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Abstract. We are interested in the numerical approximation of the bi-temperature Euler
equations, which is a non conservative hyperbolic system introduced in [3]. We consider a
conservative underlying kinetic model, the Vlasov-BGK-Poisson system. We perform a scaling
on this system in order to obtain its hydrodynamic limit. We present a deterministic numerical
method to approximate this kinetic system. The method is shown to be Asymptotic-Preserving
in the hydrodynamic limit, which means that any stability condition of the method is indepen-
dant of any parameter Á, with Á æ 0. We prove that the method is, under appropriate choices,
consistant with the solution for bi-temperature Euler. Finally, our method is compared to
methods for the fluid model (HLL, Suliciu).

1. Introduction

Plasma physics is renowned for being a multiscale problem ([11]). Phenomena range from
plasma oscillations and charge separation at very small scales to fluid mechanics at macroscopic
levels. Di�erent physical models exist in order to describe a plasma according to the scale of in-
terest. The kinetic model, constituted of the Vlasov-Boltzmann equations, coupled with Maxwell
equations, are well suited for mesoscopic descriptions. In this model, each population of particles
– (in the case of a plasma, these are electrons, ions and neutral atoms and molecules) is rep-
resented via the use of a distribution function f–. This function, defined over the phase space,
denotes the number of particles that, at a given time t at a given point x, possess a velocity v.
Via an hydrodynamic limit, equations on the macroscopic conserved quantities (mass, momentum
and energy) can be derived. These equations form the so-called bi-temperature Euler system (see
[3] for the electrostatic case, and [7] for the transverse magnetic case). From a numerical point of
view, these equations are less accurate than the underlying kinetic model, but they are cheaper
to solve.

The bi-temperature Euler system is comprised of an equation over mass, an equation over mo-
mentum, and one equation over each species energy. These energy equations are non-conservative,
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accounting for the fact that, in a plasma, electrons and ions are exchanging energy through col-
lisions and via electromagnetic interactions. Contrarily to the usual Euler system, for which
the exact solution of any Riemann problem is known, these non-conservative terms prevent the
knowledge of such solutions, especially when the solution contains a shock. This is a consequence
that these non-conservative terms are written as products of distributions, which does not possess
a clear definition. [15] presents a way of defining these products using a theory of paths. It is
made clear that a certain amount of arbitrariness is needed in the choice of such paths. A major
drawback of this property is that, when attempting numerical resolution of this system, every
numerical scheme chooses its own path, and the Rankine-Hugoniot relation holding across shocks
will be di�erent for every scheme. This phenomenon is highlighted in [3]. More precisly, di�erent
schemes have di�erent numerical viscosity, and the shock relations depend on such viscosities.
Several solutions have been proposed in order to derive numerical methods that use the notion of
paths to define jump relations ([23], [9]). Other approaches have been proposed for di�erent kinds
of non-conservative systems (see [10], [19], [22], [24], [1]). Finally, Bouchut’s book [5] presents an
overview of numerical methods for non-conservative Shallow-water equations.

In this paper, the aim is to propose a reference numerical method for such solutions using
the underlying kinetic model. This kinetic model is conservative, and hence does not exhibit
the drawback of the macroscopic model. Hence, the idea dwells in solving the Vlasov-BGK-
Ampère system in the hydrodynamic limit, which will be presented in section 2.3. In order to
be able to compare the results with the scheme applied to the bi-temperature Euler system, it is
necessary to describe identical scales. By performing a scaling on the kinetic system, dimensionless
parameters (scaled Debye length, scaled plasma frequency) are introduced in the system. Taking
the hydrodynamic limit then amounts to taking the limit when these parameters tend to zero. In
the general case, if a naive numerical approach is used, extremely restrictive stability conditions
will appear, rendering the scheme unusable in a decent amount of computation time. Hence,
an Asymptotic-Preserving (AP) scheme needs to be derived. Such a scheme possess stability
conditions independent of these small parameters and is then able to compute solutions for both
cases when parameters are of the order of one and when these parameters are arbitrarily small.
The adjective Asymptotic Preserving has been introduced by Shi Jin in [21]. In the study of
plasma simulation, numerous several Asymptotic Preserving methods have been proposed for
various models, such as Euler-Maxwell, Euler-Poisson, Euler-Lorentz, Vlasov-Poisson ([18], [6],
[17], [14], [13], [16], [4]).

The paper is organized as follows. Firstly, the macroscopic and kinetic models relative to our
problem are introduced. A reduced 1D3V kinetic model is derived, and the relative properties of
moment conservation and entropy dissipation are specified. Subsequently, a scaling of the kinetic
model in order to exhibit the limiting behaviour of the system. Then, a Asymptotic-Preserving
numerical method is presented. This method is able to compute solutions of the kinetic model in
the asymptotic regime. Finally, test cases are presented in order to illustrate the derived method.
In particular, the numerical results are compared with an HLL-inspired method and a Suliciu
relaxation approach, both derived in [3].

2. Description of the models

2.1. Bi-temperature Euler model. The one-dimensional bi-temperature Euler model describes
the behaviour of a two species fluid (constituted of electrons and ions) on a macroscopic scale
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(see [12]):
Y
___________]

___________[

ˆ
t

fl + ˆ
x

(flu) = 0,(1a)
ˆ

t

(flu) + ˆ
x

(flu2 + pe + pi) = 0,(1b)

ˆ
t

(fli‘i + 1
2fliu2) + ˆ

x

(u(fli‘i + 1
2fliu2 + pi)) + u(ciˆ

x

pe ≠ ceˆ
x

pi)

= ≠‹
ei

(T i ≠ T e),

(1c)

ˆ
t

(fle‘e + 1
2fleu2) + ˆ

x

(u(fle‘e + 1
2fleu2 + pe)) ≠ u(ciˆ

x

pe ≠ ceˆ
x

pi)

= ‹
ei

(T i ≠ T e).

(1d)

Superscripts e and i denote quantities related to electrons and ions, respectively. fl = fle +fli =
mene + mini is the total density, m– being the mass of a particle of species –, and n– the
corresponding concentration. u is the macroscopic velocity of the fluid. p–, T – and ‘– denote the
partial pressures, temperatures and specific energies. c– = m

–

m

–+m

— denotes the mass fractions.
‹

ei

is the temperature exchange rate between the two species, that can depend on space and time.

2.2. Macroscopic quantities. Define f–(t, x, v) : R+ ◊R3 ◊R3 ‘æ R+, the particle distribution
function of species –, where t, x, v respectively denote the time, space and microscopic velocity
variables. Integration with respect to v œ R3 will be denoted as follows, for any function g that
depends on v such that (1 + v2)g œ L1(R3):

ÈÈgÍÍ =
⁄

R3
gdv.

Macroscopic quantities n–(t, x), u–(t, x) and T –(t, x) are defined as moments of f– as follows:
ÈÈf–ÍÍ = n–,

ÈÈvf–ÍÍ = n–u–,

ÈÈm–

v2

2 f–ÍÍ = 1
2m–n–(u–)2 + 3

2n–k
B

T –.

Similarly, mixture macroscopic quantities are defined as:
ÈÈmefe + mif iÍÍ = fl,

ÈÈv(mefe + mif i)ÍÍ = flu,

ÈÈv2

2 (mefe + mif i)ÍÍ = 1
2flu2 + 3

2(ne + ni)k
B

T.

Finally, we define electromagnetic quantities: E œ R is the electric field along x, q– is the
electric charge of species –. Note that qe = ≠Zqi, with Z the ionization rate. j and fl are
respectively the current and total electric charge, defined as:

ÈÈqefe + qif iÍÍ = fl, ÈÈv(qefe + qif i)ÍÍ = j.(2)

2.3. Vlasov-BGK-Ampère system. Consider the Vlasov-BGK-Ampère model, for t œ R, x œ
R, v = (v1, v2, v3) œ R3 and – œ {e, i}:

Y
______]

______[

ˆ
t

f– + v1ˆ
x

f– + q–E

m–

ˆ
v1f– = 1

·–

(M(f–) ≠ f–) + 1
·–—

(M(f–) ≠ f–),(3a)

ˆ
t

E = ≠ j

Á0
,(3b)

ˆ
x

E = fl

Á0
,(3c)

where ·– and ·–— are, respectively, the relaxation rate towards intra-species and inter-species
equilibria (·–— = ·—–). Á0 is the dielectric permittivity of vacuum.
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The entropy-minimizing distribution function is the local Maxwellian distribution, denoted
M(f–), defined by:

M(f–)(t, x, v) = n–(t, x)
(2fik

B

T

–(t,x)
m

– ) 3
2

exp (≠ |v ≠ u–(t, x)|2

2k
B

T

–(t,x)
m

–

).

M(f–), the exchange Maxwellian distribution, is defined as:

M(f–)(t, x, v) = n–(t, x)
(2fik

B

T (t,x)
m

– ) 3
2

exp (≠ |v ≠ u(t, x)|2

2k
B

T (t,x)
m

–

).

2.4. Reduced model.

2.4.1. Definition of the reduced distribution functions. The problem is assumed to be one dimen-
sional in space and 3 dimensional in velocity (1D3V). Hence, the distribution functions f– only
depend on x = x1 and v = (v1, v2, v3). This means that the function f– is even in v2 and v3,
which can be expressed as:

Y
____]

____[

⁄

R2

f–(t, x, v)v2dv2dv3 = 0,(4a)

⁄

R2

f–(t, x, v)v3dv2dv3 = 0.(4b)

Denote u– = (u–

1 , u–

2 , u–

3 ), this assumption gives u– = (u–

1 , 0, 0). Hence, the notation u– = u–

1
is used. The number of variables is reduced, as in [2]. Define the marginals, for – = e, i, by:

Y
_____]

_____[

g–

0 (t, x, v1) =
⁄

R2

f–(t, x, v)dv2dv3,(5a)

g–

2 (t, x, v1) =
⁄

R2

f–(t, x, v)m–(v2
2 + v2

3)
2 dv2dv3,(5b)

and denote integration with respect to v1, for any function g that depends on v1, as:

(6) ÈgÍ =
⁄

R

gdv1.

2.4.2. Reduced system of equations and its properties. The idea is to describe the system of
equations and the macroscopic quantities using these reduced functions. The system obtained
after reduction reads as follows:

Proposition 1. Under the assumptions (4) and (5), the system (3) can be reduced to the following
one, with – = e, i and p = 0, 2:

Y
______]

______[

ˆ
t

g–

p

+ v1ˆ
x

g–

p

+ q–E

m–

ˆ
v1g–

p

= 1
·–

(M–

p

≠ g–

p

) + 1
·–—

(M–

p

≠ g–

p

),(7a)

ˆ
x

E|
t=t0 = 1

Á0
fl|

t=t0 ,(7b)

ˆ
t

E = ≠ 1
Á0

j,(7c)
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where the di�erent Maxwellian distributions are defined as:
Y
__________]

__________[

M–

0 (t, x, v1) = n–(t, x)Ò
2fik

B

T

–(t,x)
m

–

exp (≠ (v1 ≠ u–)2

2k
B

T

–(t,x)
m

–

),(8a)

M–

2 (t, x, v1) = k
B

T –(t, x)M–

0 (t, x, v1),(8b)

M
–

0 (t, x, v1) = n–(t, x)Ò
2fik

B

T (t,x)
m

–

exp (≠ (v1 ≠ u)2

2k
B

T (t,x)
m

–

),(8c)

M
–

2 (t, x, v1) = k
B

T (t, x)M–

0 (t, x, v1).(8d)

Moreover, g–

0 and g–

2 satisfy the following relations:
Y
__]

__[

n– = Èg–

0 Í,(9a)
n–u– = Èg–

0 v1Í,(9b)
3
2n–k

B

T – + 1
2m–n–(u–)2 = Èg–

0
m–v2

1
2 Í + Èg–

2 Í.(9c)

Proof. Firstly, by integrating equation (3a) with respect to v2 and v3, it comes:

ˆ
t

⁄

R2

f–dv2dv3 + v1ˆ
x

⁄

R2

f–dv2dv3 = 1
·–

(
⁄

R2

M(f–)dv2dv3 ≠
⁄

R2

f–dv2dv3)

+ 1
·–—

(
⁄

R2

M(f–)dv2dv3 ≠
⁄

R2

f–dv2dv3).
(10)

Define M–

0 , M
–

0 : R+
t

◊ R
x

◊ R
v

‘æ R using (8).
The definition of g–

0 given in (5a) allows us to rewrite (10) as (7a) with p = 0. We have
obtained an equation on the function g–

0 . Let us express the moments using g–

0 . The 0th-order
moment can be expressed as:

ÈÈf–ÍÍ = Èg–

0 Í = n–.

Similarly, the first order moment writes:

n–u– = ÈÈf–vÍÍ =
K⁄

R2

f–

Q

a
v1
v2
v3

R

b dv2dv3

L
.

According to (4a) and (4b), the second and third components of the first order moment are
equal to zero. Then, we get, for the first component:

K
v1

⁄

R2

f–dv2dv3

L
= Èv1g–

0 Í = n–u–.

The third moments reads as:

ÈÈf–

m–|v|
2

2
ÍÍ =

=
g–

0
m–v2

1
2

>
+ ÈÈf–

m–(v2
2 + v2

3)
2 ÍÍ.(11)

Hence, another function g–

2 , defined by (5b), is introduced. Rewrite (11) as:

3
2n–k

B

T – + 1
2m–n–(u–)2 =

=
g–

0
m–v2

1
2

>
+ Èg–

2 Í .
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Finally, in order to close the system, an equation over g–

2 is needed. To obtain it, multiply
(3a) by m

–(v

2
2+v

2
3)

2 , and integrate with respect to v2 and v3:
⁄

R2

ˆ
t

f–

m–(v2
2 + v2

3)
2 dv2dv3 +

⁄

R2

v1ˆ
x

f–

m–(v2
2 + v2

3)
2 dv2dv3

+ q–E

m–

⁄

R2

ˆ
v1f–

m–(v2
2 + v2

3)
2 dv2dv3

= 1
·–

(
⁄

R2

M(f–)m–(v2
2 + v2

3)
2 dv2dv3 ≠

⁄

R2

f
m–(v2

2 + v2
3)

2 dv2dv3).

Then we introduce the function M–

2 of (8b) corresponding to:

M–

2 =
⁄

R2

M(f–)m–(v2
2 + v2

3)
2 dv2dv3.

We get equation (7a) with p = 2. ⇤

Remark 1. Equation (7b) means that, provided that Maxwell-Gauss equation is satisfied at t = 0
and if the Maxwell-Ampère equation is satisfied for all t, so will the Maxwell-Gauss equation.

Regarding the conservation properties of the BGK operators in equations (7a), the following
proposition holds:

Proposition 2. The intra-species BGK operators defined by the Maxwellians (8a) and (8b)
conserve the partial masses, momenta and energies according to the following identities, for – =
e, i:

(12)
=

(M–

0 ≠ g–

0 )
3

1
v1

4>
= 0,

=
(M–

0 ≠ g–

0 )m–(v1)2

2

>
+ È(M–

2 ≠ g–

2 )Í = 0.

The exchange Maxwellians (8c) and (8d) define inter-species BGK operators that enjoy the
following conservation properties:

e
M0

– ≠ g–

0

f
= 0,

ÿ

–

e
(M0

– ≠ g–

0 )m–v1

f
= 0,

ÿ

–

=
(M0

– ≠ g–

0 )m–(v1)2

2

>
+

ÿ

–

e
M2

– ≠ g–

2

f
= 0.

In order to obtain the entropy of the reduced system, consider the following definition of the
Maxwellian distribution of the non-reduced system:

H–(M(f–)) = min
f

–Ø0
(H–(f–)s.t.g–

0 (v1) =
⁄

R2

f–(v)dv2dv3, g–

2 (v1) =
⁄

R2

f–(v)m–(v2
2 + v2

3)
2 dv2dv3),

with

(13) H–(f–) = ÈÈf– log f–ÍÍ.

The resolution of this constrained minimization problem leads to the following expression of
M(f–):

(14) M(f–)(g–

0 , g–

2 ) = (g–

0 )2m–

2fig–

2
exp (≠g–

0 m–(v2
2 + v2

3)
2g–

2
).

Hence, by injecting (14) in (13), it comes
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H–(g–

0 , g–

2 ) =
=

g–

0 log (g–

0 )2

g–

2
≠ 2g–

0

>
.

Hence, define the following notations for the partial entropies of the reduced model:

(15) H–(g–

0 , g–

2 ) = È÷–(g–

0 , g–

2 )Í ,

with

÷–(g–

0 , g–

2 ) = g–

0 log (g–

0 )2

g–

2
≠ 2g–

0 ,

for – = e, i, and the total entropy

(16) H(ge

0, ge

2, gi

0, gi

2) =
ÿ

–

H–(g–

0 , g–

2 ).

Firstly, this entropy is shown to be convex:

Proposition 3. For – = e, i, H– is a strictly convex function. Consequently, H is strictly convex
as well.

Proof. Compute the gradient of ÷–:

(17) Ò÷– =
3

ˆ
g

–
0

÷–

ˆ
g

–
2

÷–

4
=

A
log (g

–
0 )2

g

–
2

≠ g

–
0

g

–
2

B
.

Compute the Hessian:

(18) Ò2÷– =
A 2

g

–
0

≠ 1
g

–
0

≠ 1
g

–
0

g

–
0

(g

–
2 )2

B
.

By positivity of the distribution functions, Tr(Ò2÷–) > 0 and det (Ò2÷–) = 1
(g

–
2 )2 > 0. Hence,

the Hessian is positive definite and ÷– is strictly convex. Consequently, H– is strictly convex.
⇤

The following property on entropy dissipation holds:

Proposition 4. The reduced system (7) satisfies the H-theorem for the entropy defined by (16):

(19) ˆH

ˆt
+ ˆG

ˆx
Æ 0,

with G the entropy flux associated to H:

G(ge

0, ge

2, gi

0, gi

2) =
ÿ

–

G–(g–

0 , g–

2 ) =
ÿ

–

Èv1÷–(g–

0 , g–

2 )Í .

Proof. Multiply equation (7a) by ˆ
g

–
p

÷–(g–

0 , g–

2 ), sum over p and integrate over v1:

ˆH–

ˆt
+ ˆG–

ˆx
= 1

·–

+
(M–

0 ≠ g–

0 )ˆ
g

–
0

÷– + (M–

2 ≠ g–

2 )ˆ
g

–
2

÷–

,

+ 1
·–—

e
(M–

0 ≠ g–

0 )ˆ
g

–
0

÷– + (M–

2 ≠ g–

2 )ˆ
g

–
2

÷–

f
.
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Then, summing over – gives:

ˆH

ˆt
+ ˆG

ˆx
=

ÿ

–

1
·–

+
(M–

0 ≠ g–

0 )ˆ
g

–
0

÷– + (M–

2 ≠ g–

2 )ˆ
g

–
2

÷–

,

+
ÿ

–

1
·–—

e
(M–

0 ≠ g–

0 )ˆ
g

–
0

÷– + (M–

2 ≠ g–

2 )ˆ
g

–
2

÷–

f
.

(20)

Consider every term of the right-hand side consecutively.
+
(M–

0 ≠ g–

0 )ˆ
g

–
0

÷– + (M–

2 ≠ g–

2 )ˆ
g

–
2

÷–

,
=

+
(M–

0 ≠ g–

0 )(ˆ
g

–
0

÷–(g–

0 , g–

2 ) ≠ ˆ
g

–
0

÷–(M–

0 , M–

2 ))
,

+
+
(M–

2 ≠ g–

2 )(ˆ
g

–
2

÷–(g–

0 , g–

2 ) ≠ ˆ
g

–
2

÷–(M–

0 , M–

2 ))
,

+
+
(M–

0 ≠ g–

0 )ˆ
g

–
0

÷–(M–

0 , M–

2 )
,

+
+
(M–

2 ≠ g–

2 )ˆ
g

–
2

÷–(M–

0 , M–

2 )
,

.(21)

By convexity of ÷–, the sum of the first two terms of the right-hand side of (21) is negative.
The remaining terms are

+
(M–

0 ≠ g–

0 )ˆ
g

–
0

÷–(M–

0 , M–

2 )
,

+
+
(M–

2 ≠ g–

2 )ˆ
g

–
2

÷–(M–

0 , M–

2 )
,

=
=

(M–

0 ≠ g–

0 ) log ((M–

0 )2

M–

2
)
>

≠
=

(M–

2 ≠ g–

2 )M–

0
M–

2

>

= 1
k

B

T –

È(M–

0 ≠ g–

0 ) log (M–

0 )Í ≠ 1
k

B

T –

È(M–

2 ≠ g–

2 )Í

= 1
k

B

T –

log ( n–

(2fik
B

T

–

m

– ) 1
2

) È(M–

0 ≠ g–

0 )Í +
K

(M–

0 ≠ g–

0 )( vu–

k
B

T

–

m

–

≠ (u–)2

2k
B

T

–

m

–

)
L

≠ 1
k

B

T –

=
(M–

0 ≠ g–

0 )m–(v–)2

2 + (M–

2 ≠ g–

2 )
>

= 0,

according to (12). By an analogous computation on the remaining last term in (20), (19) is
obtained.

⇤

2.5. Scaling of the equations. The regime of interest is the hydrodynamic limit of this model,
which corresponds to the scale of the phenomena described by the bi-temperature Euler equations
(see [3]). To do so, it is necessary to perform a scaling on this model, in order to exhibit the
behaviour of the equations when the macroscopic characteristic scale is much larger than the
ones involved by the kinetic equations (collisional scale, Debye scale). Denote t0, L, vth, q, m
respectively the reference time, length, velocity, electric charge and particle mass. Denoting with
a tilda the dimensionless quantities, it comes:

Ât = t

t0
, Âx = x

L
, Âv1 = v1

vth
, Êq– = q–

q
, Ám– = m–

m
.

From this scaling, define also the following dimensionless quantities:

Âg–

p

= vth
n0

g–

p

, ÂE = qt0
vthm

E, Âj = j

qvthn0
, Â̄fl = fl̄

qn0
, ÂT = k

B

mv2
th

T.

where n0 is the reference density.
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Applying this scaling to our model, and removing the tildas for the sake of readability, it
comes, for p = 0, 2 and – = e, i:

Y
______]

______[

ˆ
t

g–

p

+ v1ˆ
x

g–

p

+ q–

m–

Eˆ
v1g–

p

= 1
Áe

(Me

p

≠ ge

p

) + 1
Áei

(Me

p

≠ ge

p

),(22a)

ˆ
t

E = ≠ j

—2 ,(22b)

ˆ
x

E = fl

—2 ,(22c)

where Á– = ·

–

t0
, Á–— = ·

–—

t0
and — = ⁄De

L

, ⁄De = ( Á0kBT0
q

2
n0

) 1
2 , with T0 = mv

2
th

kB
the reference

temperature. ⁄De is the so-called Debye length, which is the characteristic length of charge
separation in a plasma. In the regime of interest, this quantity is extremely small compared to
the reference length of the domain L. Similarly, the same-species mean free path related quantities
Á– are small compared to the reference length L. Hence, reaching the hydrodynamic limit consists
in taking the limit of the model when Á– and — tend to 0. Notice that, however, Á–— is finite. In
the limit, the Maxwell equations (22b-22c) become j = 0 and fl = 0, which can be rewritten as:

ue = ui, ne = Zni.(23)
The equations (23) are called the quasi-neutrality constraints. This form of the system of equa-

tions is the singular quasi-neutral limit of our initial model, where two evolution equations de-
generate into algebraic relations. The purpose of this work is to derive an Asymptotic-preserving
(AP) numerical scheme, that is to say with a stability condition that is independant of every
non-dimensional small parameters Á–, Á–— and —.

2.6. Entropy inequality for hydrodynamic limits. In [3], the existence of an entropy-flux
pair is shown for the bi-temperature Euler system (1). In this section, an entropy dissipation
inequality in the limit is derived for the reduced model presented in Proposition 1.

Firstly, denote U = (fl, flu, ‘e, ‘i) the unknowns of the bi-temperature model and
(Hmacro(U), Gmacro(U)) the corresponding macroscopic entropy-flux pair. Note the following
properties regarding the link between kinetic and macroscopic entropies:
(24) H(Me

0 , Me

2 , M i

0, M i

2) = Hmacro(U), G(Me

0 , Me

2 , M i

0, M i

2) = Gmacro(U).
See [3] for further details on these properties.

Proposition 5. Let U be a limit solution of the kinetic model from Proposition 1, i.e moments of
solution distribution functions (g–

0 , g–

2 ) in the hydrodynamic limit. Then, the following inequality
on entropy holds:

(25) ˆHmacro

ˆt
+ ˆGmacro

ˆx
Æ ≠ ‹ei

k
B

T iT e

(T i ≠ T e)2,

with

‹–— = 3k
B

n–n—

2·–—(n– + n—) .

Proof. Multiply equation (7a) by ˆ
g

–
p

÷–(g–

0 , g–

2 ), sum over p and integrate over v1. It comes, for
– = e, i:

ˆH–

ˆt
+ ˆG–

ˆx
= 1

Á–

+
(M–

0 ≠ g–

0 )ˆ
g

–
0

÷– + (M–

2 ≠ g–

2 )ˆ
g

–
2

÷–

,

+ 1
Á–—

e
(M–

0 ≠ g–

0 )ˆ
g

–
0

÷– + (M–

2 ≠ g–

2 )ˆ
g

–
2

÷–

f
.

Using the entropy dissipation properties of the BGK operator shown in Section 2.4.2:

ˆH–

ˆt
+ ˆG–

ˆx
Æ 1

Á–—

e
(M–

0 ≠ g–

0 )ˆ
g

–
0

÷– + (M–

2 ≠ g–

2 )ˆ
g

–
2

÷–

f
.
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By formally passing to limit ‘– æ 0, it comes g–

p

= Mg–

p

, ne = ni and u = ue = ui. Hence,
summing over – and using (24), the inequality becomes

ˆHmacro(U)
ˆt

+ ˆGmacro(U)
ˆx

Æ 1
Á–—

ÿ

–

e
(M–

0 ≠ M–

0 )ˆ
g

–
0

÷– + (M–

2 ≠ M–

2 )ˆ
g

–
2

÷–

f
.

The right hand side reads

ÿ

–

e
(M–

0 ≠ M–

0 )ˆ
g

–
0

÷–(M–

0 , M–

2 ) + (M–

2 ≠ M–

2 )ˆ
g

–
2

÷–(M–

0 , M–

2 )
f

=
ÿ

–

=
(M–

0 ≠ M–

0 ) log ((M–

0 )2

M–

2
) ≠ (M–

2 ≠ M–

2 )M–

0
M–

2

>

=
ÿ

–

=
(M–

0 ≠ M–

0 ) log ( M–

0
k

B

T –

) ≠ 1
k

B

T –

(M–

2 ≠ M–

2 )
>

=
ÿ

–

K
(M–

0 ≠ M–

0 ) log ( n–

(2fik
B

T

–

m

– ) 1
2

) ≠ (M–

0 ≠ M–

0 ) (v ≠ u)2

2k
B

T

–

m

–

≠ (M–

0 ≠ M–

0 ) log (k
B

T –)
L

≠
ÿ

–

=
1

k
B

T –

(M–

2 ≠ M–

2 )
>

.

The first and third term are equal to zero according to the conservation properties. The second
term is equal, after computation, to :

≠
ÿ

–

K
(M–

0 ≠ M–

0 ) (v ≠ u)2

2k
B

T

–

m

–

L
= ≠

ÿ

–

1
k

B

T –

=
m–(M–

0 ≠ M–

0 )v2

2

>
.

The total right hand side is then equal to

ÿ

–

e
(M–

0 ≠ M–

0 )ˆ
g

–
0

÷–(M–

0 , M–

2 ) + (M–

2 ≠ M–

2 )ˆ
g

–
2

÷–(M–

0 , M–

2 )
f

= ≠
ÿ

–

1
k

B

T –

3=
m–(M–

0 ≠ M–

0 )v2

2

>
+

e
M

–

2 ≠ M–

2

f4

= ≠3
2

ÿ

–

n–

T ≠ T –

T –

.

According to the definition of T , it comes:

T ≠ T – = n–

n– + n—

(T — ≠ T –).

Hence,

≠ 3
2·–—

ÿ

–

n–

T ≠ T –

T –

= ≠ 3
2·–—

n–n—

n– + n—

(T — ≠ T –)2

T –T —

,

and we get (25).
⇤

3. Numerical treatment

In this section, numerical treatment of system (22) is addressed. The method to compute
the evolution of the particle distribution is presented. For the sake of simplicity, in the Ampère
equation and BGK operator, every non-dimensional quantity Áe, Ái and — are chosen equal to · .
Reaching the hydrodynamic limit is then equivalent to the limit · æ 0.
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3.1. Vlasov-BGK equations: general method. A time-splitting method is used on the
Vlasov-BGK equations, in order to separate the Vlasov equations from the BGK operators.
More precisely, the following equations are going to be consecutively solved:

(26) ˆ
t

g–

p

+ v1ˆ
x

g–

p

+ q–

m–

Eˆ
v1g–

p

= 0,

the Vlasov-Maxwell equations for – = e, i, coupled with the Ampère equation:

(27) ˆ
t

E = ≠ j

·2 .

Then, the e�ects of the inter-species collisions are computed:

(28) ˆ
t

g–

p

= 1
Á–—

(M–

p

≠ g–

p

),

and finally, intra-species collisions:

(29) ˆ
t

g–

p

= 1
·

(M–

p

≠ g–

p

),

where · æ 0.
A uniform discretization of the phase space is considered. Concerning the velocity discretiza-

tion, in the present case, only static grids are considered, contrarily to [8]. A suitable subset of
R that contains the most part of the distribution function has to be chosen in order to perform
correct numerical evaluations of the moments.

However, in this model, two particle distributions are considered, in order to follow the dynam-
ics of both electrons and ions via a kinetic description. The major di�erence between these two
species is the value of the mass of a particle that can have a ratio of the order of one thousand.
Consequently, the distribution functions have very di�erent supports. Thus, if only one velocity
grid is employed, then this grid has to be large enough to encompass the largest distribution and
has to be fine enough to describe the smallest one, which is numerically very costly. Hence, two
velocity grids, one for each species, are considered. The boundaries of the domains are chosen as
follows: for a given initial condition, let us denote the initial moments by n–

0 , u–

0 and T –

0 . For
– = e, i, we have:

V – = [min
x

(u–

0 (x)) ≠ l– max
x

Ú
k

B

T –

0 (x)
m–

, max
x

(u–

0 (x)) + l– max
x

Ú
k

B

T –

0 (x)
m–

],(30)

where l– is chosen to fit the initial maxwellian distribution. Note that this grid is the same
for all points in space and is constant in time.

Notations for the discretization are chosen as follows: �x denotes the discretization step of
the domain [Lmin, Lmax] µ R in N

x

cells. For – = e, i, the velocity domains [V –

min, V –

max] µ R
are both discretized using N

v

cells and the discretization steps are denoted �ve and �vi. Then,
we use indices k and j to denote quantities computed at the k-th cell in space and j-th cell in
velocity. Moreover, we denote �t the time step and we use a superscript n to denote the quantity
computed at time tn = t0 + n�t.

Step 1: Computation of g and E

The following discretization is performed, for – = e, i:

(31) Âg–,n+1
0,k,j

= g–,n

0,k,j

≠ �t

�x
(„–,n

0,k+ 1
2 ,j

≠ „–,n

0,k≠ 1
2 ,j

) ≠ �t

2�v–

q–En+1
k

m–

(g–,n

0,k,j+1 ≠ g–,n

0,k,j≠1),

coupled with

(32) En+1
k

= En

k

≠ �t

·
jn+1

k

.
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Note that the term ˆ
v1g0 has been discretized using a centred scheme. For the space discretiza-

tion, „0 represented the flux function of the spatial discretization which will be specified in the
next section.

Then, the following procedure is applied to obtain Âg–,n+1
2 :

(33) Âg–,n+1
2,k,j

= g–,n

2,k,j

≠ �t

�x
(„–,n

2,k+ 1
2 ,j

≠ „–,n

2,k≠ 1
2 ,j

) ≠ �t

�v–

(Â–,n

2,k,j+ 1
2

≠ Â–,n

2,k,j≠ 1
2
),

where

„–,n

2,k+ 1
2 ,j

=
v–

j

2 (g–,n

2,k+1,j

+ g–,n

2,k,j

) ≠
|v–

j

|
2 (g–,n

2,k+1,j

≠ g–,n

2,k,j

),

and

Â–,n

2,k,j+ 1
2

= q–En+1
k

2m–

(g–,n

2,k,j+1 + g–,n

2,k,j

) ≠
|q–En+1

k

|
2m–

(g–,n

2,k,j+1 ≠ g–,n

2,k,j

).

Equations (31) are stable under the CFL condition :

(34) �t Æ min
–

( 1
||V –||Œ

�x

+ ||q–
E

n+1||Œ
m

–�v

–

).

Moments of Âge,n+1
p

and Âgi,n+1
p

are then computed using the midpoint quadrature formula.
’k œ {1, ..., N

x

}:

Ân–,n+1
k

=
Nvÿ

j=1
Âg–,n+1

0,k,j

�v–,

Âu–,n+1
k

= 1
Ân–,n+1

k

Nvÿ

j=1
Âg–,n+1

0,k,j

v
j

�v–,

ÂT –,n+1
k

= 1
3Ân–,n+1

k

k
B

S

U
Nvÿ

j=1
m–Âg–,n+1

0,k,j

v2
j

�v– + 2
Nvÿ

j=1
Âg–,n+1

2,k,j

�v– ≠ m–Ân–,n+1
k

Âu–,n+12

k

T

V .

In order to compute the mixture Maxwellian distribution in the next step, mixture quantities
must also be computed:

Ânn+1
k

= Âne,n+1
k

+ Âni,n+1
k

,

Âun+1
k

=

q
–

Âfl–,n+ 1
2

k

Âu–,n+1
k

q
–

Âfl–,n+1
k

,

ÂT n+1
k

= 1
Ânn+1

k

k
B

C
ÿ

–

1
3 Âfl–,n+1

k

((Âu–,n+1
k

)2 ≠ (Âun+1
k

)2) +
ÿ

–

Ân–,n+1
k

k
B

ÂT –,n+1
k

D
.

Step 2: inter-species relaxation

We apply a backward Euler method to the equations (28):

ĝ–,n+1
p,k,j

= 1
�t + ·ei

5
�tÊM

–,n+1
p,k,j

+ ·eiÂg–,n+1
p,k,j

6

which is unconditionnaly stable. ÊM
–,n+1
p,k,j

is the mixture Maxwellian defined by the moments
Ân–,n+1

k

, Âun+1
k

and ÂT n+1
k

, which are conserved through this step. Hence, the mixture Maxwellian is
known beforehand, which allows this implicitation. Partial velocities and temperatures (denoted
in the next section with a hat) are then recomputed using the previous formulae.
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Step 3: intra-species relaxation

The next step consists in the relaxation towards Maxwellian equilibrium. Since the BGK
operator preserves moments, we have the following properties: ’k œ {1, ..., N

x

},

(35) n̂–,n+1
k

= n–,n+1
k

, û–,n+1
k

= u–,n+1
k

, T̂ –,n+1
k

= T –,n+1
k

.

Similarly to the previous section, this property allows us to use an implicit scheme, the back-
ward Euler method: ’k œ {1, ..., N

x

}, ’j œ {1, ..., N
v

} and p = 0, 2,

(36) g–,n+1
p,k,j

= ĝ–,n+1
p,k,j

+ �t

·
(M–,n+1

p,k,j

≠ g–,n+1
p,k,j

),

where

M–,n+1
0,k,j

= n–,n+1
kÒ

2fik
B

T

–,n+1
k
m

–

exp (≠ (v
j

≠ u–,n+1
k

)2

2k
B

T

–,n+1
k
m

–

),

M–,n+1
2,k,j

= k
B

T –

k

M–,n+1
0,k,j

,

which are expressed using quantities known at the end of step 2, according to the properties
(35). Taking the limit · æ 0 in (36) leads to:

g–,n+1
p,k,j

= M–,n+1
p,k,j

.

In the next section, enforcement of quasineutrality constraints (23) will be adressed. More
precisely, specific spatial fluxes will be given and a reformulation of the Maxwell-Ampère equation
will be performed in order to derive an Asymptotic-Preserving method, valid in the limit · æ 0.
Note that if these constraints are enforced through the hyperbolic step of the scheme (step 1),
then they will be trivially preserved by both step 2 and 3. Hence, quasineutrality only has to
been enforced through step 1.

3.2. Modified-viscosity upwind scheme. The space divergence is discretized explicitly, via
the following modified upwind scheme:

(37) „–,n

0,k+ 1
2 ,j

=
v–

j

2 (g–,n

0,k+1,j

+ g–,n

0,k,j

) ≠ |Vmax|
2 (g–,n

0,k+1,j

≠ g–,n

0,k,j

),

where Vmax = max (|V e

min|, |V i

min|, |V e

max|, |V e

min|).
This method is the classical upwind scheme, where the numerical viscosity |v

j

|, that depends
directly of the microscopic velocity, has been replaced by the smallest velocity that ensures
stability for all equations. The discrete system writes as follows:

(38) Âg–,n+1
0,k,j

= g–,n

0,k,j

≠ �t

�x
(„–,n

0,k+ 1
2 ,j

≠ „–,n

0,k≠ 1
2 ,j

) ≠ �t

2�v–

q–En+1
k

m–

(g–,n

0,k,j+1 ≠ g–,n

0,k,j≠1),

and

(39) En+1
k

= En

k

≠ �t

·
jn+1

k

.

This level of implicitness allows for a reformulation of the equation on the electric field. More
precisely, the equation used to compute the electric field in (39) is not valid in the limit · æ 0.
To solve this problem, we follow the idea developped in [20]. By multiplying equation (38) by
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q–v–

j

�v– and summing over j, it comes:

q–

ÿ

j

v–

j

Âg–,n+1
0,k,j

�v– = q–

ÿ

j

v–

j

g–,n

0,k,j

�v– ≠ q–

�t�v–

�x

ÿ

j

v–

j

(„–,n

0,k+ 1
2 ,j

≠ „–,n

0,k≠ 1
2 ,j

)

≠ �t

2
ÿ

j

v–

j

( (q–)2En+1
k

m–

(g–,n

0,k,j+1 ≠ g–,n

0,k,j≠1)).
(40)

According to the definition of the current jn

k

=
q
–

q–

q
j

v–

j

g–,n

0,k,j

�v–, taking (40) into account

with – = e, i, it comes

Âjn+1
k

= jn

k

≠ �t

�x

ÿ

–

q–

ÿ

j

�v–v–

j

(„–,n

0,k+ 1
2 ,j

≠ „–,n

0,k≠ 1
2 ,j

)

≠
�tEn+1

k

2
ÿ

–

(q–)2

m–

ÿ

j

v–

j

(g–,n

0,k,j+1 ≠ g–,n

0,k,j≠1).

By injecting this equation in (39), we get the following expression for the electric field:

En+1
k

=
·En

k

≠ �tjn

k

+ �t

2

�x

q
–

q–

q
j

�v–v–

j

(„–,n

0,k+ 1
2 ,j

≠ „–,n

0,k≠ 1
2 ,j

)

· ≠ �t

2

2
q
–

(q

–)2

m

–

q
j

v–

j

(g–,n

0,k,j+1 ≠ g–,n

0,k,j≠1)
,

which is valid for all values of · . In particular, we are interested in the limit · æ 0, which is:

En+1
k

=

1
�x

q
–

q–

q
j

�v–v–

j

(„–,n

0,k+ 1
2 ,j

≠ „–,n

0,k≠ 1
2 ,j

)
q
–

(q

–)2

m

– n–,n

k

,

where it has been assumed that jn

k

= 0. Such a choice for En+1
k

ensures that Âjn+1
k

= 0, which
is one of the two quasi-neutrality constraints (23). The choice of „0 (37) that has been made
ensures that the other contraint Â̄fln+1

k

= 0 is also verified. More precisely, compute the discrete
equation on Â̄fln+1

k

. ’k œ {1, ..., N
x

}, provided that
ÿ

j

(Â–,n

0,k,j+ 1
2

≠ Â–,n

0,k,j≠ 1
2
) = 0,

the electric charge is
ÿ

j

q–g–,n+1
0,k,j

�v– =
ÿ

j

q–g–,n

0,k,j

�v– ≠ �t

�x

ÿ

j

(„–,n

0,k+ 1
2 ,j

≠ „–,n

0,k≠ 1
2 ,j

)�v–.

So, the following equation on the total electric charge is obtained:

fln+1
k

= fln

k

≠ �t

�x

ÿ

–

q–

ÿ

j

(„–,n

0,k+ 1
2 ,j

≠ „–,n

0,k≠ 1
2 ,j

)�v–.

According to (37), we get:

(41) fln+1
k

= fln

k

≠ �t

2�x

ÿ

–

q–

ÿ

j

(v–

j

(g–,n

0,k+1,j

≠g–,n

0,k≠1,j

)≠|Vmax|(g–,n

0,k+1,j

≠2g–,n

0,k,j

+g–,n

0,k≠1,j

))�v–.

By rearranging the terms, we obtain:

(42) fln+1
k

= fln

k

≠ �t

2�x
(jn

k+1 ≠ jn

k≠1) + �t

2�x

ÿ

–

q–

ÿ

j

|Vmax|(g–,n

0,k+1,j

≠ 2g–,n

0,k,j

+ g–,n

0,k≠1,j

)�v–
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By assuming that fln

k

= jn

k+1 = jn

k≠1 = 0, it comes:

(43) fln+1
k

= �t

2�x
Vmax(fln

k+1 ≠ 2fln

k

+ fln

k≠1) = 0.

Hence, quasineutrality is conserved at all time. However, applying this modification to our
scheme amounts to overevaluating the numerical viscosity by its highest value. This will create
an important amount of dissipation in the numerical solutions obtained with this scheme. Hence,
the discretization of the space domain needs to be very precise to compensate this viscosity, which
will result in a longer computation time.

4. Numerical results

In this section, numerical resolution of Riemann problems with our method is presented. Such
problems are characterized by initial conditions constituted of two constant states separated by a
discontinuity. In the study of such problems, an exact solution can be provided for the conserved
quantities (density, momentum and total energy). However, it is not true for non-conserved
quantities, and no reference results exist.

Comparative results obtained by an HLL-type scheme and a Suliciu relaxation method on the
bi-temperature Euler system are displayed along the solutions from the kinetic scheme that has
been derived in this paper (see [3] for more details on these methods).

The spatial domain is chosen as the interval [0,1], supplemented with homogeneous Neumann
boundary conditions. Physical constants (k

B

, Z, qi) are chosen equal to one. All test cases are
done in the hydrodynamic limit · æ 0. Concerning the choice of l– in (30), a convergence test
has been performed on the initial conditions of the test cases in order to obtain a appropriate
value that would optimize computational cost. Hence, in all test cases, l– = 8, for – œ {e, i}.

A mass ratio of 10 (m
e

= 0.1 and m
i

= 1) is considered. The greater the mass ratio, the
greater the value of Vmax in (37). Hence, a high mass ratio implies an important amount of
numerical viscosity. Then, we are restricting ourselves to a mass ratio of 10, which is already
demanding in terms of number of discretization points. However, in a proper physical context,
mass ratios of the order of 1000 should be considered.
Shock tube with identical initial temperatures. The Riemann problem of the shock tube with
identical ionic and electronic temperature is given by the following initial condition:

I
n–(t0, x) = 1, u–(t0, x) = 0, T –(t0, x) = 1 if x œ [0, 0.5],
n–(t0, x) = 0.125, u–(t0, x) = 0, T –(t0, x) = 1 if x œ [0.5, 1].

Parameters are chosen as N
x

= 120000, N
v

= 40 and l = 8. The inter-species collision
relaxation time is ·ei = 0.1. Results are computed at time t = 0.1. For fluid methods, 4000
discretization points are used.

The results are provided in figure 1 and 2.
The quantities described by conservative equations (densities and velocities) are consistant

with the fluid methods HLL and Suliciu. Moreover, quasi-neutrality is shown to be achieved,
since electronic and ionic densities are superposed, as well as electronic and ionic velocities.

For the partial temperatures presented in figure 2, the intermediate state reached between
the rarefaction wave and the contact discontinuity is identical for all schemes, which is expected
since this part of the solution is smooth. However, the states obtained between the contact
discontinuity and the shock are di�erent for every scheme. Figures 3 display a zoom on this part
of the solution. The results can be seen to be di�erent for all three methods. The behaviour of
the di�erent schemes should be investigated further.
Shock tube with di�erent initial temperatures. This test case is similar to the previous one,
the only di�erence being the initial left ionic and electronic temperatures. The following initial
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Figure 1. Density and velocity solutions of shock tube test case with a mass
ratio of 10 with 120000 space points, 40 velocity points and a domain length of
8

Figure 2. Electronic and ionic temperatures of a shock tube test case with a
mass ratio of 10 with 120000 space points, 40 velocity points and a domain length
of 8

conditions are:I
n–(t0, x) = 1, u–(t0, x) = 0, T –(t0, x) = 1 if x œ [0, 0.5],
n–(t0, x) = 0.125, u–(t0, x) = 0, T e(t0, x) = 2 T i(t0, x) = 3 if x œ [0.5, 1].

Parameters are chosen as N
x

= 120000, N
v

= 40 and l = 8. The inter-species collision
relaxation time is ·ei = 0.1. Results are computed at time t = 0.1. The result are provided in
figure 4 and 5. The behaviour of the result if very similar to the previous one. Quasi-neutrality is
achieved and temperatures exhibit di�erent jump relations across discontinuities for each method.
Rarefaction wave. This test case is constituted of two rarefaction waves going in opposite direc-
tions. It is given by the following data:

I
n–(t0, x) = 1, u–(t0, x) = ≠1, T –(t0, x) = 1 if x œ [0, 0.5],
n–(t0, x) = 1, u–(t0, x) = 1, T –(t0, x) = 1 if x œ [0.5, 1].

We have N
x

= 120000, N
v

= 40 and l = 8. The inter-species collision relaxation time is
·ei = 0.1. Results are computed at time t = 0.1.
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Figure 3. Di�erent jump relations through shocks of electronic and ionic tem-
peratures for a shock tube test case with a mass ratio of 10 with 120000 space
points, 40 velocity points and a domain length of 8

Figure 4. Density and velocity solutions of shock tube test case with a mass
ratio of 10 with 120000 space points, 40 velocity points and a domain length of
8

The result are provided in figure 7 and 8. In this test case, the solution is smooth. There are
no shock waves, and then, all methods are expected to give the same results. Figure 9 shows that
this is what happens.
Shock wave. This test case is constituted of two shock waves. It is given by the following data:

I
n–(t0, x) = 1, u–(t0, x) = 1, T –(t0, x) = 1 if x œ [0, 0.5],
n–(t0, x) = 1, u–(t0, x) = ≠1, T –(t0, x) = 1 if x œ [0.5, 1].

We have N
x

= 120000, N
v

= 40 and l = 8. The inter-species collision relaxation time is
·ei = 0.1. Results are computed at time t = 0.1.

The results are provided in Figure 10 and 11. Quasi-neutrality is achieved on the conserved
quantities. The solution contains two shock waves and di�erent jump relations can be observed
for each numerical method. In Figure 12, a zoom is performed on the constant values reached
by each method between the two shocks. This shows the di�erent behaviour between the three
methods.
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Figure 5. Electronic and ionic temperatures of a shock tube test case with a
mass ratio of 10 with 120000 space points, 40 velocity points and a domain length
of 8

Figure 6. Di�erent jump relations of electronic and ionic temperatures for a
shock tube test case with a mass ratio of 10 with 120000 space points, 40 velocity
points and a domain length of 8

5. Conclusion

In this article, a kinetic numerical method able to provide reference results for a non-conservative
hyperbolic system, the bi-temperature Euler system, is proposed. This method is able to enforce
all the desired properties that are relevant for comparisons with methods applied directly to the
hyperbolic system. Such methods lack an unambiguous definition of the non-conservative prod-
ucts and exhibit di�erent Rankine-Hugoniot relation when the solution contains shock waves.
However, the proposed method introduces a important amount of numerical viscosity, which ren-
ders the method costly. A second-order method able to circumvent such a drawback is a current
on-going work, which should be the subject of a subsequent article.
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