−l
l

σR =
EFuRl
l

=
EFEG

EGl + EF (L− l)
uL

(2)

3 Iterative techniques using the global and the local models
separately

As previously described, the principle of the method is to use the two models described on Figure 2. The
local model, to which a displacement coming from a previous global solution is imposed at the interface,
and the global one where an extra load is prescribed at the interface. The different iterative techniques
aim basically at determining the load p to be prescribed to the global model which would lead to the
exact solution, in the unchanged part of the global model (referred to as complement zone) and in the
local model. To avoid possible misunderstanding we first define the two models. Let us also note that
the convergence properties presented on this simple example can be generalized to structural problems
introducing the Schur complement of the different domains Gosselet et al. (2018a).
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3.1 Local model

The Local model is the extraction of the left part of the Reference model. In order to avoid confusion
between the point L and the Local model, we use the F superscript for the Local model, meaning Fine
model. A Dirichlet condition uFl is imposed on the right side x = l of the Fine model:

σF = EFu′ in ]0, l[ (σF )′ = 0 in ]0, l[

uF (0) = 0 uF (l) = uFl
(3)

and the solution is:
uF (x) = uFl

x

l
in [0, l]

σF =
EFuFl
l

in [0, l]

(4)

3.2 Global model

The Global model is a simplification of the Reference model with a coarse representation of the zone of
interest [0, l]. In our case, we chose a homogeneous beam with Young modulus EG. An extra effort pG

is imposed at the interface x = l:

σG = EG(uG)′ in ]0, L[

(σG)′ = 0 in ]0, l[ and in ]l, L[

uG(0) = 0 uG(L) = uL

uG−(l) = uG+(l) σG
−(l) = σG

+(l) + pG

(5)

The solution can be written as:

uG(x) = uGl
x

l
in [0, l]

uG(x) = uGl + (uL − uGl )
x− l
L− l

in [l, L]

uGl =

(
pG(L− l)

EG
+ uL

)
l

L

σG
+ =

EGuL
L

− pG l

L

(6)

The coarse representation of the zone of interest in the Global model [0, l] was often called Auxiliary
model in previous papers, here it is noted with subscript −. The zone [l, L] where the Global and
Reference models match is the Complement zone, here written with subscript +.

Remark 1 (Solution in term of pG). By comparing (6) and (2), we see that σG
+ = σR can be achieved

for a specific value of pG, named pR:

σR =
EFEG

EGl + EF (L− l)
uL =

EGuL
L

− pR l

L
= σG

+

pR =
(EG − EF )

EGl + EF (L− l)
EGuL

(7)

where we see that, of course, pR is proportional to the dissemblance between the Fine and the Coarse
model in the zone of interest.

3.3 Basic fixed point iterative technique

The basic iteration consists in a Global computation for a given pGi , from which we deduce the displace-
ment to be imposed on the Local model. We then evaluate the lack of balance between the Local model
and the Complement zone of the Global model, this residual, written r, is to be added to pGi to define
the next load pGi+1 of the Global model.
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Algorithm 1: Non-invasive stationary iterations with overlap

Arbitrary initialization pG0
for j ∈ [0, · · · ,m] do

Solve Global model with extra Load pGj , extract displacement uGl,j and Traction σG
+,j

Solve Fine model with imposed displacement uGl,j , extract Reaction σF
j

Compute Residual rj = (σG
+,j − σF

j )

Update Global load pGj+1 = pGj + rj
end

Using previous formula, we have:

pGj+1 = pGj + rj = pGj + (σG
+,j − σF

j )

= pGj −
EFuGl,j

l
− pGj

l

L
+
EGuL
L

= pGj −
EF

(
pG
j (L−l)
EG + uL

)
l
L

l
− pGj

l

L
+
EGuL
L

= pGj

(
1− EF

EG

)
L− l
L

+ uL

(
EG − EF

L

)
(8)

We recognise a fixed point iteration. We remind below the classical conditions of convergence of a fixed
point algorithm; we will then make used of similar results for the other algorithms presented in this paper.

Proposition 2 (Condition of convergence). The iteration is a contraction and it converges if

ρ =

∣∣∣∣(1− EF

EG

)
L− l
L

∣∣∣∣ < 1 (9)

In fact:

uL

(
EG − EF

L

)
= pGj+1 − pGj

(
1− EF

EG

)
L− l
L

uL

(
EG − EF

L

)
= pGj − pGj−1

(
1− EF

EG

)
L− l
L

(10)

Thus by subtracting the previous two relations we obtain, whatever j ≥ 1:

pGj+1 − pGj =

(
1− EF

EG

)
L− l
L

(pGj − pGj−1) (11)

Thus:

pGj+1 − pGj =

((
1− EF

EG

)
L− l
L

)j

(pG1 − pG0 ) (12)

Thus, if ρ < 1, then (pGj ) is a Cauchy sequence. As we work in a complete space, (pGj ) tends to the limit

pG∞. The convergence is linear with rate ρ.

Proposition 3 (Limit). If the iteration is a contraction, we recover (7) when searching pG∞ = pR.

In fact, from the previous relation pG∞ satisfies:

pG∞ = pG∞

(
1− EF

EG

)
L− l
L

+ uL

(
EG − EF

L

)
pG∞ =

(EG − EF )

EGl + EF (L− l)
EGuL = pR

(13)

Remark 4. The case where the basic fixed point iteration diverges corresponds to two cases (the case
l=0 is excluded): (

1− EF

EG

)
L− l
L

> 1⇔ − l

L− l
>
EF

EG(
1− EF

EG

)
L− l
L

< −1⇔ 1 +
L

L− l
<
EF

EG

(14)
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In those cases, it is required to make use of more refined algorithms. The first case corresponds practically
to the possibility of softening. This is why relaxation was used in Gerasimov et al. (2018) where a local
model prone to cracking was modeled by means of a phase field approach of fracture. The second case
corresponds to a local material much stiffer than the global one.

3.4 Basic fixed point with relaxation

In order to improve the convergence rate, one can simply use relaxation. For a given ω ∈ R+, the update
formula is modified:

pGj+1 = pGj + ωrj (15)

and the rate of convergence can be computed, and minimized in order to obtain the optimal relaxation:

ρ = 1− ωE
Gl + EF (L− l)

EGL

ωopt =
EGL

EF (L− l) + EGl

(16)

3.4.1 Aitken’s acceleration

Aitken’s acceleration can be viewed as an automatic tuning of the relaxation parameter using the formula:

ωaitken
j+1 = −ωaitken

j

rj−1(rj − rj−1)

‖rj − rj−1‖
(17)

where an initial relaxation must be provided (in general equal to 1).
In this very simple case (scalar unknown and linear problem), it can be checked, using equations 6

and 8, that Aitken’s formula reaches the optimal relaxation after the first iteration.

3.4.2 Robin condition on the Fine model

A possibility, in order to obtain fast convergence, is to improve the boundary condition applied to the
Fine model, see Figure 3. Indeed, a Dirichlet condition has the advantage of being easy to implement,
and always available in legacy codes, but it provides an extremely simplified vision of the Complement
domain.

uL

pG

uL

Reference

Global model

Local model

pF

kF

Figure 3: Reference, Global and Local models

In this approach, not only reactions are not balanced (σG
+ − σF ) 6= 0, but the local displacement

uF (l) does not match the global displacement uG(l), unless convergence is reached. We gather the two
conditions in an equivalent form:

(σG
+ − σF )− kF (uF (l)− uG(l)) = 0

(σG
+ − σF )− kS(uG(l)− uF (l)) = 0

(18)

where kF and kS are parameters homogeneous to a stiffness. The first expression is used to define the
boundary condition on the local model whereas the second is used to evaluate the residual which should
take into account not only the lack of balance of forces but also the jump of displacements.
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We consider the modified Fine model:

σF = EF (uF )′ in ]0, l[ (σF )′ = 0 in ]0, l[

uF (0) = 0 σF (l) + kFuF (l) = kFuG(l) + σG
+

(19)

If we note pF = kFuG(l) + σG
+ , we recover the configuration of Figure 3. The solution is:

uF (x) =
pF

kF l + EF
x in [0, l]

σF =
pFEF

kF l + EF
in [0, l]

(20)

As said earlier, the second line of (18) is used to define the a residual which measures both the lack
of balance and of continuity between the Local and Global models at the interface:

rj = (σG
+,j − σF

j ) + kS(uFl,j − uGl,j) (21)

This leads to Algorithm 2. If we analyze one iteration, we get:

pGj+1 = pGj + rj

= pGj
l(EG − EF )((L− l)kF − lkS)− EFL(kSl − EG)

(kF l + EF )EGL

. . .+
(EG − EF )(kF + kS)luL

(kF l + EF )L

(22)

Algorithm 2: Non-invasive stationary iterations with Robin condition

Arbitrary initialization pG0
for j ∈ [0, · · · ,m] do

Solve Global model with extra Load pGj , extract displacement uGl,j and Traction σG
+,j

Solve Fine model with Robin condition pFj = kFuGl,j − σG
+,j , extract Displacement uFl,j

Reaction σF
j

Compute Residual rj = (σG
+,j − σF

j ) + kS(uFl,j − uGl,j)
Update Global load pGj+1 = pGj + rj

end

The optimal parameters are kF = EG

L−l , that is to say the equivalent stiffness of the complement zone,

and kS = EG

l the stiffness of the Global representation of the zone of interest. With these parameters,
convergence is obtained in one iteration. Indeed, choosing these values one obtains:

pGj+1 = 0 ∗ pGj + pR (23)

In fact there exists a whole range of admissible mixed parameters ensuring the convergence, which can
be fully characterized using Proposition 2.

Remark 5. It can be shown that all the properties of different versions of the coupling only depends on
the equivalent stiffness of the domains: Fine model SF = EF /l, Complement domain SC = EG/(L− l),
Auxiliary model (coarse representation of the zone of interest in the Global model) SA = EA/l. More, the
equivalent stiffness of a beam is generalized by the concept of Schur complement, and with minor caution,
all the results above can be generalized to 2D ou 3D elasticity. Note that in practice using the optimal
kS is not a problem whereas estimating the optimal kF is much more involved. The question of finding a
good Robin condition mimicking the stiffness of a given domain has been addressed in many papers. In
the frame of non-intrusive coupling, a two-scale approximation was proposed and tested in Gendre et al.
(2011).

3.5 Use of overlap

This version of the method was proposed to handle certain incompatibilities of the models: use of non-
matching meshes Gosselet et al. (2018b) or models with different dimensionality (Global plate vs Fine
3D) Guguin et al. (2014).
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uL

pG

uL

Reference

Global model

Local model uFlF

lA

Figure 4: Reference, Global and Local models with overlap

We distinguish two inner boundaries: let lF be the limit of the Fine model and lA < lF be such that
the Global model in [lA, L] matches the Reference model. The extra traction on the Global model is
imposed at position lA whereas the displacement to be imposed on the Fine model is obtained at position
lF . See figure 4.

Note that if the models do not match exactly in the overlap, then the limit of the iterations might
differ from the Reference model. In the case where the Reference is well characterized this might be a
problem. In many circumstances (non matching meshes, models of different dimensionality) there is no
real reference and the limit of the iterations gives a mechanically sound coupled model.

Algorithm 3: Non-invasive stationary iterations with relaxation

Arbitrary initialization pG0
for j ∈ [0, · · · ,m] do

Solve Global model with extra Load pGj at position lA, extract displacement uGlF ,j and

Traction σG
lA+,j

Solve Fine model with imposed displacement uGlF ,j , extract Reaction σF
lA,j

Compute Residual rj = (σG
lA+,j − σF

lA,j) at position lA
Update Global load pGj+1 = pGj + rj

end

4 Illustrations

4.1 Application of the previous results

We illustrate previous study for the following values: L = 1, uL = 1/10, l = L/4, EG = 1, EF = .75.
In Figure 5, we compare the relaxation techniques. Note that in this simple case with 1D interface,

optimal relaxation leads to convergence in on iteration, Aitken’s formula finds the optimal relaxation as
soon as it possibly can (iteration 2).

In Figure 6, we compare the convergence for different values of the Robin parameters. The basic
(primal) iteration is printed, it corresponds to kS = 0 and kF = ∞. The optimal setting leads to
convergence at the first iteration. It appears that the convergence rate is more sensitive to variations in
kS than in kF , which is lucky since the computation of the optimal kS is actually feasible. As soon as
kS is well-chosen, a wide range of values of kF leads to better convergence than basic iteration.

In Figure 7, we compare the convergence for different lengths of the overlap. Large overlap is needed
to ensure significant speedup. Using overlap is thus not a competitive acceleration technique. Its interest
mostly lies in its capability to handle non-conforming meshes or models.

4.2 Comments on other iterative algorithms

This subsection briefly presents other iterations that have been tested but can not be illustrated on the
simple 1D linear example.
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a)
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Relaxation ω = (1 + ωopt)/2
Relaxation ω = 0.1 + 0.9ωopt

Relaxation ω = ωopt

Aitken

Figure 5: Comparison between relaxation techniques

In the linear case, the fixed point can be accelerated by a Krylov solver. The particular structure of the
fixed point operator, which can be written as the matrix of the reference problem preconditioned by the
global problem, makes it possible to apply a conjugate gradient algorithm Gosselet et al. (2018b). Since
the Global problem often forms an excellent preconditioner for the reference problem, the convergence is
extremely fast.

In the nonlinear case, if the Global model remains linear, quasi-Newton techniques like BFGS or SR1
can naturally be applied Gendre et al. (2009). Again, because of the quality of the Global model, line-
search appears not to be mandatory which enabled us to propose a fully nonlinear version of quasi-Newton
Gosselet et al. (2018b). Also, nonlinear conjugate gradient was tested with interesting performance if
carefully configured Gosselet et al. (2018b).

Anyhow, in almost all the cases we ever tested, it appeared that Aitken’s ∆2 formula provided excellent
performance in term of wall clock time, for an extremely simple implementation.

In the case of studies defined over large (pseudo)time intervals where the computation must be carried
out on a succession of time steps. The use of partially decoupled time scales between the models was
studied in Blanchard et al. (2019).

5 3D example

In order to illustrate the method on a more significant test case, we propose to use the data from Gendre
et al. (2011). The structure is the “sweded” turbine blade presented in Figure 8, it was provided by
Safran Aircraft Engines and it is representative of actual engineering work. In this particular case,
only the mechanical behavior of the zone of interest is altered in the Global model: the Fine model is
elastoplastic whereas the Global model is purely elastic. Meshes are unchanged in the different models.
Again, the constitutive relations are representative of actual problems. In general industrialists address
this kind of problems with submodeling or “structural zoom” techniques which can be interpreted as not
iterating in the Global/Local coupling.

The Reference and Global meshes contain about 500 000 degrees of freedom (dof), the zone of interest
contains 80 000 dof, and the interface is about 6 400 dof large. Only one increment of load (pressure
applied to one face) is considered.
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Figure 6: Comparison between various Robin techniques

The computation is managed by a python script which drives Abaqus software. The implementation
is non-intrusive in the sense that the models are barely modified, only the extra interface load must be
added to the global model. The two-scale Robin approach of Gendre et al. (2011) consists in extending
the Fine model with 3 layers of (elastic) elements to approximate the surrounding stiffness; the long-scale
effects are taken into account by a projector based on the response of the global structure to Saint-
Venant loads on the interface. When needed, Sherman-Morrison is applied to take into account low-rank
alteration to the stiffness matrix.

The problem was small enough in order to compute the Reference solution. Figure 9 presents the
convergence of the method, measured by the error in terms of maximum accumulated plastic strain
compared to the reference. The basic iteration takes 10 iterations to lower the error by 2 order of
magnitudes. The accelerated version (SR1 quasi-Newton) needs 7 iterations to lower the error by 5
orders of magnitudes. Finally, the Robin version with acceleration only needs 4 iterations for a 6-order
of magnitude decrease.

Note that a plateau can be observed around a relative error of 10−6. This is very common when
using industrial software: some truncation was applied by Abaqus on strain and stress which makes it
impossible to achieve better precision. Often, the estimation of the residual (nodal forces) does not suffer
such limitation, so that the residual can be decreased up to machine zero whereas the actually attainable
mechanical precision was reached much earlier.

We end up the illustration by important mechanical considerations. Figures 10 and 11 present a
comparison between the solution obtained by the classical submodeling approach and the Global/Local
coupling. In the presented case, the classical submodeling, widely used by industrialists, provides a good
estimation of the stress in the zone of interest. But it is really inaccurate in terms of plastic equivalent
strain which, for the record, is one of the mechanical quantity used to estimate the lifespan of the structure
under cyclic loading. Global/Local coupling is thus a powerful tool to achieve higher precision in the
computation without impeding the industrialists’ design chain, since usual tools can be employed without
profound alteration.

Note that the Global/Local coupling can also provide a simple framework in order to introduce
dedicated software for localized phenomena, see e.g. Guguin et al. (2016) for the use of a research code
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Figure 7: Comparison between different overlap sizes (basic iteration).

specialized in friction contact simulation to precisely model bolts in composite a plate assembly.

6 Conclusion

So far, most of what has been done regarding the global/local non-invasive coupling technique concerns the
development of the method within legacy codes. We hope that the very simple case which was analyzed
in this paper will be useful for anyone, and possibly PhD students, to get familiar with the method and to
further develop it. We think in particular to its initial motivation: to make it possible realistic simulation
of complex industrial problems including all their physical and technological complexity. The proposed
method should allow, by an easy and fast coupling, to merge research software, with their enhanced
physical capabilities, with industrial ones with their geometrical and technological capabilities.
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Figure 9: Convergence on the 3D test case — error in accumulated plastic strain
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