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Abstract

Understanding the flow of deformable particles such as liquid drops, synthetic capsules and vesicles, and
biological cells confined in a small channel is essential to a wide range of potential chemical and biomedical
engineering applications. Computer simulations of this kind of fluid-structure (membrane) interaction in
low-Reynolds-number flows raise significant challenges faced by an intricate interplay between flow stresses,
complex particles’ interfacial mechanical properties, and fluidic confinement. Here, we present an isoge-
ometric computational framework by combining the finite-element method (FEM) and boundary-element
method (BEM) for an accurate prediction of the deformation and motion of a single soft particle transported
in microfluidic channels. The proposed numerical framework is constructed consistently with the isogeomet-
ric analysis paradigm; Loop’s subdivision elements are used not only for the representation of geometry but
also for the membrane mechanics solver (FEM) and the interfacial fluid dynamics solver (BEM). We validate
our approach by comparison of the simulation results with highly accurate benchmark solutions to two well-
known examples available in the literature, namely a liquid drop with constant surface tension in a circular
tube and a capsule with a very thin hyperelastic membrane in a square channel. We show that the numerical
method exhibits second-order convergence in both time and space. To further demonstrate the accuracy
and long-time numerically stable simulations of the algorithm, we perform hydrodynamic computations of
a lipid vesicle with bending stiffness and a red blood cell with a composite membrane in capillaries. The
present work offers some possibilities to study the deformation behavior of confining soft particles, especially
the particles’ shape transition and dynamics and their rheological signature in channel flows.

Keywords: Fluid-structure interaction, Viscous drops, Elastic capsules and vesicles, Red blood cells,
Low-Reynolds-number flow, Loop subdivision

1. Introduction biological material transport through the microcir-
culation such as red blood cells (RBCs) [5, 6] and
drug delivery [7]. It is therefore essential to study
how soft particles deform under the action of flow
stresses in a small (confined) channel and what ef-
fect these stresses can have on the transport of the
deformable particles and associated processes. Of
particular interest are the particle’s translational
velocity, the overall hydraulic resistance in a given
channel containing suspended particles, and the dis-
turbed flow field induced by the presence of sus-
pended particles [8, 9].

Microfluidics refers to devices and methods for
the manipulation of fluids and immersed objects in-
side channels with dimensions of tens to hundreds of
micrometers [1]. Understanding the flow of soft or
deformable micro-particles (e.g., viscous droplets,
artificial capsules and vesicles, and biological cells,
etc.) in confined channels is essential for many mul-
tiphase microfluidic applications like control and
application of droplets (or bubbles) [2], and par-
ticle/cell sorting [3, 4]. It is also fundamental to

" : The dynamical behavior of these soft objects in
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the interfacial (membrane) composition play a key
role in this dynamics. The simplest deformable
object is a clean, surfactant-free drop, which is
characterized by its interfacial material property
— namely interfacial tension. Other soft entities,
however, have increased structural complexity lead-
ing to more complex mechanical properties. For
instance, a synthetic, liquid-filled capsule can be
thought of as a drop enclosed by a solid polymer-
ized membrane that resists shear and area defor-
mation, while a lipid vesicle is a drop enclosed by
an inextensible, fluidic membrane resisting bend-
ing. Shearing and stretching deformations of a vesi-
cle are negligibly small compared to bending ones.
The surface-area incompressibility of the lipid mem-
brane is ensured dynamically by a Lagrange field —
namely the membrane tension which is not a ma-
terial property but is flow dependent, analogous to
pressure for three-dimensional incompressible flows.
Biological cells like RBCs have a more complex ar-
chitecture. The RBCs membrane consists of a lipid
bilayer (vesicle-like) and an underlying membrane-
associated cytoskeleton (capsule-like). As such,
vesicles and capsules have often served as a model
system to mimic RBCs [10]. These soft entities (i.e.,
drops, capsules, vesicles, and RBCs) are considered
in the present work. To facilitate subsequent de-
scription, we shall make no difference between in-
terface and membrane.

The soft particles flowing in microfluidic chan-
nels is essentially a fluid-structure interaction (FSI)
problem involving highly deformable membranes
(interfaces). The small size and the low speed of
microfluidics mean that the viscous forces predom-
inate the inertial forces and the linear Stokes equa-
tions can, therefore, be applied to describe such
low-Reynolds-number flow (Re usually much less
than unity) [1]. Despite the linearity of the flow,
FSI problems at small scales are highly nonlinear
due to the highly nonlinear nature of the deforma-
tion of the soft objects and their constitutive mod-
els [11, 12]. Moreover, a significant difficulty arises
from the hydrodynamic interaction between the mi-
crofluidic wall and the object’s surface, especially at
conditions of high confinement where confinement-
induced viscous friction plays a dominant role in
the forces exerted on the soft object [13, 14]. It
is, therefore, a computationally challenging task to
solve this kind of FSI problems with fidelity.

There are a variety of different computational
strategies to solve FSI problems. Recently de-
veloped approaches can be broadly classified into

three categories (see, e.g., the reviews [11] for cap-
sules, [15] for vesicles, and [12] for RBCs), namely
bulk mesh-based methods [16, 17, 18, 19], particle-
based methods [20, 21, 22], and boundary-element
methods (BEMs).

The BEM offers very high accuracy compared
to other methods in the prediction of the dynam-
ics of deformable particles immersed in inertialess
Newtonian flows. BEM’s theory and its practi-
cal implementation are well-described in [23]. Its
efficiency has been demonstrated in the simula-
tion of drops [24, 25, 26, 27|, capsules [28], vesi-
cles [29, 30, 31, 32|, and RBCs [33]. The BEM
has a notable advantage over domain discretization
methods as it leads to a reduction in dimension-
ality; the flow equations are solved only for the
unknown stress and velocity fields at the domain
boundaries and at evolving interfaces. This restric-
tion of the discretization only to the boundaries
and interfaces greatly improve the computational
efficiency when studying wall-deformable object in-
teractions. A prominent example of such benefits
is to resolve the drainage fluid of thin liquid film
between the object surface and the channel wall at
high fluidic confinement, where the object occupies
a large proportion of the channel cross-section. Re-
gardless of how close the object is to the channel
wall, and how their distance changes over time, the
film thickness needs only to be considered when it
comes to determining the size of the mesh elements
on the membrane and at the channel wall. In their
numerical studies on vesicle dynamics confined in
tube flow, Refs. [13, 14] provided an estimate of a
typical element size which is about half of this thick-
ness, in the region of the liquid film. This very wor-
thy property of the BEM eliminates any problem
of volume mesh topology related to the movement
of an interface or error induced by the interpola-
tion of physical fields to it. However, it should be
tempered by the fact that the matrix system to be
solved in this method is characterized by full and
not sparse matrices as in most other methods. In
other words, an increase in the degrees of freedom
in modeling is seriously more penalizing in terms
of computation time. Therefore, any discretization
method that increases the accuracy of the numerical
representation of surfaces and domain boundaries,
while also optimizing the degrees of freedom of this
representation, is of great interest to the BEM.

In structural design, the most convenient and
widespread way to represent a surface is to use a
triangular mesh. It enables any surface shape to be



represented and allows for the development of adap-
tation algorithms and local mesh refinement. The
simplest triangular elements provide linear interpo-
lation per piece of the surface, as well as all physical
fields that use the same approximation (referred to
as isoparametric in finite element language). That
is the strategy adopted in [29]. The second strategy
makes use of the quadratic triangular elements [34],
which allows for an improved accuracy without in-
creasing the degrees of freedom, but at the cost of
a slightly more complex numerical implementation.
In both cases, as with all Lagrange elements, the
approximation can only be C° continuous between
elements, thus the spatial derivatives are discon-
tinuous across them. The regularity of represen-
tation could be increased to C' using Hermitian
elements. Their implementation in 2D (or axisym-
metric), though more complex, remains affordable,
the extension to 3D is much more problematic, if
not impossible. Moreover, we are not aware of any
studies using this option.

Being limited to approximations of C? is partic-
ularly penalizing for other obvious reasons. A di-
rect computation of the membrane bending force
requires a C* representation of the membrane ge-
ometry since the bending force contains the fourth-
order derivative of the position vector [35]. That is
why some local surface reconstruction techniques
have been developed to compute the Laplace-
Beltrami operator [30, 36]. An interesting alter-
native approach involves the use of differential ge-
ometry techniques, as demonstrated by [29]. Now,
one of the advantages of representation by finite el-
ement is that the mesh smoothness requirements
can be eased from C* to H? if formulating the
interfacial mechanical problem in weak form [37].
In the mathematical field of functional analysis,
the Sobolev space H? represents square-integrable
functions whose first- and second-order derivatives
are themselves square-integrable. It means that
with weak formulation a C! finite element approx-
imation is only required to compute the bending
force since the second derivatives are then piece-
wise continuous.

The representation of surfaces is a longstanding
issue in computer graphics. Exploiting the highly
accurate interpolation functions developed in this
field, like splines and NURBS (Non-Uniform Ratio-
nal Basis Splines), represents a recent breakthrough
in finite element analysis. Not only, it eases the con-
nection with computer-aided design (CAD), but it
opens the way to increased regularity of finite el-

ement approximation in general. All the physical
fields involved in a problem to be solved with fi-
nite elements benefit from the same highly accurate
representation as to the geometry. This rapidly de-
veloping trends in finite element analysis are thus
named isogeometric analysis or IGA [38].

In the IGA framework, the surface subdivision is
well suited when only the domain boundaries and
evolving interfaces have to be considered, as in the
BEM. Its use for finite element analysis with meshes
made of triangular elements has been made possible
thanks to the work of Loop [39], with a first applica-
tion to shell analysis by Cirak et al. [37]. IGA-Loop
guarantees almost everywhere a C? approximation,
except at a few irregular nodes where it’s only C*.
An IGA-BEM model with Loop subdivision for soft
particles in the Stokes flows is proposed in [31].
Its efficiency has been demonstrated to simulate
free-space FSI problems involving drops, capsules,
and vesicles in a unified numerical modeling frame-
work. Its superior accuracy as compared to previ-
ous methods to compute geometric properties like
curvature was confirmed in [36]. A coupled IGA-
BEM and shell approach is seen as a promising way
to study the interaction between thin elastic struc-
tures and Stokes flows and is attracting growing at-
tention in the soft particle’s community [40, 32, 41].

The algorithm developed in [31] is limited to free-
space Stokes flows. In [32, 42] three-dimensional
computations of a vesicle flowing in a circular and
rectangular duct (without bending force) have been
reported. However, whereas the vesicle surface ben-
efited from the increased accurate representation of
the Loop subdivision, the unknown physical fields
did not. Instead, they were represented by a piece-
wise linear interpolation, like earlier models. In
that regard, the IGA spirit cannot be advocated.

In this paper, we extend the previous work [31] on
soft particles in unbounded Stokes flows to confined
soft particles transported in microfluidic channels.
Both the surface shape of soft objects and the wall
boundary of channels are discretized with Loop’s
subdivision scheme. Most importantly, Loop ele-
ments are used not only for the discretization of the
interface (membrane) but also for the membrane
mechanics solver (FEM — the membrane force den-
sity) and the fluid dynamics solver (BEM — the in-
terfacial velocity and the disturbed wall traction).
In this way, the proposed numerical framework is
constructed consistently with the IGA paradigm.
Compared to the unbounded fluid-flow calculations,
fluidic confinement raises the considerable difficulty



in dealing with the hydrodynamic interaction be-
tween the wall boundary and the particle surface, as
the bounded fluid-flow computations require highly
refined grids to accurately capture wall-particle in-
teractions. Such a hydrodynamical computation
frequently encounters numerical instabilities, par-
ticularly in the simulation of vesicle dynamics,
which are associated with the membrane’s bending
rigidity and incompressibility, as reported in, e.g.,
Ref. [32]. Thanks to the use of Loop elements in
a consistent way, the present computational frame-
work overcomes these challenges, enabling accurate
and long-time numerically stable simulations.

The rest of the paper is organized as follows. In
Section 2, we describe the equations governing the
flow motion and the membrane mechanics along
with the interfacial conditions. In Section 3, we in-
troduce Loop’s subdivision scheme and discuss the
numerical method implemented in the membrane
and fluid solvers, whose validation is provided in
Section 4. While the current numerical model can
deal with channels of arbitrary cross-sections, we
focus herein on a single deformable particle in a
circular or rectangular channel, for demonstration
purposes only. We present additional simulation re-
sults to demonstrate the accuracy and stability of
the method in Section 5, followed by conclusions
and future directions in Section 6.

2. Problem statement and formulation

As sketched in Fig. 1, we consider a soft parti-
cle freely transported in a microchannel of constant
cross-section. The particle deforms in response to
the flow stresses of bulk flows, as well as to the
wall boundary-induced viscous friction, resulting in
a change in the membrane forces (e.g., the bend-
ing force), which in turn alter the bulk flows. The
modeling of such an FSI involves formulating the
following three parts:

e hydrodynamics;
e membrane mechanics;

e coupling conditions at the interface.

2.1. Hydrodynamics

The motion of the internal (with superscript i)
and external (with superscript e) fluids is governed
by the incompressible Newtonian Navier-Stokes
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Fig. 1. Schematic representation of a freely suspended de-
formable particle (defined by the boundary I') transported
in a pressure-driven flow through a straight microchannel
(either circular of radius R; or rectangular of 2¢, by 2¢, in
cross-section), with I, O and W denoting the inlet, outlet

and wall boundaries, respectively. ' are the viscosities of

the fluids and m is the unit normal vector pointing into the
suspending fluid.

equations. In a wide variety of microfluidic flows,
the Reynolds number is small (less than unity) [1].
For example, in a channel of height 100 pm, a flow
with water (shear viscosity n ~ 1072 Pas) at a
typical speed 1mms~! has the Reynolds number
Re ~ 0.1. The governing equations can therefore
be reduced to the Stokes equations for creeping flow

_ Vpi,c + ni,chUi,C — 0’ V B ui,c — O, (1)
where u and p denote the fluid velocity and pres-
sure, respectively. The external velocity field u®
satisfies the no-slip condition on the boundary walls
of the channel

u®(z) =0, Ve e W (2)

and vanishing far-field flow perturbations,

u®(x) = u™(x), Ve e TUO. (3)

2.2. Membrane mechanics

A membrane is a closed and deformable inter-
face separating the internal and external fluids. It
is described by its position x(t) at time ¢. Under
stresses, energy variation 6 F is stored in the mem-
brane through the elastic deformations (bending,
shearing, and dilation/compression) or dissipated
by viscous friction [10].

The surface force density exerted by the mem-
brane f™ onto surrounding fluids is given by the
first variation of its surface energy

1 0F
=2 E= [ wds, @
Ja oz /Fw 5 4

where w, is the surface energy per unit area which
completely determines the mechanical properties of
the membrane, and a is the determinant of the local
metric. Below we describe different formulations for

7 (@) =



ws (or f™), depending on the type of soft objects
under study.

For liquid drops, the surface energy per unit area
is simply the interfacial tension v (which is a ma-
terial property), i.e., ws = 7, leading to

f" =V - 2yHn, (5)

where V = (I —nn)-V is the surface gradient op-
erator with I the identity tensor, n is the outward
pointing normal vector, and H is the local mean
curvature (with the convention that H is positive
for a sphere).

For vesicles, the lipid membrane is modeled as a
two-dimensional incompressible fluid with bending
stiffness. The local surface-area incompressibility
of the membrane

V. u=0 (6)

is enforced via the Lagrange field v (equivalent
to the membrane tension, which is not a mate-
rial property but is flow dependent). This mem-
brane tension is added to the bending energy den-
sity wi? [43], giving the elastic energy density of a
vesicle

wo=wl 49, wl =ZeH?, @)
where £ is the bending modulus of the lipid bilayer.
In principle, a spontaneous (or reference) curvature
and Gaussian curvature (K') appear in the bending
energy. For simplicity, we take the minimum en-
ergy reference state as a flat sheet. The term with
Gaussian curvature does not contribute to varia-
tion of the bending energy if the topology remains
unchanged, which is the case of our study. Using
Eq. (4), one obtains a formal expression of the sur-
face force density [35]

" =k [2A.H +4H(H? — K)| n
+ Vv —2vHn, (8)

where A; = V-V, is the Laplace-Beltrami opera-
tor, which contains the fourth derivative of the sur-
face position, posing numerical challenges to com-
pute the bending forces [36].

For capsules with a vey thin hyperelastic mem-
brane, two popular membrane constitutive laws are
used herein: the Neo-Hookean (NH) law and the
Skalak (Sk) law [11]. For these laws, the surface
density of membrane energy is defined upon a ref-
erence configuration S° as,

NH _ Ms 1

N A
Wgo 2 [1 ]2—|—1] (9)
wit = 5o [ + 20 -2, + CI)

where pi; is the surface shear modulus, C represents
the relative importance of the resistance to surface
dilation, and I; and I, are the two strain invariants.

Finally, for red blood cells having a compos-
ite membrane, we use our recent RBC membrane
model [44] to compute the surface force density.
Briefly, the RBC membrane is modeled as a com-
posite network, which consists of a dynamically tri-
angulated surface as in a fluid vesicle model. The
membrane is then coupled to an additional network
of springs with fixed connectivity, representing the
cytoskeleton. We explicitly compute the mechan-
ical interaction between the bilayer and the cy-
toskeleton by considering normal elastic spring and
tangential friction force. Specifically, the FENE-
POW spring model is used to describe the elastic
cytoskeleton, which yields a spring force at node n
by an edge np

f¢=f = 4#5 ( 1- 33%
=f,,=
\/3(1216;2]%4‘&“!‘1) ].—(E,%p
a—+1
X
_ gﬂ) (@) — @), (10)
Tnp

where x,, (x,) is the position of vertex p (n). The
normalized spring length z,,, = I,/ € (0,1]
(the ratio of the spring length and maximum spring
length), =y = x%p denotes the normalized spring
length of edge np in the reference shape, and « is
a constant repulsive parameter. This force, embod-
ied on each spring edge, is transmitted to the lipid
bilayer in the normal direction directly and in the
tangential plane indirectly via drag forces. In this
way, interfacial viscosity is added (see Ref. [44] for
details).

2.8. Coupling conditions

The interface conditions need to be imposed to
complete the problem formulation. First, the fluid
motion is coupled with the interface motion via the
kinematic boundary condition, i.e., continuity of
the velocities at the interface

u®(z) =u'(x) =up, Vxel, (11)



where ur is the velocity of fluids at the interface.

Second, assuming an impermeable membrane, at
least on typical experimental time scales, the mem-
brane is advected by the interface flow

de
T
where x is the membrane position.
Finally, the dynamic boundary condition at the
interface establishes a nonlinear interaction be-
tween bulk flows and membrane mechanics,

ur, Vxel, (12)

Af+f" =0, (13)

wherein we assume the membrane is in quasi-static
mechanical equilibrium; the membrane force den-
sity f™ balances the traction jump Af (= (6° —
o') - n) exerted on the membrane by bulk fluids,
with the stress tensor o = —pI +n [Vu + (Vu)].

We also compute several quantities of interest to
show the simulation results, such as the particle’s
shape and mobility. The translational velocity of
the particle’s center of mass in the streamwise di-
rection is given by

1 .
U, = V/V(UI e,) Pz

1
=V /F z(ur - n)dS(x), (14)

where V is the enclosed volume of the particle,
which is calculated from

1
V:/Vd?’ac:§/r(oc-n)d5(ac). (15)

Its derivation from the initial given volume during
simulations provides an indication of the accuracy
of the computations. For vesicles, the relative sur-
face area variation is also an indicator of the ac-
curacy. The coordinates of the particle’s center of
mass are given by

1
Xg~eizv/vwd3w

= % /F(:c . ei)2(’n -e;)dS(x). (16)

3. Numerical method

We use Loop’s subdivision elements [39] to rep-
resent every quantity/field of interest: meshes (of

the surface of objects and the wall surface of chan-
nels) and the unknown density fields — the inter-
facial velocity, the membrane force, and the dis-
turbed wall traction. We begin with Loop’s sub-
division scheme, followed by a description of how
the membrane forces are calculated with a unified
formalism. The thus-obtained membrane forces are
then used to compute the interfacial velocity using
Green’s function. Finally, we describe the interface
advection schemes.

3.1. Isogeometric analysis

3.1.1. Subdivision surfaces

Loop’s subdivision surface is an assembly of lin-
ear triangle elements generated through a limiting
procedure of repeated refinement starting from an
initial coarse mesh, called the control mesh of the
surface. For continuously deformed particles, an
icosahedron containing 20 equilateral triangle faces
with five meeting at each of its 12 vertices can be
used as the initial control mesh (S in Fig. 2). The
control mesh and all refined meshes (by quadrisec-
tion) consist of triangles only.

Y
\ 4

S° st S?

R
\/\/

Fig. 2. An illustration of Loop’s subdivision rule from the
initial control mesh S° (an icosahedron) to S! mesh (after
one refinement) and S? mesh (after two refinements).

In Loop’s subdivision scheme, each triangle of
the coarse mesh is quadrisected by introducing a
new vertex at each edge midpoint, as illustrated in
Fig. 2. The coordinates of the newly generated ver-
tices (level k + 1) on the edge of the previous mesh
(level k) are computed as

k41 _ P+ 3P +3pE +ph
pH - 9
8
and the old vertices are updated to get new nodal
positions at the mesh k + 1

(17)

gt = (=g + =y vk, (18)
=1

Here G; (i € [1,q]) are the one-ring neighbours (at
level k) of the vertex G, i.e., those vertices which



share an edge with it, and ¢ denotes the valence of
a vertex, the number of element edges attached to
a vertex [37].

The value of w, proposed by Loop [39], is given

by
_Lfs (3 1 o 2 19)
w-q 3 3 4COSq .

Note that almost all newly generated vertices
are regular (with valence ¢ = 6), except for the
twelve vertices (with valence ¢ = 5) updated from
the initial icosahedron mesh, which remain irregu-
lar. Loop’s subdivision scheme produces limit sur-
faces which are globally C? except at those irreg-
ular points where they are only C'. However, the
surfaces obtained by this scheme are H?2, i.e., have
finite bending energy.

v
tit i il
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Fig. 3. An example of closed wall meshes generated by
Loop’s subdivision scheme. (a) on the inlet and outlet (cir-
cular and square) sections and (b) on the wall surface of
(circular and square) microchannels. The mesh comprises
N = 3360 elements and 1682 nodes for the circular tube and
N® = 7427 elements and 3714 nodes for the square channel.

Two typical microchannel meshes generated by
Loop subdivision are shown in Fig. 3, one for cylin-
drical channel and the other for a square channel.
Since the soft particle is kept at the center of the
channel, this region has a more refined mesh on
the wall surface. The intersections (of the wall and
the inlet/outlet surfaces) and the corners of the
square channel are rounded with an arc-circle (ra-
dius € [O(R:/6),0(R:/4)]) to avoid corner effects
when solving the flow with the boundary element
method [23, 28].

3.1.2. Isogeometric representation

Stam [45] shows that the limit position of any
point inside a triangle element e may be expressed
in terms of box-spline shape functions,

Fig. 4. A Loop element (shaded triangle) with its lo-
cal parametrization s = (s',s2) and its one-ring elements
(bounded by solid lines), forming a regular Loop’s patch con-
taining 12 control vertices.

x¢= ) XPNy(s',s), (20)
pEone-ring

where the sum is taken over one-ring vertices, as
shown in Fig. 4, (s',s?) is a local parametriza-
tion of this point on the element, and N, are
the shape functions spanning over all one-ring el-
ements [37, 45]. The nodal values X? are the ap-
proximation parameters of the limit position ¢ in
the space expanded by the shape functions IV,. The
parameterization in Eq. (20) may also be used for
any scalar function f defined on the membrane or
at the channel wall, e.g., a Cartesian component of
the membrane force f™, the interfacial velocity u,
and the disturbed wall traction f*,

> FPN(s',s%), (21)

pEone-ring

where FP is the p-th nodal value. Equation (21)
is used to evaluate f (i.e., the limit value) at any
position  on element e if the nodal values FP
are known. Inversely, we also need to convert the
limit value of a field f into its nodal values FP,
that is, given the approximation of f under the
form (21) such that the approximation error is min-
imized. Using the collocation formulation, in which
the known field f is collocated at vertices, i.e.,
f™ = f(x = x™) is known at vertex x"

r- ¥

p€Eone-ring

FPN,(s'(2"), (@), (22)

where n € {1,--- , Ny}, Ny(s'(z"), s*(x™)) are the

shape functions evaluated in the local parameter

space (s!,s?) corresponding to the vertex ", and



N, is the total number of vertices. Assembling the
linear system (22) in matrix form according to the
index of vertices, we then have

{f"} =C{F"}, (23)
where {f"} = {flv fza 7fNV}Ta {Fm} =
{F', F?, ... [FN}T and C is the collocation
matrix that transforms between the limit values f
and the nodal values F™.

The regular surface patch is a quadratic
spline [45], the derivatives of first- and second-order
can thus be realized by directly deriving on the
shape functions, such as

f,ea(51752) = Z Fprya(slasz)v (24)

pEone-ring

where here and henceforth Greek indices takes the
values 1 and 2, and a comma is used to denote
partial differentiation.

For irregular Loop elements, the irregular patch
must be subdivided until the parameter value
(s',5?) of interest is within a regular patch, and
then the canonical regular-patch evaluation routine
works again [37, 46].

3.2. Membrane solver — FEM

3.2.1. Weak formulation of FSI

The membrane solver is designed to calculate the
membrane force density f™ using the finite element
method. The solver is based on the principle of vir-
tual work for a deformable body. A detailed de-
scription is provided in [31]. For the sake of com-
pleteness, we recall briefly some basic concepts be-
low.

To describe the deformation of a surface from a
reference configuration z°(s) to its current config-
uration z(s), we introduce the tangential vectors
at a point on the surface, which are given by the
covariant base vectors a,,

_ O0x(s)

aa(s) = S = .0(s) (25)

The unit normal vector n can be written as

n(s) = ai(s) x ax(s) (26)
|la1(s) x as(s)|
Contravariant base vectors a® are obtained through
the relation a®- ag = 3, where 67 is the Kronecker
delta.

With the tangential and normal vectors, we can
write the first and second fundamental forms of the
surface

aap(8) = an(s) as(s),
bap(8) = @a,p(s) n(s), (27)

where a,g and b,g denote the metric and curvature
tensors of the surface, respectively. The differential
area element of the surface dS = /ads'ds?, with
a = det(aqp) the determinant of the metric tensor.
The above definitions and relations hold for the ref-
erence configuration as well, with x%(s) replacing
x(s).

By virtue of the principle of virtual work, a mem-
brane is in equilibrium if the sum of internal and
external virtual work vanishes

5Wint + 5cht = 0. (28)

The external virtual work is given by

W = / (Af +g)- 62dS, (29)
I

where (and in what follows) ¢ means that a vari-
able derives from a virtual displacement dx, and
g is some additional body forces (e.g., buoyancy)
acting on the membrane in addition to the term
A f representing the traction jump across the mem-
brane.

According to Ref. [37], the internal virtual work
of the membrane can be written as

Wit = — / (0P 6(Ea) + 1%°8(Bag)] S, (30)
N

where 0% and p®? are the effective membrane and
bending stress tensors, respectively. They are mem-
brane dependent — namely its position and mechan-
ical properties. The Green-Lagrange strain tensor

1 0
Eaﬁ = 5 (aaﬁ — aaﬁ) (31)
represents in-plane deformation, i.e., stretching,
while the bending strain tensor

Bap = bas — bog (32)

describes out-of-plane deformation, i.e., the change
in curvature or bending strains.

Note that Af = —f™ [Eq. (13)], so for neutrally
buoyant particles, Eq. (28) reads



/ [;aaﬂa(aaﬁ) + 185 (bag) + £ 5a| dS
r
=0, Véxc H* ). (33)

This weak formulation of a fluid-membrane interac-
tion problem gives a general relationship between
membrane force density f”* and its position x. Us-
ing isogeometric finite element which ensures H?,
this unified formalism makes it possible to study de-
formable objects spanning from a simple liquid drop
to elastic capsules and vesicles with bending stiff-
ness. The membrane forces are obtained once the
mechanical properties of the membrane are spec-
ified via the membrane (c®?) and bending (u®?)
stress tensors.

3.2.2. Membrane constitutive laws

For liquid drops, the surface energy per unit area
is the interfacial tension, ws; = <y, independent of
curvature, thus the bending stress tensor u®? = 0.
Hence, the membrane stress tensor is given by

o = yaP. (34)

For a capsule with a very thin elastic membrane,
the surface energy density ws is given by Eq. (9)
for the NH and Sk laws, we also have u®? = 0.
Following [47, 40], the membrane stress tensor can
be written as

2 Ow, Owy
af _ = s _0,a8 2] s _af
Lon®  Tan

where J, = \/a/Va is the Jacobian of the trans-
formation from the reference to the deformed con-
figuration.

For a lipid membrane satisfying the Helfrich
bending energy subjected to the surface incom-
pressibility constraint [Eq. (8)], the membrane and
bending stress tensors are given by [31]

(35)

Va  daap
- g (4H%a%% — 8HVP) 4+ va®® . (36)

H
ap _ Owg _ K

= Douy 2 (4Ha°‘6)

1

Finally, for an RBC having a composite mem-
brane, the cytoskeletal elastic forces f¢ are com-
puted directly based on a spring network [Eq. (10)].

These forces are added to the lipid bilayer
[Egs. (36)] and (33) in the normal direction di-
rectly and in the tangential plane indirectly via drag
forces [44].

3.2.8. Calculation of membrane force

Since surfaces obtained by Loop’s subdivision
scheme are globally C? except at some fixed irregu-
lar points, the curvature tensor b, at any quadra-
ture points (12 Gauss quadrature points are used)
can be computed by direct differentiation of Loop’s
shape functions. The metric tensor a,g and the
unit normal vector n are readily obtained from the
interpolation of the position. As such, the finite-
element discretization of Eq. (33) using the Loop
shape functions for the Cartesian components of
membrane force and position leads to a matrix-
vector form for the unknown nodal values of the
membrane force f™

M{f™} = {rhs}. (37)

The mass matrix M and the right hand side vec-
tor {rhs} are formed by numerical integration of
Eq. (33) using 12 Gauss quadrature points, see
Ref. [31] for details.

3.3. Fluid solver — BEM

Under Stokes flow conditions, boundary integral
equations for the interfacial velocity and the dis-
turbed wall traction can be expressed as [23, 48],
on the membrane surface

R ulw) = u (o) + S f (o)
= Swf" (o) — Ap“Son(zo)

+ (1 = NDEVu(zg), xoel (38)

and at the channel wall (the no-slip condition)

Swf*(zo) = Srf™"(zo) — Ap“Son(zo)

+ (1 - /\)DF’U,(ZB())7 xg €W (39)
where wu is the interfacial velocity, u* is the veloc-
ity of the ambient flow (i.e., the flow without the
deformable object), f* is the disturbed wall trac-
tion, and A (= 7' /n°) is the viscosity ratio between
the internal and external fluids. The single-layer
operator S and double-layer operator D are defined
as



(Sa), (@) = g [ ()G (@ 0)d5 (@),
(40a)
(o) (a0) = 5= [ @ T, z)nu(@)dS(@),
(40D)

where G (Stokeslet) and T (stresslet) are the
Green’s functions in the three-dimensional free
space [23]. DV indicates that the double-layer in-
tegral is evaluated in the principal-value sense when
the point x( lies on the integration domain I'. The
term Ap®, called additional pressure drop, is due to
the presence of a particle in the channel flow which
causes an increase in the pressure drop across the
channel. It can be calculated by the reciprocal the-
orem of Stokes flow [48]

1

Q)
+ (=N f-

Apll — [fm . uOO

uldS(xz), xeTl (41)

where @ is the total flow rate, which is assumed not
disturbed by the presence of the deformable object,
ie., @ =Q>.

The equations (38) and (39), together with (41)
allow to determine the interfacial velocity u and the
disturbed wall traction f*, as well as the additional
pressure drop Ap®. The last quantity has a direct
implication in the rheological properties of a dilute
suspension [48]. For the sake of simplicity, we per-
formed computations in this paper only with unity
viscosity ratio (i.e., A = 1), unless specified other-
wise. The singularity in the single-layer integrals is
treated in two ways, depending on the integration
domain; one consists in a singularity subtraction
technique proposed in [30] when the integration do-
main lies on the membrane surface, and the other
involves transforming the parametric triangular to
polar coordinates as introduced in [23] when it lies
at the channel wall.

For a vesicle, an additional field, namely the
membrane tension v, remains to be determined. It
is the solution of the surface velocity incompress-
ibility constraint (6), which is solved by an iterative
method [31].

3.4. Time-stepping schemes

As have been implemented in [31], two time-
stepping schemes, i.e., a high-order explicit scheme
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and a second-order implicit scheme, are used to
update the new membrane position x,41 at time
tnt1 = tn + At.

3.4.1. Runge-Kutta-Fehlberg scheme

The explicit time-stepping scheme consists of a
Runge-Kutta Fehlberg fourth-fifth (RKF45) stage
scheme [49]. This high-order scheme allows dynam-
ically adapting the time step At = h,, and provides
very good conservation of invariants such as the en-
closed fluid volume. The fourth and fifth stage for-
mulations are given by

@ 2 1408, 2197 1
Toi1 = Tntgrekitogeskst ke ks (42)
¢ _ 16, 6656 28651
Tnt1 = Tn + oo R+ 1ogrgs ¥ 564304
9 2
— ket —k 4
505 1 g5l (43)

where k; correspond to the intermediate values [49].
The dynamic time step is realized by comparing the
difference between the fourth and fifth stage results
€n = max|x5l4ll - acgi)_l\ with the two pre-setting
tolerances emax (< 1077) and ey (< 10798)

- 1/4
h, = ( max) hy, if €, > emax

2€,,
o\ /4 44
h'rH—l = <€Hlln> hn if €n < Emin ( )
2€,,
hpt1 = hy else

3.4.2. Trapezoidal scheme

While the RKF45 time scheme is usually used
in the simulation of drops and capsules, the bend-
ing stiffness of a vesicle precludes its use in the
simulation of vesicle dynamics since the stability
condition imposes very small time-steps, namely
At < O(n°Az®/k), for an explicit time-stepping
scheme to be numerically stable [33]. Hence, an
implicit scheme is needed.

The implicit time scheme is the trapezoidal rule
— an implicit second-order Crank-Nicolson time in-
tegration. For a given position and tension (z,,¥y)
at time t,,, the position and tension (Z,,41,Yn+1) at
tn+1 are nonlinearly coupled such as

5 (e, )

+ w(®pt1, Ynt1)]
0=Vsu(®Tni1,Yni1)

Lp+1 =Lp +



These equations are solved iteratively using the
Jacobian-free Newton—-Krylov method [50] (see [31]
for details).

4. Numerical setup and validation

4.1. Dimensionless groups

Let V and A denote the enclosed volume and
the surface area of a deformable particle, respec-
tively. The volume remains constant and defines a
length scale R = (3V/4m)'/3. For a lipid vesicle,
the surface area of the membrane also remains con-
stant. Then the reduced volume v = 6/7V A=3/2
(0 < v < 1) measures the asphericity of the vesi-
cle. In the present work, we consider only laminar
viscous flow through a uniform channel of either cir-
cular or rectangular (square) in cross-section. Let
R; denote the characteristic dimension of the flow
channel (the radius of a cylindrical tube or the half-
width of the cross-section of a rectangular channel),
then the ratio § = R/R; measures the flow con-
finement; the particle’s motion is more significantly
hindered by particle-wall interactions as the con-
finement increases. The length-to-diameter (width)
ratio of the channel is defined by ¢ = 2¢,/(2R:),
with 2/, being the total length of the channel.

In the absence of any particle or far from the par-
ticle, the flow approaches the unperturbed flow u>
in a channel. It is Poiseuille flow with a parabolic
velocity profile for a circular tube

2, .2
u°°2U<1y ]—{i—%z >ez,
where U = Q/(mR?) is the mean velocity with 2U
representing the maximum undisturbed velocity at
the centerline of the tube. The unperturbed flow in
a rectangular channel is given in Ref. [51], see also
Ref. [52], that is

(46)

oo

=)
+ Z B,, cosh <be) cos (bZz) , (47)
m=1
with
1 dp _(2m -1
oneds’ " 2 ’
(—1)m4 (2
B, = = 4
" b3, cosh (b by /L2) (48)
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where £, and ¢, denote the channel’s half-height
and half-width, respectively. Integrating over the
channel’s cross-section yields the volumetric flow
rate @,

3 0o 2
% = %—i— 1Bm (if:) sinh (b?fy> sin (by,) -
(49)
The mean velocity is U = Q/(¢,(,). Substituting
Eq. (49) into (47) leads to a velocity profile u™
that is proportional to the mean velocity U and
depends on the aspect ratio of the channel’s cross-
section £, /(.. In our simulations, we set m = 40,
as in [52]. The maximum undisturbed velocity at
the centerline of a square channel is approximately
2.1U.

In addition to the dimensionless geometrical pa-
rameters mentioned above (v and ), the inter-
facial mechanical property of a deformable parti-
cle immersed in a viscous flow introduces a dy-
namic dimensionless parameter, the capillary num-
ber Ca = T4 /7¢, which is the ratio of the charac-
teristic shape relaxation timescale 7, to a viscous
timescale 7¢. Specifically, the capillary number for

m=

e surface tension dominant liquid drops, Ca =
n°U/~, measures the relative importance of
viscous forces to interfacial tension forces;

e bending dominant membrane of vesicles, Ca =
n°U R? /K, is a ratio of viscous stress to resistive
bending stress on the membrane;

e shearing dominant membrane of capsules,
Ca = n°U/ s, determines the relative impor-
tance of viscous forces to resistive elastic forces
on the membrane.

In this study, we assume that fluid flows at an
imposed, constant volumetric flow rate @ driven
by a pressure difference between the channel’s in-
let and outlet. Hence, the dynamical behavior of
a deformable particle flowing in a tube or square
channel is determined only by four independent di-
mensionless groups: the confinement 3, the reduced
volume v (only for vesicles), the capillary num-
ber Ca, and the viscosity ratio A (which is set to
unity, unless specified otherwise). Numerical solu-
tions should be independent of the total length of
the channel provided that it is sufficiently long for
the disturbances to become negligibly small at the
channel ends. So, we present in the next subsec-
tion two numerical examples to show the effects of



the channel’s length and the minimum element size
(Lmin) of the channel mesh, and then give a general
criterion for the choice of these two parameters.

4.2. Effect of the channel’s length and wall mesh

0.06 016 0
(a) ) (b) Y-
=3.0 —= 1 3.
oot | T8 T ] 81
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Fig. 5. Effect of the channel length quantified by ¢ for a
vesicle in a tube flow with ¢;,;, = 0.18 R¢. The parameters
are v = 0.9, § = 0.25, and Ca = 1. (a) The disturbed shear
stress on the tube wall fI’ for different values of (. The
upper inset is a zoomed-in view. The bottom inset shows
the steady vesicle profile in the zy-plane with G being the
vesicle’s centroid. (b) Temporal evolution of the centroid
(Yy/R) and inclination angle (0, in degree).

Figure 5 shows the numerical results of an initial
prolate vesicle (v = 0.9, the membrane surface dis-
cretized with N = 320 Loop elements) flowing in
a cylindrical tube with different lengths. Fig. 5(a)
shows the disturbed shear stress f.’ along the tube
wall in the zy-plane (see Fig. 1) for different tube
lengths 2/, by varying the ratio (. As can be seen
from this figure, the disturbed shear stress f.’ de-
creases exponentially with distance from the vesi-
cle and are vanishingly small towards the channel
ends when ¢ > 5. This observation is consistent
with the analysis of Liron and Shahar [53], who
showed the perturbation flow in tube generated by
a point-force distribution decays exponentially with
distance from the source point. Interestingly, the
steady-state shape [Fig. 5(a)], as well as the tem-
poral evolution curve of the centroid Y, and the
inclination angle 6 [Fig. 5(b)], the angle between
the vesicle major axis and the flow direction e,], is
insensitive to far-field perturbations, which is im-
portant when studying the dynamical behavior of
a deformable particle in a channel flow. Indeed,
the numerical results are virtually indistinguishable
when ¢ > 3.

Regarding the minimum element size f,;, that
may be required to obtain accurate results, we
have set, in this example, fnin = 0.18R;, which
is close to that used by Hu et al. [28] in highly
confined conditions. Moreover, our test of a lig-
uid drop in a cylindrical tube with a wide range of
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Fig. 6. The disterbuted shear stress on the tube wall f¥ for
a liquid drop (N = 1280) for different ratios fmin/R¢. The
parameters are Ca = 0.5, 8 = 0.8, and ¢ = 7.5. The inset
shows the steady drop profile in the zy-plane.

lmin € [0.02R;, 0.56 R;] shows that the resulting f»
matches very well at the same grid points in the
wall mesh. Again the drop shape remains essen-
tially unaffected, as shown in Fig. 6. Even in the
coarsest mesh tested, i.e., {in = 0.56R;, in which
the peak of the wall shear stress is not captured due
to a lack of grid points there, the obtained values
at the existing grid points are very close to those
obtained by finer meshes. In this study, the general
rule is that we set the ratio ( =~ 5-7 and the di-
mensionless minimum element size in the wall mesh
Umin/R = min [O(h/R),0(0.287")], where h/R is
the dimensionless gap size between the particle sur-
face and the channel wall.

4.3. Numerical validation

We validate the coupled isogeometric FEM-BEM
approach by comparing the simulation results with
a well-know example of a (clean, surfactant-free)
liquid drop in tube flow, for which very highly ac-
curate numerical computations are available in the
literature (e.g., Ref. [24]). The motion of the drop
for given confinement 3 is determined only by the
capillary number Ca (apart from the viscosity ra-
tio A, which is set to unity for this comparison).
Of particular interest are the drop relative veloc-
ity U, /U and the dimensionless additional pressure
drop Ap®/(n°U/Ry), the latter is due to the pres-
ence of the drop in tube flow in order to maintain
the volumetric flow rate Q = 7R?U. Our 3D nu-
merical results (with N = 320 elements) are com-
pared with the axisymmetric simulations reported
in [24]. The comparison in Fig. 7 shows excellent
agreement. Under weak confinement (i.e., small 3),
the simulation results are also in excellent agree-
ment with the theoretical predictions for a vanish-
ingly small droplet moving along the centerline of



a tube [54, 55], given by

Ue o 4 3
U—Q 5/8 +0(8°), (50a)
Ry o 24 5 10
neUAp = 55 +0(B"7). (50b)
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Fig. 7. (a) droplet relative velocity U, /U and (b) dimen-
sionless additional pressure drop Ap®/(n°U/R:) as a func-
tion of the confinement 3 compared to those reported in
Ref. [24]. The dashed curves are the theoretical predictions
of (50a) and (50b) for 8 < 1.
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Fig. 8. (a) droplet relative velocity 2—U, /U and (b) dimen-
sionless additional pressure drop Ap®/(n°U/R:) as a func-
tion of the capillary number Ca for 8 = 0.8 and 1.1. The
dashed curves are the scalings of (51a) and (51b) at high Ca.

As an additional verification and validation of the
numerical model, we plot, in Fig. 8, the effect of the
capillary number Ca on the drop velocity and the
additional pressure drop for two values of confine-
ment § = 0.8 and 1.1. Fig. 8(a) shows how much
the drop velocity exceeds the mean velocity of the
suspending fluid, approaching the axis velocity 2U
and resulting in a dramatic decrease in the addi-
tional pressure drop [Fig. 8(b)] as Ca increases. At
high capillary numbers, the dimensionless groups
2 —U,/U and Ap®/(n°U/R;) exhibit a remarkable
power law. Lac and Sherwood [24] provided via the
asymptotic analysis for a long slender drop in tube
flow the following scalings at high Ca

; .
n°U/R,
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2—U,JU ~ Ca™ %3, (51a)
Ry
n°u

Ap® ~ Ca™>/3, (51b)

As shown, the present 3D simulations captured
these limiting behaviors.
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Fig. 9. Temporal evolution of (a) the Taylor deformation
parameter Dz, and (b) the relative derivation of the enclosed
volume ey = V/Vp—1 of a drop in a capillary flow (Ca = 0.05
and 8 = 0.8) as a function of the number of elements N used
on the drop surface.

We then proceed to conduct a convergence study
on the spatial and temporal discretization for one
of the above settings at Ca = 0.05 and g = 0.8.
The deformation behavior of the drop is character-
ized by the Taylor deformation parameter D, =
(L — B)/(L + B), where L and B are the major
and minor axis of the drop profile in the zy-plane.
The temporal evolution of D,, plotted in Fig. 9(a)
shows that except for the coarsest mesh (80 ele-
ments), which gives a non-converged solution, the
simulations from other numbers of mesh elements
ranging from 320 to 20480 lead to very good agree-
ment results. We assess the effect of mesh refine-
ment by examining the enclosed volume V and its
drift from the initial volume Vj: e, = (V — Vp)/ V.
It is seen that the volume drift is only 0.4% after
a long-time simulation (i.e., y¢/(n°R) = 30) with
320 elements. Its temporal evolution (for N rang-
ing from 320 to 20480) displayed in Fig. 9(b) sug-
gests that one more subdivision process (i.e., mul-
tiplying the number of elements by four) leads to
at least one order of magnitude gaining in volume
conservation. We performed these simulations from
an initially spherical drop using the RKF45 time-
stepping scheme (i.e., adaptive time step scheme),
while the computations with the finest mesh (20480
elements) started from a drop shape obtained with
5120 elements.

Using N = 1280 elements, we assess the effect
of temporal discretization by varying the time step

Ev



from 0.1 to 5 x 107%. As can be seen from Fig. 10,
the implicit time integration with these time steps
leads to a consistent, very good agreement result.
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Fig. 10. Temporal evolution of the Taylor deformation pa-
rameter Dy, of a drop (N = 1280 elements) flowing in a
capillary flow (Ca = 0.05, 8 = 0.8) as a function of time
steps (scaled by n°R/v). Time-stepping scheme used is the
trapezoidal rule with a fixed time step.

To conclude this validation subsection, we pro-
vide an estimate of the convergence rate of the
numerical method. The convergence order of spa-
tial and temporal discretization is evaluated via the
relative error of the Taylor deformation parame-
ter € = (Dgy — Dret)/Dref at a dimensionless time
vt/(n°*R) = 30 (a steady state), where D¢t is the
reference Taylor deformation parameter. Fig. 11
makes it clear that the present algorithm preserves
second-order convergence in both space and time
for a liquid drop confined in capillary flow. For the
spatial convergence shown in Fig. 11(a), the RKF45
scheme is used, and the reference value is computed
with 20480 elements. For the temporal convergence
displayed in Fig. 11(b), the trapezoidal scheme is
used with 1280 elements, and the reference value is
computed with a time step At = 5x10~* (scaled by
n°R/v). The previous study [31] on unbounded soft
particles shows that the second-order convergence
is not affected by the membrane’s constitutive law,
including bending stiffness, we may expect that the
second-order convergence achieved for confined lig-
uid drops in tube flow is also applicable to other
confined soft particles.

5. Numerical examples

In this section, we present further simulation re-
sults to demonstrate the accuracy and stability of
the numerical method. Having described drop dy-
namics in Section 4, we focus now on the other three
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Fig. 11. Relative error of the Taylor deformation parameter
of a drop in a capillary flow (Ca = 0.05 and 8 = 0.8) as a
function of (a) the number of elements N and (b) the time
step size At (scaled by n°R/7).

types of soft particles to illustrate potential appli-
cations. Specifically, we simulate (i) an elastic cap-
sule in a square channel, (ii) a vesicle in a cylindrical
tube, and (iii) a single RBC in a capillary. Where it
is possible, we compare the numerical results with
previously published studies.

5.1. FElastic capsule in a square channel

As shown in Fig. 12, the first simulation exam-
ple concerns the steady-state deformation of an ini-
tially spherical capsule moving through a square mi-
crochannel with the undisturbed flow in the channel
u being given by (47).

Fig. 12. An elastic capsule flowing in a square microchan-
nel. The channel wall mesh is generated by Loop’s subdi-
vision process and rounded with an arc-circle. Colors on
the surface of the capsule represent the z-component of the
membrane elastic force (fI*).

We performed computations with the strain-
hardening Sk law (9) with C' = 1, as used in [56],
for Ca = 0.02, 0.05, and 0.1, and at 8 = 0.85. Sim-
ulations are run for two capsule meshes consisting
of 320 and 1280 Loop elements. The capsule pro-
files at steady-state are displayed in Fig. 13(a)-(c)
in the zy-plane and in Fig. 13(d) in the yz-plane.
Increasing the capillary number, or equivalently de-
creasing the membrane elasticity, leads to the cap-
sule less able to retain its spherical shape and more
elongated. The obtained results are compared with
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Fig. 13. Comparison of the steady-state deformation of a
capsule flowing in a square channel with those obtained by
Hu et al. [56] for 8 = 0.85. Profiles in the zy-plane: (a)
Ca = 0.02, (b) Ca = 0.05, and (c) Ca = 0.1. Profile in
the yz-plane: (d) Ca = 0.1. The blue lines indicate channel
walls.

those reported in Ref. [56] in which the surface of
the capsule is discretized by 1280 quadratic trian-
gular element [34]. Thanks to the use of Loop el-
ements for the representation of geometry and the
two solvers in our simulations, even a coarse mesh
of 320 elements reproduces the numerical results of
[56], which represents a significant improvement.

5.2. Vesicle in a circular tube

Fig. 14. Deformation of a vesicle in tube flow for Ca =
10, v = 0.9, and 1/8 = 1.2. Colors on the vesicle surface
represent the local mean curvature.

The second numerical example deals with a con-
fined vesicle flowing through a circular tube, as
illustrated in Fig. 14. In aqueous solution, lipid
vesicles exhibit a large variety of shapes and shape
transformations, in particular, they can exhibit a
biconcave shape typical of red blood cells. When
confined in capillary tubes subjected to Poiseuille
flow, however, vesicles assume complex shapes and
behave in different ways due to an intricate in-
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terplay between flow stresses, membrane’s bending
rigidity, and confinement [57, 14].

Yy Y
T z

25
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e aaat

—0.2

E-D.S

Fig. 15. The steady-state slipper shape (top, 8 = 0.125)
and croissant shape (bottom, 8 = 0.2) of a vesicle (v = 0.9,
discretized by 1280 elements) in a confined axial Poiseuille
flow (Ca = 10). Left: side view in the zy-plane; right: rear
view in the yz-plane. Colors on the vesicle surface represent
the local mean curvature, and the arrows show the mem-
brane flow.

To illustrate two types of 3D vesicle shapes at
steady state in a confined axial Poiseuille flow,
we performed computations for an initially prolate
vesicle of the reduced volume v = 0.9 at two con-
finement conditions, i.e., S = 0.125 and 0.2. The
vesicle, initially located at a height Hy (= 0.06, re-
fer to Fig. 17) from the flow axis, rapidly changes
its shape, becoming a slipper shape, which is char-
acterized by a single mirror symmetry in the yz-
plane due to the flow curvature. At very weak
confinement (i.e., 8 = 0.125), the slipper shape
reaches a steady-state with the inward migration
ending at a certain position to the centerline H =
VY2 + 22 ~ 0.028. This final stationary shape, as
well as its membrane flow structure, is illustrated
in the top panel of Fig. 15. The membrane flow is
characterized by two unequal vortices both on the
front and rear faces of the membrane. At slightly
high confinement (8 = 0.2), the transitional slip-
per shape is unstable, becoming a croissant shape
characterized by two mirror symmetries in the yz-
planes, and its radial position H decrease to zero.
The membrane flow now consists of the two equal
vortices both on the front and rear faces of the
membrane, as illustrated in the bottom panel of
Fig. 15. These are long-time simulations and steady
state using the implicit time integration is reached
around kt/(n°R3) ~ 300 with a dimensionless time
step At = 4 x 1073, The relative error in the en-



closed volume and the total surface area are respec-
tively ey &~ 0.1% and €5 =~ 0.045% (for 8 = 0.125),
and 0.07% (for 8 = 0.2), indicating the high accu-
racy and stability of the present algorithm.

1.2

0.9 r

90 120 150 180
Kt/ (n°R?)

Fig. 16. Temporal evolution of the centroid Yy of a vesicle
(v = 0.9) in a weakly confined (8 = 0.1) Poiseuille flow
(Ca = 100) for two different viscosity ratios: A = 1 and
A = 6. The inset shows the evolution of the lateral migration
velocity Uy (left) and vesicle shapes from side and rear views
(right) with colors representing the local mean curvature.

For the sake of simplicity, all these numerical ex-
amples are limited to a viscosity ratio of unity (i.e.,
A = 1). To demonstrate the ability of the present
code to handle non-unity viscosity ratios, we show
in Fig. 16 simulation results for a vesicle in a weakly
confined Poiseuille flow at A = 1 and 6. In the ab-
sence of viscosity contrast, the vesicle migrates to-
wards the center (i.e., Y; — 0 and U, — 0), and an
axisymmetric parachute shape is obtained, as illus-
trated by the insets surrounded by red dashed lines.
While the situation is different for A = 6, starting
from an initial position Hy = 0.5R, the vesicle mi-
grates outwards, and an asymmetric shape is now
produced, as shown by the insets surrounded by
a purple dashed lines. These simulations results
are consistent with a previous study [57], which has
shown that depending on the viscosity contrast A,
a vesicle in an unbounded Poiseuille flow can mi-
grate either inward towards the center, or outward
of the flow at high Ca if the initial position is chosen
sufficiently far from the centerline. We note that
the effect of the viscosity ratio on the dynamics of
a confined vesicle is the subject of a very recent
study [58].

5.3. RBC in capillary flow

The last numerical example concerns a single
RBC in capillary flows. The initial biconcave dis-
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coid shape of RBC is given by the following expres-
sion [59]

4(z? 4 22 x2 + 22
y=+D 177( foF )[a1+a2D2
x2+22 2
+a3% 5 (52)

where D = 7.82pm is the cell diameter, a; =
0.0518, as = 2.0026 and a3 = —4.491. The ini-
tial shape is shown in Fig. 17 with a clip to better
represent its three-dimensional structure. The vol-
ume and surface area of the corresponding RBC
are respectively 94pm?® and 135 pm?, giving a re-
duced volume v = 0.64 and an effective diame-
ter Deg = /6V/m = 5.64um. As in the case
of a vesicle flowing in capillary, Poiseuille flow is
given by Eq. (46), where U = 0.016cms~! for all
cases considered in this subsection, which lies in
the range of 0.001cms™! to 1ems™! exploited by
Pozrikidis [48]. For the membrane with shape mem-
ory, the reference shape (i.e., unstressed shape) is
another influencing ingredient to compute the elas-
tic force [Eq. (10)]. Here, the initial biconcave form
(52) is used as the unstressed shape.

flow direction
oW direction |

microchannel axis

Fig. 17. Schematic representation of the initial configura-
tion of a biconcave red blood cell (colors on the membrane
represent |x|), where Hg and g are respectively the initial
offset position of its centroid relative to the flow axis and the
initial inclination angle measured from its flat plane to the
axis of the flow.

First, we consider that RBCs are initially placed
on the axis of the capillary (Hy = 0.0, 8 = 0.5)
and that their flat surfaces are orthogonal to the
flow (6p = —90°) with varying elastic moduli ps =
0.0,0.5,5.0 and 10.0pyNm~!. The steady shapes,
shown in Fig. 18, suggest that the cell deformation
is significantly reduced at higher resistance to elas-
tic forces since an RBC with a higher shear modu-
lus has a greater ability to withstand hydrodynamic
stresses.

We then consider a case in which the flat plane of



Fig. 18. The steady shapes of RBCs in a capillary for four
different shear moduli, 0.0, 0.5, 5.0 and 10.0 pNm~! (from
left to right).

RBCs is not placed orthogonally to the flow direc-
tion, but only with a small inclined angle 6y ~ —6°,
and is placed at Hy = 0.3 in a capillary with
B = 0.4. By varying the shear modulus of the mem-
brane ps from 0 pNm~! (vesicle) to a relatively
high value 4.0 pNm ™!, we obtain a totally different
shape evolution process, which depends upon the
shear modulus, as shown in Fig. 19.

time

=0 pN/m

Fig. 19. Temporal evolution of the RBCs shape in a cap-
illary flow (8 = 0.4) for five different shear moduli ps =
0.0,0.1,0.5, and 4.0 ptNm~! with Hyp = 0.3 and 6y ~ —6°.
Membranes are colored by the local mean curvature.

The snapshots in the first row of Fig. 19 show
that an initially biconcave vesicle (v & 0.64) placed
at Hy = 0.3 evolves into a slipper shape. The
overall evolution of the shape remains essentially
unchanged up to s ~ 0.1 pNm~!. A different
transition occurs by increasing the shear modu-
lus to 0.5 pNm™!, as shown in the third row of
Fig. 19; a biconcave shape undergoes a transition
into a biconcave-croissant shape (a biconcave shape
with two planes of symmetry like a croissant shape),
for which the two dimples are preserved during the
transition. The biconcave shape is first stretched
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under the action of the flow stresses, but the sub-
sequent stretching is mitigated by the cytoskeletal
forces, which are characterized by the cytoskeletal
shear modulus .

6. Conclusions

We have presented a coupled isogeometric FEM
and BEM computational framework to accurately
predict the flow of a single soft particle confined
inside a microfluidic channel. An outstanding ad-
vantage of our numerical developments is that they
integrate different types of soft objects in a unique
framework, the only difference being in the descrip-
tion of the interfacial mechanics and the time in-
tegration schemes. Thanks to the use of Loop el-
ements for the representation of the geometry and
unknown fields, the unified formalism established in
the weak formulation of this kind of fluid-membrane
interaction problem allowed us to efficiently study
confined soft objects spanning from a simple liquid
drop to a membrane-enclosed particle with shear
or/and bending resistance, such as a capsule, a vesi-
cle, and even a red blood cell. We have validated
the numerical method by comparing the simula-
tion results with highly accurate computations of
a liquid drop moving through tube flow, showing a
second-order convergence in both space and time.
We have carried out several additional simulations
to illustrate the possible applications of the cur-
rent numerical method, while also demonstrating
the accuracy and stability of the algorithm. Taken
together, the code developed here provides a solid
base for making a reliable prediction of the dynam-
ical behavior of a confining deformable particle in
channel flows, such as the phase diagram, the shape
transition, and the lateral migration of 3D vesicles.
These are indeed the subject of our ongoing inves-
tigation.

Finally, we point out potential extensions that
are closely related to the present work. One of the
directions of interest is applying the Loop subdivi-
sion to the channel walls only without incorporating
the inlet and outlet sections. Such an implementa-
tion with a periodic Green’s function is highly use-
ful to microfluidic applications and biological flows
involving deformable walls. Microfluidic channels
are usually fabricated with soft materials which
may experience substantial deformations due to the
fluid stresses. A deformable wall may be modeled
as an elastic shell under the bending-dominated



regime in the Kirchhoff-Love equation. A C' rep-
resentation of the wall by Loop elements, as devel-
oped in the present study, is then a key to accu-
rately simulating this kind of fluid-structure inter-
action.
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