
HAL Id: hal-02476758
https://hal.science/hal-02476758

Submitted on 11 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

TextBenDS: a generic Textual data Benchmark for
Distributed Systems

Ciprian-Octavian Truica, Elena Apostol, Jérôme Darmont, Ira Assent

To cite this version:
Ciprian-Octavian Truica, Elena Apostol, Jérôme Darmont, Ira Assent. TextBenDS: a generic Tex-
tual data Benchmark for Distributed Systems. Information Systems Frontiers, 2021, Breakthroughs
on Cross-Cutting Data Management, Data Analytics and Applied Data Science, 23, pp.81-100.
�10.1007/s10796-020-09999-y�. �hal-02476758�

https://hal.science/hal-02476758
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

TextBenDS: a generic Textual data Benchmark for Distributed
Systems

Ciprian-Octavian Truică · Elena Apostol · Jérôme
Darmont · Ira Assent

Received: date / Accepted: date

Abstract Extracting top-k keywords and documents using weighting schemes are popular
techniques employed in text mining and machine learning for different analysis and retrieval
tasks. The weights are usually computed in the data preprocessing step, as they are costly
to update and keep track of all the modifications performed on the dataset. Furthermore,
computation errors are introduced when analyzing only subsets of the dataset. Therefore,
in a Big Data context, it is crucial to lower the runtime of computing weighting schemes,
without hindering the analysis process and the accuracy of the machine learning algorithms.
To address this requirement for the task of top-k keywords and documents, it is customary
to design benchmarks that compare weighting schemes within various configurations of
distributed frameworks and database management systems. Thus, we propose a generic
document-oriented benchmark for storing textual data and constructing weighting schemes
(TextBenDS). Our benchmark offers a generic data model designed with a multidimensional
approach for storing text documents. We also propose using aggregation queries with various
complexities and selectivities for constructing term weighting schemes, that are utilized
in extracting top-k keywords and documents. We evaluate the computing performance of
the queries on several distributed environments set within the Apache Hadoop ecosystem.
Our experimental results provide interesting insights. As an example, MongoDB proves to
have the best overall performance, while Spark’s execution time remains almost the same,
regardless of the weighting schemes.

Keywords Benchmark; Distributed frameworks; Distributed DBMSs; Top-k keywords;
Top-k documents; Weighting schemes

Ciprian-Octavian Truică
Computer Science and Engineering Department, Faculty of Automatic Control and Computers, University
Politehnica of Bucharest, Bucharest, Romania E-mail: ciprian.truica@cs.pub.ro
Department of Computer Science, Aarhus University, Aarhus, Denmark E-mail: ciprian.truica@cs.au.dk

Elena Apostol
Computer Science and Engineering Department, Faculty of Automatic Control and Computers, University
Politehnica of Bucharest, Bucharest, Romania E-mail: elena.apostol@cs.pub.ro

Jérôme Darmont
Université de Lyon, Lyon 2, ERIC EA 3083, France E-mail: jerome.darmont@univ-lyon2.fr

Ira Assent
DIGIT, Department of Computer Science, Aarhus University, Denmark E-mail: ira@cs.au.dk

2 Ciprian-Octavian Truică et al.

1 Introduction

With the increase in generated textual data and the many challenges related to extracting
knowledge and patterns from large amounts of textual documents, new methods that use
dynamic text processing need to be employed. Among the techniques applied in several
domains such as text and opinion mining, machine learning and information retrieval, top-k
keywords and documents extraction are very frequently used [30,40,41].

Weighting keywords and extracting the top-k frequent terms from a corpus is
successfully employed in document clustering [52,51] where they are used as metrics to
compute the inter-cluster distances. In topic modeling [21,45], term weighting schemes
are used to measure the relevance of a word to a topic. For event detection [17], term
weights are used to measure the appearance of bursty topic in Online Social Networks. Trend
discovery [6,7,34] employs Text Cubing and Online Analytical Processing (OLAP) [54,55]
to construct term weighting schemes, which are used for analyzing the impact of products
in Social Media. Sentiment analysis uses weighting schemes to vectorize textual data before
detecting the polarity of each document [30].

Finding the top-k documents that are most similar to a query is one of the core tasks
in information retrieval [18] and natural language processing [23]. In information retrieval,
ranking functions are used to score the similarity between a search query and a corpus of
documents and return to the user the most relevant documents for their search. Ranking
functions are also used in Natural Language Processing for the task of finding hidden
semantic structures in textual data using techniques such as Latent Semantic Indexing [11].

Considering this context, choosing a processing framework is not easy. Thus,
benchmarking is usually used to compare combinations of weighting schemes, computing
strategies and physical implementations. However, most big data benchmarks focus on
MapReduce operations and do not specifically target textual data [19,43,50]. Moreover,
the few benchmarks that do feature textual data [12,13] are still at the methodology or
specification stages.

T2K2D2 (Twitter Top-k Keywords and Documents multidimensional) benchmark [47]
solves some of the current issues by compare the processing of different weighting schemes
on various relational and NoSQL database management systems (DBMSs). However, one
of the major drawbacks of this previous solution is the fact that is design to work on a single
node, as opposed to a distributed environment, which limits its work with large sets of data.
In this paper, we seamlessly expand and generalize T2K2D2 to distributed systems to boost
its scalability.

For our proposed benchmark solution (TextBenDS), we considered a series of
objectives, as follows. We aim to dynamically compute the weighting score at the execution
of each new request on the dataset, thus improving the classical information systems’
approach and solving the reproducibility problems [26] of computing the weight one time [9,
4]. Therefore, when weights are computed, we will take into account the varying size and
content changes upon the dataset that happens with time [5].

Another objective is to redesign the schema to integrate new relationships to store
metadata extracted during the preprocessing of the text, i.e., tags and name entities.

Finally, we are aiming at doing extensive experiments and successfully compare several
big data processing solutions. For this paper we will consider the following distributed
solutions: Hive - a distributed DBMS [42], Spark - a distributed framework [53] and
MongoDB - a document-oriented DBMS.

As a general criterion, TextBenDS should be designed with Jim Gray’s criteria for a
"good" benchmark (relevance, portability, simplicity and scalability) [16] in mind.

TextBenDS: a generic Textual data Benchmark for Distributed Systems 3

The remainder of this paper is organized as follows. In Section 2, we present a survey
on existing big data and, more specifically, text processing-oriented benchmarks, also
specifying what our solution brings in addition to the ones presented in this section. In
Section 3, we describe the general specifications of TextBenDS, focusing in particular on
the employed data and workload models and on the applied performance metrics. A detailed
description of our distributed implementation can be found in Section 4. Here we describe
our queries, the chosen weighting schemes, as well as the multidimensional implementation
for the three selected distributed systems. In Section 5, we present the set of experiments for
both top-k keywords and documents. We provide an analysis and comparison of the results
for each distributed system. Finally, in Section 6, we conclude the paper and provide new
research perspectives.

2 Related Works

In this section we present an overview of the state of the art related to our contribution. We
briefly analyze and compare some of the most relevant parallel text analysis and processing
benchmarks from the big data domain.

Although there are many big data benchmarks that are mostly are data-centric, these
solutions focus either on structured data, volume or on MapReduce-based applications,
rather than on unstructured or variety. Furthermore, to the best of our knowledge, none
deal with directly processing textual data. In these benchmarks, text is used as it is, without
further processing or computing different measures, weights, or ranking functions.

For instance, the quasi-standard TPCxHS benchmark models a simple application and
features, in addition to classical throughput and response time metrics, availability and
energy metrics [43]. BigBench [15] is the first benchmark that added semi-structured
and unstructured data to TPC-DS [44] and was extended to work on Hadoop and Hive
by implementing queries using HiveQL [8]. Another improvement to this benchmark,
that added additional queries, is BigBench V2 [14]. Although, the BigBench benchmark,
and its extensions, are developed to work with multidimensional models and semi-
structured and unstructured date, their models do not take into account textual data and
complex aggregation queries, e.g. queries that compute word weights dynamically or score
documents using ranking functions.

Similarly to BigBench, HiBench [19] is a micro-benchmark developed specifically to
stress test the capabilities of Hadoop (both MapReduce and HDFS). Using a set of pre-
defined Hadoop programs, ranging from data sorting to clustering, HiBench is measuring
metrics such as response time, HDFS bandwidth consumption and data access patterns.
Another Big Data benchmark is MRBS [36]. This solution provides workloads of five
different domains with the focus on evaluating the dependability of MapReduce systems.

SparkBench [1,25] is a micro-benchmark suite developed specifically to stress test
the capabilities of Spark on Machine Learning and Graph Computation tasks, rather that
text preprocessing and computing weighting schemes. Moreover, Facebook developed
LinkBench [3] to emulate social graph workload on top of databases such as MySQL.

BigDataBench [50] features application scenarios from search engines, i.e., the
application on Wikipedia entries of operators such as Grep or WordCount. Yet, although
BigDataBench is open source, it is quite complex and difficult to extend, especially to test
the computation efficiency of term weighting schemes.

BigFUN [32] is a benchmark that uses a synthetic semi-structured social network data
in JSON format and it focuses exclusively on micro-operations. The workload consists of

4 Ciprian-Octavian Truică et al.

queries with various operations such as simple retrieves, range scans, aggregations, joins, as
well as inserts and updates.

By comparison with our solution, all the benchmarks presented above are not used for
processing textual data and computing weighting schemes.

There are other types of benchmarks that evaluate parallel text processing in Big Data,
cloud applications. However, there are only two available solutions that consist of only
specifications without any physical implementation.

The first one is actually a methodology for designing text-oriented benchmarks in
Hadoop [13]. It provides both guidelines and solutions for data preparation and workload
definition. Yet, as text analysis benchmarks, its metrics measure the accuracy of analytics
results, while the objective of our solution is to evaluate the aggregation operations and the
computing performance.

The second one is PRIMEBALL [12]. It features a fictitious news site hosted in the cloud
that is to be managed by the framework under analysis, together with several objective use
cases and measures for evaluating system performance . One of its metrics notably involves
searching a single word in the corpus. However, PRIMEBALL remains only a specification
as of today.

There are also various dedicated text analysis benchmarks that exploit different types
of corpora (news articles, movie reviews, books, tweets, synthetic texts...) [29,24,31,22,
49]. In terms of metrics, except TextGen [49] that specifically addresses the performance
of word-based compressors, all these benchmarks focus on algorithm accuracy. Either term
weights are known before the algorithm is applied, or their computation is incorporated
with preprocessing. Furthermore, none of these benchmarks propose adequate data sampling
methods based on analysis requirements.

BDGS [28] is a benchmark that generates synthetic big data datasets preserving the
4V Big Data properties. BDGS covers three representative data types (structured, semi-
structured and unstructured) and three data sources (text, graph, and table data). Although,
BDGS generates textual data, the workloads only employ simple computations such as sort,
grep and word count. There are other benchmarks that focus on the same workloads [20].
The evaluation of complex computation, such as term weighting schemes, are not taken into
account by any of these benchmarks.

FakeNewsNet [37] is a text repository of news content, social context and dynamic
information for benchmarking fake news detection, diffusion, and mitigation. The features
it presents are linguistic, user profile data, and social network context. The benchmark
does not propose any data sampling methods or weighting scheme computation of terms
or documents. Furthermore, aggregation methods can be used to combine different features
representations into a weighted form and optimize the feature weights by using weighting
schemes in the case of textual data [38].

Thus, the existing text analysis benchmarks do not evaluate weighting schemes
construction efficiency. This is why we introduced T2K2 [46], a top-k keywords and
documents benchmark, and its decision support-oriented evolution T2K2D2 [47]. Both
benchmarks feature a real tweet dataset use case and queries with various complexities and
selectivities. They help evaluate weighting schemes and database implementations in terms
of computing performance. Yet, these solutions are not tailored for distributed computing.

As a conclusion to this section, our benchmark (TextBenDS) addresses the following
shortcomings that exist in the current literature:

i) proposes a number of aggregation queries to compute term weighting schemes and
document ranking functions;

TextBenDS: a generic Textual data Benchmark for Distributed Systems 5

ii) tests the computation efficiency of term weighting schemes;
iii) offers adequate data sampling methods for analysis;
iv) works with structured, semi-structured, and unstructured data in the form of textual data;
v) enables analysis based on gender, location, and time to extract general linguistic and

social context features.

3 TextBenDS Specifications

In this section, we describe TextBenDS’s data, workload models and performance metrics;
and expand the work done in the original paper [47]. This new design creates a generic
benchmark that handles not only Twitter datasets, but any kind of textual corpus.

3.1 Generic Data Model

For TextBenDS, we remodeled the T2K2D2 multidimensional schema to incorporate new
information about the textual documents, thus changing the logical model from a star
schema to a snowflake schema. We kept the central fact tables that stores information about
the documents, but added new entities to store the tags and named entities.

TextBenDS’s multidimensional snowflake schema is presented in Figure 1. The models’
entities are briefly presented below.

– DocumentFacts is the central fact entity and contains the number of co-occurrence ft,d
and term frequency T F(t, d) for a lemma in a document. The information stored in
this table is used for computing the weighting schemes and the ranking functions for
extracting the top-k keywords and documents.

– DocumentDimension is the document dimension table, containing each document’s
unique identifier and the original and processed text, i.e., original text (RawText), clean
text (CleanText) and lemma text(LemmaText). After the top-k documents search process
is finished, the information in this entity is used to better visualize the results.

– WordDimension stores the word’s lemma and its unique identifier. The information
stored in this entity is a central part of the two tasks at hand. It is used to correlate the top
ranking terms with the weighting for the the task of top-k keywords. When searching for
documents that match specific search queries, a filtering process is applied on the word
attribute to select only the documents that contain the search terms before computing
the scores for the ranking functions.

– TimeDimension stores the full date and also its hierarchy composed of minute, hour,
day, month and year. By filtering this dimension, analysts can apply the roll-up and
drill-down operations to better understand the textual data from a time perspective and
create different text cubes. Likewise, time series analysis can be applied here, in order
to better [understand|interpret] the information.

– AuthorDimension stores information about an author’s unique identifier, gender, age,
firstname, and lastname. By adding constraints on this dimension, analysts can select
targeted genders and age ranges for the data mining process.

– LocationDimension stores the geo-location coordinates for each document. This
information is used in filtering to extract only areas of interest for the analysis process.

– NamedEntityDimension stores named entities that extracted after corpus preprocessing.
These entities consist of real-world actors, such as persons, locations, organizations,

6 Ciprian-Octavian Truică et al.

products, etc. By adding filtering constraints on this entity, the analysis process can
target named entities of interest, thus improving the decision making process offered by
business intelligence techniques.

– TagDimension stores the labels for documents, i.e. tags. These tags can be original
documents’ labels or metadata extracted through preprocessing, such as social media
tags. Social media tags include hashtags and mentioning tags, which consists of citing
other users’ screen names in tweets (using the syntax @username). Hashtags can be
used in filtering the dataset based on user interests, while mentioning tags are useful in
data mining and graph mining for detecting leaders and followers and to construct the
interactive graphs.

For each dimension, we chose members that best represent a generic model of textual
data. However, the model can be adapted to specific datasets, maybe containing other kinds
of textual information.

Fig. 1: TextBenDS conceptual data model

3.2 Workload Model

The workload model for top-k keywords follows three major analysis directions by
subsampling the corpus using filters on gender, time, and location. Also, we further the
analysis by extracting top-k documents and subsampling the dataset by adding filters on the
WordDimesion entity. The workload model uses OLAP queries to extract information from
the multidimensional data model.

We use gender-based filters to extract two sets of features. The first set consist of
general linguistic-based features. Using these features, analysts can detect different patterns
in writing styles and construct gender-based vocabularies. The second set contains social
context features and it’s specific to social media datasets. The analysis process based on
these features extracts information about gender-based events and objects of interest, as

TextBenDS: a generic Textual data Benchmark for Distributed Systems 7

well as psychological profiles and social engagements between authors of the same or of
different genders.

We use time-based filters to detect changes that appear over time in the vocabulary, thus
extracting topics and events. The analysis of groups behaviour and the changes it suffers over
time can further improve if these filters are associated with the gender-based and location-
based filters. Furthermore, when using OLAP operations such as roll-up and drill-down, we
can better understand the social context and linguistic based features.

Location-based filters can be used to extract different writing styles and the use of
specific vocabularies that may contain regionalisms, archaisms, or idioms. In some cases,
these filters ca track events specific to geographic locations, or regional social behaviors
such as traditions, fairs, or festivals.

Keyword search filters extract the top-k documents that are similar to the terms in the
search query. These filters target specific subjects of interest for the analysis process. These
filters, correlated with the other types of filters, can create a better view for understanding
the user opinions regarding products or events, by applying OLAP operations on different
dimensions.

The filter categories we discussed above are represented in our model by four constrains,
c1 to c4. These constrains are adapted to the models entities and attributes names and are as
follows.

– c1 is AutorDimension.Gender = pGender with pGender the gender of the author.
– c2 is TimeDimension.Date ∈ [pStartDate, pEndDate], where pStartDate < pEndDate

two given dates.
– c3 is LocationDimension.X ∈ [pStartX, pEndX] and LocationDimension.Y ∈ [pStartY,

pEndY], where pStartX < pEndX and pStartY < pEndY are the geo-location coordinates.
– c4 is WordDimension.Word = pTerms where pTerms ∈ {t | t ∈ vocabulary } with

vocabulary the set of words contained in the corpus.

There are many constrains combinations for the filter categories discussed above. But,
we consider that the most representative constrains for detecting the vocabulary, user
behavior, social context, events and opinions are the following: i) for top-k keywords - c1,
c1∧c2, c1∧c3, and c1∧c2∧c3, and ii) for top-k documents - c1∧c4, c1∧c2∧c4, c1∧c3∧c4,
and c1 ∧ c2 ∧ c3 ∧ c4.

Eventually, let us emphasize that, in our workload model, filter values are given at
execution time and the scores for extracting the top-k keywords and documents are computed
in near-real-time. Our model can handle dataset modifications since weights are computed
dynamically, therefore removing possible computation errors. This is an improvement over
current information retrieval systems that compute weights only once, when the information
is loaded in the database, thus incorporating errors if the ranking the data is modified
throught inserts, updates or deletes.

4 TextBenDS Distributed Implementation

In this section, we describe the weighting schemes employed by TextBenDS, as well as
the physical multidimensional implementation for Hive and Spark and its translation to the
JSON format for MongoDB. Moreover, we present TextBenDS queries and discuss their
implementation using HiveQL, Spark SQL and Dataframes and the JavaScript MapReduce
implementation for MongoDB.

8 Ciprian-Octavian Truică et al.

4.1 Weighting Schemes

A weighting scheme is used in Information Retrieval and Text mining as a statistical measure
to evaluate how important a term is to a document in a collection or corpus. The importance
increases proportionally to the number of times a term appears in the document but is offset
by the frequency of the term in the corpus.

We employ two weighting scheme techniques. The first is the term frequency-inverse
document frequency (TF-IDF) weighting scheme. It is often used as a central tool for scoring
and ranking terms in a document.

Given a corpus of documents D = {d1, d2, ..., dN}, where N = |D| is the total number
of documents in the dataset and n the number of documents where some term t appears.
The TF-IDF weight is computed by multiplying the augmented term frequency T F(t, d) =

K + (1 − K) · ft,d
maxt′∈d(ft′ ,d)) by the inverse document frequency IDF(t,D) = 1 + log N

n , i.e.,
T FIDF(t, d,D) = T F(t, d) · IDF(t,D). The augmented form of T F prevents a bias towards
long documents when the free parameter K is set to 0.5 [30]. It uses the number of co-
occurrences ft,d of a word in a document, normalized with the frequency of the most frequent
term t′, i.e., maxt′∈d(ft′ ,d).

The second technique is Okapi BM25, a probabilistic weighting scheme for scoring
and ranking documents. It is often used in Information Retrieval and Text mining because it
incorporates the document length and the average document length in the corpus to eliminate
bias towards long documents.

The Okapi BM25 weight is given in Equation (1), where ||d|| is d’s length (i.e., the
number of terms appearing in d), and avgd′∈D(||d′||) is the average document length used to
remove bias towards long documents. The values of free parameters k1 and b are usually
chosen, in absence of advanced optimization, as k1 ∈ [1.2, 2.0] and b = 0.75 [27,40,41].

BM25(t, d,D) =
T FIDF(t, d,D) · (k1 + 1)

T F(t, d) + k1 · (1 − b + b · ||d||
avgd′∈D(||d′ ||))

(1)

To extract top-k keywords, the overall relevance of a term t for a given corpus D is
computed as the sum of all the TF-IDF (Equation (2)) or Okapi BM25 (Equation (3)) weights
for that term.

S T K_T FIDF(t,D) =
∑
di∈D

T FIDF(t, di,D) (2)

S T K_BM25(t,D) =
∑
di∈D

BM25(t, di,D) (3)

TF-IDF and Okapi BM25 can be adapted to rank a set of documents based on the search
query’s terms appearing in each document. Given a search query Q = {q1, q2, ..., qm}, where
m = |Q| is the number of terms contained in the query, a document d is scored by either
summing all the TF-DIF (Equation (4)) or the Okapi BM25 (Equation (5)) scores for the
query terms in the document.

S T D_T FIDF(Q, d,D) =
∑
qi∈Q

T FIDF(qi, d,D) (4)

S T D_BM25(Q, d,D) =
∑
qi∈Q

BM25(qi, d,D) (5)

TextBenDS: a generic Textual data Benchmark for Distributed Systems 9

4.2 Database Implementation

The conceptual multidimensional snowflake schema described in Section 3 can be directly
translated into the database schema presented in Figure 2. This database schema is used in
both Spark framework and Hive data warehouse.

Fig. 2: TextBenDS logical snowflake schema

However, for MongoDB, we need to adjust it to a JSON representation. Thus, when
translating the multidimensional snowflake schema into the MongoDB collection, each
dimension becomes a nested document inside the same record. Figure 3 presents a document
representation.

4.3 Query Description

To highlight the performance of the tested distributed data processing and analysis solutions,
it is necessary to define a set of complex queries that use aggregation operations and
efficiency of computing term weighting schemes. For TextBenDS, we defined two sets
of queries. The first set looks for the top-k keywords using the two weighting schemes
presented in Equations 2 and 3, while the second set of queries computes a document ranking
scores and extract the top-k documents that are most similar to a search query using the
functions based on TF-IDF and Okapi BM25 presented in Equations 4 and 5.

4.3.1 Top-k Keywords Queries Set

In the following paragraphs, we describe the queries from the first set that we used in
TextBenDS.

Query Q1 (Equation 6) computes the top-k keywords for a given gender that is filtered
using the constraint c1. This query traverses the DocumentFacts, DocumentDimension,
WordDimension, and AuthorDimension entities and uses two JOIN constraints between
them: i) c5 is the JOIN constraint between the DocumentFacts and the WordDimension

10 Ciprian-Octavian Truică et al.

Fig. 3: MongoDB document

entities and ii) c6 is the JOIN constraint between the DocumentFacts and the
AuthorDimension entities. To limit the query to extract only the top-k results we use the
constraint ctk. This query is the basis for all the other top-k keywords queries.

Q1 = σctk (γL(πWordDimension.Word, fw (σc1 (DocumentFacts ./c5

WordDimension ./c6 AuthorDimension)))) (6)

Query Q2 (Equation 7) is a direct modification of Q1 that filters the results by gender for
a given time window. Besides the DocumentFacts, DocumentDimension, WordDimension,
and AuthorDimension entities, Q2 also traverses the TimeDimension by adding the JOIN
constraint c7 between DocumentFacts and TimeDimension entities. The filtering constraint
on the TimeDimension is c2.

Q2 = σctk (γL(πWordDimension.Word, fw (σc1∧c2 (DocumentFacts ./c5

WordDimension ./c6 AuthorDimension ./c7 TimeDimension)))) (7)

Query Q3 (Equation 8) is also a direct modification of Q1, but this time the results
are filtered by gender for a given geographic area. Q2 traverses the LocationDimension by
adding the JOIN constraint c8 between DocumentFacts and LocationDimension entities.

TextBenDS: a generic Textual data Benchmark for Distributed Systems 11

The other three entities from Q1 with their respective JOIN constraint remain the same. For
filtering the results for a given geographic area, the query uses the constraint c3.

Q3 = σctk (γL(πWordDimension.Word, fw (σc1∧c3 (DocumentFacts ./c5

WordDimension ./c6 AuthorDimension ./c8 LocationDimension)))) (8)

Finally, Q4 (Equation 9) is used to determine the top-k keywords for authors who
have a given gender for a time window and a geographic area. This query traverses the
DocumentFacts, DocumentDimension, WordDimension, AuthorDimension, TimeDimension,
and LocationDimension entities. The constrains c5 to c8 are uses to JOIN the DocumentFacts
with each dimension entity. Constraints c1 to c3 are employed to filter the results for a given
gender, a time window given by two dates, and a geographic area given by the geo-location
coordinates.

Q4 = σctk (γL(πWordDimension.Word, fw (σc1∧c2∧c3 (DocumentFacts ./c5

WordDimension ./c6 AuthorDimension ./c7 TimeDimension ./c8

LocationDimension)))) (9)

In all four queries, fw is used to compute the weighting scheme using nested aggregation
queries. To compute TF-IDF, we need to determine: i) the term frequency, ii) N the total
number of documents in the corpus, and iii) n the number of documents where a term
appears. The term-frequency is already known, as it is present in the DocumentFacts and
can be extracted as follows T F(t, d) = DocumentFacts.T F. A nested query with the count
aggregation function is used to compute N. This query takes into account the filters present
in each of the four queries. To compute n, we just count how many times each a word appears
given the constraints of each query Q1 to Q4.

For Okapi BM25, besides what we compute for the TF-IDF weighting, i.e. n, N, and
T F(t, d), we also need the length of each document DL. To calculate the DL, a nested query
is used to filter the data using the constrains of each query Q1 to Q4. Then we use the
aggregation function sum with the GROUP BY clause on the document’s unique identifier.
This function computes the document length by adding the number of appearances of each
word in the document.

To determine the weights of each word, regardless of the weighting scheme, we use
the aggregation operator γL, where L = (F,G). The list of aggregation functions is given
by L, while the set of attributes in the GROUP BY clause is given by G. The list of
aggregation functions is F = {sum(fw)}, where the sum is the aggregation function that
computes S T K_T FIDF(t,D) (Equation (2)). The set of attributes in the GROUP BY clause
is G = {WordDimension.Word}.

4.3.2 Top-k Documents Queries Set

In top-k documents queries (in addition to top-k keywords queries), we add constraint c4 to
select the documents that contain the search terms in list Q.

Top-k documents query Q′1 (Equation 10) uses the same filters as top-k keywords Q1.
In addition, we add another filter to retrieve only the documents matching a given search
query Q. The search query filtering constraint is c4. Thus, query Q′1 determines the top-k
documents for authors who have a given gender for a search query Q.

12 Ciprian-Octavian Truică et al.

Q′1 = σctk (γL(πDocumentFacts.ID_Document, fw (σc1∧c4 (DocumentFacts ./c5

WordDimension ./c6 AuthorDimension)))) (10)

Query Q′2 (Equation 11) determines the top-k documents for a search query after filtering
the records using constraints on the gender and a time window.

Q′2 = σctk (γL(πDocumentFacts.ID_Document, fw (σc1∧c2∧c4 (DocumentFacts ./c5

WordDimension ./c6 AuthorDimension ./c7 TimeDimension)))) (11)

Query Q′3 (Equation 11) filters the results by the authors’ gender and the geographic
area, after using the terms in the search query to extract the relevant top-k documents.

Q′3 = σctk (γL(πDocumentFacts.ID_Document, fw (σc1∧c3∧c4 (DocumentFacts ./c5

WordDimension ./c6 AuthorDimension ./c8 LocationDimension)))) (12)

Finally, as in the case of the last top-k keywords query, query Q4 (Equation 13) filters
the results by the author’s gender, a time window, and a geographic area and then extracts
the top-k documents relevant to the search query.

Q′4 = σctk (γL(πDocumentFacts.ID_Document, fw (σc1∧c2∧c3∧c4 (DocumentFacts ./c5

WordDimension ./c6 AuthorDimension ./c7 TimeDimension ./c8

LocationDimension)))) (13)

The fw function is computed exactly as in the case of the top-k keywords queries,
i.e. using nested aggregation queries. But, the aggregation operator γL is different from
the one in the top-k keywords, i.e., the grouping is done using the document unique
identifier (G = {DocumentFacts.ID_Document}) and the list of aggregation function
F = {sum(fw)}. To compute the hierarchy of documents with TF-IDF, we use the following
formula sum(fw) = S T D_T FIDF(Q, d,D) (Equation (4)), while for Okapi BM25 sum(fw) =

S T D_BM25(Q, d,D) (Equation (5)). Q represents the list of search terms, in both functions
described above.

For Hive, we have implemented the queries using HiveQL (Hive Query Language) a
SQL-live query language that uses implicitly MapReduce or Tez [35]. For Spark, the queries
were implemented using Spark SQL together with Spark Dataframes [2]. For MongoDB,
we implemented the queries using the native JavaScript language API using the MapReduce
(MR) framework for all the queries. In the case of the top-k keywords queries that use the
TF-IDF weighting scheme, we take advantage of the native database aggregation framework,
i.e., the aggregation pipeline (AP).

TextBenDS: a generic Textual data Benchmark for Distributed Systems 13

5 Experiments

In this section, we first present TextBenDS’s performance metrics and execution protocol.
Second, we present the hardware architecture and the software configuration used for our
benchmarking experiment. Third, we discuss the dataset, as well as the query complexity
and selectivity. Forth, we present a comparison by data management distributed system and
weighting scheme. Finally, we compare the runtime of these data management distributed
system implementations w.r.t. the scale factor (S F) and weighting schemes.

5.1 Performance Metrics and Execution Protocol

For TextBenDS, we use as metric only the query response time. We note the response time
for each query as t(Qi) and t(Q′i) ∀i ∈ [1, 4]. All queries Q1 to Q4 and Q′1 to Q′4 are executed
10 times for both top-k keywords and top-k documents, which is sufficient according to
the central limit theorem. Average response times and standard deviations are computed
for t(Qi) and t(Q′i). All executions are warm runs, i.e., either caching mechanisms must be
deactivated, or a cold run of Q1 to Q4 and Q′1 to Q′4 must be executed once (but not taken into
account in the benchmark’s results) to fill in the cache. Queries must be written in the native
scripting language of the target database system and executed directly inside said system
using the command line interpreter.

5.2 Experimental conditions

All tests run on a cluster with 6 nodes running Ubuntu 16.04 x64, each with 1 Intel Core
i7-4790S CPU with 8 cores at 3.20GHz, 16 GB RAM and 500GB HDD. The Hadoop
ecosystem is running on Ambari and has the following configuration for the 6 nodes: 1 node
acts as HDFS Name Node and Secondary Name Node, YARN Resource Manager, YARN
Application Manager, the Hive Services and the Spark Driver and 5 nodes, each acting as
HDFS Data Nodes and YARN Node Managers. YARN, Hive, Spark, Tez, and MapReduce
Clients are installed on all the nodes.

The HDFS [39] Name Node is a master node that stores the directory tree of the file
system, file metadata, and the locations of each file in the cluster. The Secondary Name
Node is a master node that performs housekeeping tasks and checkpointing on behalf of the
Name Node. The HDFS Data Node is a worker node that stores and manages HDFS blocks
on the local disk.

The YARN Resource Manager [48] is a master node that allocates and monitors
available cluster resources (e.g., physical assets like memory and processor cores) to
applications as well as handling scheduling of jobs on the cluster. The YARN Resource
Manager is a master node that coordinates a particular application being run on the cluster
as scheduled by the Resource Manager. The YARN Node Manager is a worker node that
runs and manages processing tasks on an individual node as well as reports the health and
status of tasks as they are running.

The Hive Services deal with the client interactions with Hive. The main component of
Hive Sevices is the Hive Driver which processes all the requests from different applications
to the Hive Metastore and The Hive File System for further processing. The Hive Metastore
is the central repository of Apache Hive metadata. The Hive File System communicates with
the Hive Storage which usually is built on top of HDFS.

14 Ciprian-Octavian Truică et al.

The Hive Clients provide different drivers for communication with different types of
applications. We use Tez as the Hive query execution engine. Tez [35] is an extensible
framework for building high performance batch and interactive data processing applications
coordinated by YARN that improves the MapReduce [10] paradigm by dramatically
enhancing its speed, while maintaining MapReduce’s ability to scale to petabytes of data.

The Spark Driver is the master node for the application and uses the Task Scheduler to
launches task via cluster manager, i.e. YARN, and Directed Acyclic Graph (DAG) Scheduler
used to divide operators into stages of tasks. The Spark Clients are the worker nodes.

For the MongoDB tests, we used the same cluster infrastructure with the following
specifications: 1 node with the MongoDB Configuration Server and MongoDB Shard Server
(mongos) and 5 nodes with MongoDB shards. The MongoDB Configuration Server stores
the metadata for a sharded cluster. This metadata reflects state and organization for all data
and components within the sharded cluster. The MongoDB Shard Server is a routing service
for the MongoDB shard configurations. It processes queries from the application layer,
and determines the location of this data in the sharded cluster, in order to complete these
operations.

The number of Spark executors was fixed to 16 with one vnode and 3GB memory each
for the Spark experiments. Moreover, we use the Spark SQL and Dataframes libraries for the
Spark experiments together with the Scala programming language. The Hive Server Heap
Size and the Hive Metastore Heap Size are both set to 2GB each, while the Hive Client Heap
Size is set to 1G. Each reducer can process 1GB of data at a time. The dataset is stored on
HDFS for both Hive and Spark experiments under the ORC format.

The code of all Hive queries and Scala code for the Spark experiments, together with
benchmarking results, are available on Github1

The query parameterization is provided in Table 1.

Table 1: Query parameter values

Parameter Value
pGender {male, f emale}
pStartDate 2015-09-17 00:00:00
peEndDate 2015-09-18 00:00:00
pStartX 20
pEndX 40
pStartY -100
pEndY 100
pWords {think, today, f riday}

5.3 Dataset

The experiments are done on a 2 500 000 tweets corpus. The initial corpus is split into
5 different datasets equally balanced between the number of tweets for gender, location,
and date. These datasets contain 500 000, 1 000 000, 1 500 000, 2 000 000, and 2 500 000
tweets, respectively. They allow scaling experiments and are associated to a scale factor
(S F) parameter, where S F ∈ {0.5, 1, 1.5, 2, 2.5}.

1 Source code https://github.com/cipriantruica/T2K2D2_Hadoop

https://github.com/cipriantruica/T2K2D2_Hadoop

TextBenDS: a generic Textual data Benchmark for Distributed Systems 15

5.3.1 Query selectivity

Selectivity, i.e., the amount of retrieved data (n(Q)) w.r.t. the total amount of data available
(N), depends on the number of attributes in the WHERE and GROUP BY clauses. The
selectivity formula used for a query Q is S (Q) = 1 − n(Q)

N .
TextBenDS’s queries traverse the DocumentFacts, WordDimnesion, and

AuthorDimension relationships.
All queries filter by gender, to determine the trending words for female (F) and male

(M) users. Starting from Q1, subsequent queries Q2 to Q4 are built by decreasing selectivity
(Table 2). Moreover, by adding a constraint on the location in Q3 and Q4, the query
complexity also changes.

Table 2: Top-k keywords query selectivity

SF Q1 (M) Q1 (F) Q2 (M) Q2 (F) Q3 (M) Q3 (F) Q4 (M) Q4 (F)
0.5 0.336 0.337 0.517 0.517 0.556 0.558 0.677 0.679
1 0.342 0.342 0.662 0.662 0.562 0.565 0.774 0.775

1.5 0.347 0.346 0.736 0.736 0.569 0.572 0.823 0.824
2 0.351 0.350 0.783 0.783 0.574 0.575 0.855 0.856

2.5 0.353 0.354 0.815 0.815 0.579 0.580 0.876 0.877

Table 3 presents the selectivity for the top-k documents. Compared to top-k keywords,
the selectivity for queries Q′1 to Q′4 decreases even more by adding a condition on the words
attribute for all the queries.

Table 3: Top-k documents selectivity for 3 search terms

SF Q′1 (M) Q′1 (F) Q′2 (M) Q′2 (F) Q′3 (M) Q′3 (F) Q′4 (M) Q′4 (F)
0.5 0.9844 0.9848 0.9904 0.9905 0.9921 0.9926 0.9951 0.9954
1 0.9866 0.9868 0.9952 0.9953 0.9932 0.9936 0.9975 0.9977

1.5 0.9835 0.9837 0.9968 0.9968 0.9917 0.9920 0.9984 0.9985
2 0.9822 0.9824 0.9976 0.9976 0.9910 0.9913 0.9988 0.9988

2.5 0.9825 0.9827 0.9981 0.9981 0.9912 0.9915 0.9990 0.9991

5.3.2 Query complexity

Complexity relates to the number of traversals involved in the query. Query complexity
depends on the number of relationship and entity traversals. Independently from any
weighting scheme, all the queries traverse the DocumentFacts, DocumentDimension,
WordDimension, AuthorDimension in order to determine the top-k keywords and documents.
Regardless of the query, we will call these traversals the "main part" of the query QM .

To compute the top-k keywords using TF-IDF, we need a new query, QnD, that
determines the number of documents. This query is used in the projection section of each
query. The base of QnD traverses DocumentFacts and AuthorDimension and is used in the
projection section of QM . To compute the top-k keywords using Okapi BM25, another
query is added, QDL, which determines the document length. This query traverses the

16 Ciprian-Octavian Truică et al.

Table 4: Top-k keywords dimension traversals

Query Weighting
Scheme

Nested
Queries

Traversed Relationships
TimeDimension LocationDimension

Q1

Both QM × ×

TF-IDF QnD × ×

Okapi BM25 QDL × ×

Q2

Both QM X ×

TF-IDF QnD X ×

Okapi BM25 QDL X ×

Q3

Both QM × X
TF-IDF QnD × X
Okapi BM25 QDL × X

Q4

Both QM X X
TF-IDF QnD X X
Okapi BM25 QDL X X

DocumentFacts and AuthorDimension and it needs to be traversed in QM . Table 4 presents
the dimensions traversed and the nested queries required to compute the top-k keywords.

Table 5 present the queries complexity for the top-k keywords. The complexity of each
query adds to that of Q1 the number of traversals presented in Table 4. As expected, Q4 has
the highest complexity. As QDL is also traversed in QM when using Okapi BM25, there is a
difference of 1 between the two weighting schemes.

Table 5: Query complexity for top-k keywords

Q1 Q2 Q3 Q4
TF-IDF 3 5 5 7
Okapi BM25 4 6 6 8

To compute the top-k documents, in addition to the top-k keywords queries, QnD for
TF-IDF and QDL for Okapi BM25, we use the QnW query that computes the number of
words for each document. This query is needed for both weighting schemes and traverses the
DocumentFacts and AuthorDimension. The relationship obtained by QnW query is traversed
in the main part of each Q′M query. QnD query is used in the projection section of each
query in order to determine the top-k documents using TF-IDF, whereas if we want to
determine the top-k documents using Okapi BM25, QDL query needs to be traversed in
Q′M . Table 6 presents the dimensions traversed and the nested queries required to compute
the top-k documents.

When using TF-IDF with Q′1 query, only the results obtained by QnW need to also be
traversed in Q′M . QDL, beside computing the length of each document, is also used to count
the number of documents in the projection section of Q′M .

For the Okapi BM25, both QnW and QDL are traversed in Q′M , thus increasing the
complexity by 1. For Q′2 and Q′3 the TimeDimension and LocationDimension relationships
need to be traversed in Q′M , QnW , and QDL, thus increasing the complexity of Q′1 by 3. For
Q′4 both the TimeDimension and LocationDimension relationships need to be traversed in
QM , QnW , and QDL, thus increasing the complexity of Q′1 by 6.

The queries complexity for top-k documents is presented in Table 7.

TextBenDS: a generic Textual data Benchmark for Distributed Systems 17

Table 6: Top-k documents dimension traversals

Query Weighting
Scheme

Nested
Queries

Traversed Relationships
TimeDimension LocationDimension

Q′1

Both Q′M × ×

Both QnW × ×

TF-IDF QnD × ×

Okapi BM25 QDL × ×

Q′2

Both Q′M X ×

Both QnW X ×

TF-IDF QnD X ×

Okapi BM25 QDL X ×

Q′3

Both Q′M × X
Both QnW × X
TF-IDF QnD × X
Okapi BM25 QDL × X

Q′4

Both Q′M X X
Both QnW X X
TF-IDF QnD X X
Okapi BM25 QDL X X

Table 7: Query complexity for top-k documents

Q′1 Q′2 Q′3 Q′4
TF-IDF 5 8 8 11
Okapi BM25 6 9 9 12

5.4 Weighting Scheme Comparison

Figure 4 presents a performance comparison depending on the deployed distributed data
management system and weighting scheme for retrieving top-k keywords w.r.t. scale factor
S F. Whereas Figure 5 presents a similar performance comparison for top-k documents.
These comparisons use only MongoDB’s MR query implementation for both top-k
keywords and documents, as there is no AP implementation that uses Okapi BM25.

In the following paragraphs we analyze the results for each of the proposed distributed
platforms.

5.4.1 Hive

For Hive, computing the top-k keywords with TF-IDF is faster than computing them with
Okapi BM25 (Figure 4a) with a factor between 1.2x and 1.4x. This is applicable for all
queries, regardless of S F. The difference in performance between the weighting schemes
are almost the same for each query w.r.t. S F. The biggest difference in runtime between TF-
IDF and Okapi BM25 is for query Q1, while the smallest is obtained for query Q4 because of
its higher selectivity. The difference in performance between the two weighting schemes is
directly impacted by the query selectivity, complexity and the S F. Moreover, this difference
is also impacted by the computational complexity of the weighting schemes.

For calculating the top-k documents, TF-IDF runtime is smaller than Okapi BM25
(Figure 5a). As in the case of top-k keywords, the gap between the two weighting schemes
increases with S F, which directly impacts each query’s selectivity. The biggest gap in
runtime between TF-IDF and Okapi BM25 can be observed in the case of Q′1 and Q′3
queries, while the smallest is obtained for Q′2 and Q′4 queries. In conclusion, the performance

18 Ciprian-Octavian Truică et al.

0

20

40

60

SF 0.5 1 1.5 2 2.5

T
im

e
(s

)
TF-IDF (Q1 - M) TF-IDF (Q1 - F) Okapi BM25 (Q1 - M) Okapi BM25 (Q1 - F)
TF-IDF (Q2 - M) TF-IDF (Q2 - F) Okapi BM25 (Q2 - M) Okapi BM25 (Q2 - F)
TF-IDF (Q3 - M) TF-IDF (Q3 - F) Okapi BM25 (Q3 - M) Okapi BM25 (Q3 - F)
TF-IDF (Q4 - M) TF-IDF (Q4 - F) Okapi BM25 (Q4 - M) Okapi BM25 (Q4 - F)

(a) Hive top-k keywords: TF-IDF vs. Okapi BM25

0

10

20

30

SF 0.5 1 1.5 2 2.5

T
im

e
(s

)

(b) Spark top-k keywords: TF-IDF vs. Okapi BM25

0

20

40

60

SF 0.5 1 1.5 2 2.5

T
im

e
(s

)

(c) MongoDB MR top-k keywords: TF-IDF vs. Okapi BM25

Fig. 4: Top-k keywords: TF-IDF vs. Okapi BM25 comparison

differences between the two weighting schemes are directly impacted by the weight
computational complexity, the number of dimensions traversed by each query, and the S F.

5.4.2 Spark

For the Spark environment, computing top-k keywords with TF-IDF in comparison with
Okapi BM25 is faster (Figure 4b), although the differences in runtime performance are even
lower than the Hive setup. The performance is directly influenced by the framework and by
how fast the resources are allocated to the worker nodes by the YARN resource manager.
Thus, resource allocation latency also increases the standard deviation measured for each
experiment.

The same pattern is obtained when calculating the top-k documents. It must be
mentioned that in this case, using TF-IDF is faster than using Okapi BM25 with a
factor of approximately 1.1x (Figure 5b). Likewise, all queries have almost the same
runtime differences, regardless of S F, complexity and selectivity. This is a direct impact
of the application containers created by YARN, as they are created at the beginning of
the application execution and the resources are fully allocated before running any job.
Furthermore, Spark optimizes the computation through the Directed Acyclic Graph (DAG)
execution engine that uses lazy evaluation for each tasks.

TextBenDS: a generic Textual data Benchmark for Distributed Systems 19

0

10

20

30

40

SF 0.5 1 1.5 2 2.5

T
im

e
(s

)
TF-IDF (Q′

1 - male) TF-IDF (Q′
1 - female) Okapi BM25 (Q′

1 - male) Okapi BM25 (Q′
1 - female)

TF-IDF (Q′
2 - male) TF-IDF (Q′

2 - female) Okapi BM25 (Q′
2 - male) Okapi BM25 (Q′

2 - female)
TF-IDF (Q′

3 - male) TF-IDF (Q′
3 - female) Okapi BM25 (Q′

3 - male) Okapi BM25 (Q′
3 - female)

TF-IDF (Q′
4 - male) TF-IDF (Q′

4 - female) Okapi BM25 (Q′
4 - male) Okapi BM25 (Q′

4 - female)

(a) Hive top-k documents: TF-IDF vs. Okapi BM25

0

5

10

15

20

SF 0.5 1 1.5 2 2.5

T
im

e
(s

)

(b) Spark top-k documents: TF-IDF vs. Okapi BM25

0

2

4

6

8

10

SF 0.5 1 1.5 2 2.5

T
im

e
(s

)

(c) MongoDB MR top-k documents: TF-IDF vs. Okapi BM25

Fig. 5: Top-k documents: TF-IDF vs. Okapi BM25 comparison

5.4.3 MongoDB

The last proposed scenario uses MongoDB and MapReduce as distributed platform.

When computing the top-k keywords, the runtime increases with a factor between 2x
and 3x for Okapi BM25 as opposed to TF-IDF. The largest performance gap is obtained
for Q1 and Q3 queries, while the smallest is obtained for Q2 and Q4 queries. These
performance outcomes are directly influenced by the intermediate "Sort and Shuffle" phase
of the MapReduce algorithm. In this step all the results from all the Map functions are
sorted and concatenated by key and sent to the Reducer functions to be aggregated. During
this step, the shuffler component redistribute data based on the output keys which introduces
additional computations, thus increasing the runtime.

When computing top-k documents with MongoDB, the runtime gap between the two
schemes is greatly reduced. Although, the difference in execution times is small for the same
S F when computing top-k documents with TF-IDF than Okapi BM25. These results are
directly influenced by i) the queries’ selectivity, i.e. the number of results returned by the to-
k documents queries is small compared to top-k keywords, and ii) MongoDB’s schemaless
and flexible data model, i.e., JOIN operations and labels with no information are eliminates
using this model.

20 Ciprian-Octavian Truică et al.

5.5 Database Implementation Comparison

The following set of experiments analysis the time performance of the different database
implementations w.r.t. S F and weighting schemes for the top-k keywords and documents
queries.

5.5.1 Top-k keywords using TF-IDF

Figure 6 presents the results’ comparison for each query when computing the top-k
keywords with TF-IDF.

Hive has the overall worst runtime for all queries. In comparison, Spark has a constant
execution time regardless of S F. Whereas, with the increases of S F, the runtime gap
decreases between Spark and Hive by a factor between 2x and 1.8x for all queries. This
runtime gap can be explained by the fact that Hive uses Tez as query execution engine while
Spark uses direct in-memory data processing. Tez is built on Hadoop MapReduce and relies
extensively on HDFS, thus with the number of I/O operations the execution time increases.
Spark’s runtime performance is directly influenced by the chosen planning policy of the
YARN resource manager, and implicitly by how the resources are allocated for each task.

The MongoDB distributed setup has the overall best runtime when using the TF-
IDF weighting scheme for top-k keywords. For data aggregation, MongoDB provides a
native aggregation framework, i.e, Aggregation Pipeline (AP), or the general framework
MapReduce (MP). MP functionality offers more flexibility than the AP framework, but AP
is optimized to work with data processing pipelines to increase query runtime performance.
Thus, the best performance is obtained when using the MongoDB with AP. Whereas, when
using MongoDB with MR, the time performance decreases by a factor of 2 for Q2 and Q4

queries (Figures 6b and 6d) and by a factor of 3 for Q1 and Q3 queries (Figures 6a and 6c).
Although MongoDB MR has a better execution time than Spark’s, the gap disappears

for query Q1 and a larger S F (Figure 6a). This trend may be a consequence of the resource
allocation policies used by the two systems.

5.5.2 Top-k keywords using Okapi BM25

Figure 7 presents a comparison of the obtained results for each query when computing the
top-k keywords with Okapi BM25.

For the MongoDB setup we use only the MR framework, as the Okapi BM25
implementation for the AP framework is not possible due to the complexity of implementing
the nested queries used by the weighting function.

Hive has the worst performance for Q2, Q3 and Q4 queries. Likewise, the performance
slightly decreases for Q2 (Figure 7b) and Q4 (Figure 7d) queries, with the increase of S F.

For this set of experiments, Spark’s runtime remains again constant.
MongoDB obtains the overall best performance for Q2 (Figure 7b) and Q4 (Figure 7d)

queries. For these two queries, the execution time is decreased by a factor of 2x in
comparison with Spark and by a factor of 4x in comparison with Hive. Moreover, for these
two queries the runtime is almost constant when changing the S F factor. As for Q1 query,
the runtime worsens with the increase of S F (Figure 7a) to the point where it is lower
than the performance of Hive. Ultimately, for Q3 query with a small S F, MongoDB has
the best execution time, but with increasing the S F factor, the performance gets worse to
the point that is outperformed by the Spark runtime. These results are a direct influence by

TextBenDS: a generic Textual data Benchmark for Distributed Systems 21

0

10

20

30

40

SF 1 2 3 4 5

R
es

po
ns

e
ti

m
e

(s
)

(a) Q1 TF-IDF

0

10

20

30

40

SF 1 2 3 4 5

Re
sp
on

se
tim

e
(s)

(b) Q2 TF-IDF

0

10

20

30

40

SF 1 2 3 4 5

Re
sp
on

se
tim

e
(s)

(c) Q3 TF-IDF

0

10

20

30

40

SF 1 2 3 4 5

Re
sp
on

se
tim

e
(s)

(d) Q4 TF-IDF

Fig. 6: TF-IDF: Top-k keywords query comparison

the horizontal sharding policies used for distributing the data between the nodes. We used
as Sharding Key the unique record identifier, thus on some shards the distribution of data
for the constrains is higher that on other shards. This distribution directly influences the
workload on each node and ultimately the overall query performance.

5.5.3 Top-k documents using TF-IDF

The results obtained when computing the top-k documents with TF-IDF are presented in
Figure 8.

Hive has the overall worst runtime between the tested systems. The decrease of
performance while increasing the S F factor follows the same pattern for all queries.
Likewise, by increasing S F, the execution time decreases by a factor of 2x in comparison
with Spark.

Spark’s runtime is again almost constant for all queries.

In comparison with the other systems, MongoDB has the best overall runtime, as well
as maintaining a constant execution time. Moreover, with the increase of S F, the execution
time decreases by a factor of 4x in comparison with Spark and by a factor of 8x in
comparison with Hive. As in the previous set of tests (Subsection 5.5.2), this is a direct
impact of the sharding policies.

22 Ciprian-Octavian Truică et al.

0

20

40

60

SF 1 2 3 4 5

R
es

po
ns

e
ti

m
e

(s
)

(a) Q1 Okapi BM25

0

10

20

30

40

SF 1 2 3 4 5

Re
sp
on

se
tim

e
(s)

(b) Q2 Okapi BM25

0

20

40

60

SF 1 2 3 4 5

Re
sp
on

se
tim

e
(s)

(c) Q3 Okapi BM25

0

10

20

30

40

SF 1 2 3 4 5

Re
sp
on

se
tim

e
(s)

(d) Q4 Okapi BM25

Fig. 7: Okapi BM25: Top-k keywords query comparison

5.5.4 Top-k documents using Okapi BM25

The same runtime patterns emerge when computing the top-k documents with Okapi BM25
as in the case of using the TF-IDF weighting scheme. The results are presented in Figure 9.

Hive has again the overall worst performance. The execution time decreases by a factor
of 2x in comparison with Spark while increasing S F for all queries.

Likewise, we obtain the same pattern for Spark’s runtime. The overall execution time is
almost constant regardless of S F. This constant performance is due to the initialization step
of the Spark Context. Moreover, the resource allocation done by YARN also influence the
runtime performance.

The best overall performance is again achieved by MongoDB. Moreover, we observe
that with increasing S F, the execution time is almost constant for all queries. This constant
performance is influenced by the distribution of the data on shards and how the MapReduce
tasks handles them.

6 Conclusion

In this paper, we present our distributed benchmark solution for any type of textual data –
TextBenDS. Our benchmark tests the computation efficiency of term weighting schemes.
These weights are computed using data sampling methods and aggregation queries. Data
sampling enables analysis based on gender, location, and time to extract general linguistic
and social context features, while aggregation queries compute dynamically the weighting

TextBenDS: a generic Textual data Benchmark for Distributed Systems 23

0

10

20

30

40

SF 1 2 3 4 5

R
es

po
ns

e
ti

m
e

(s
)

(a) Q′1 TF-IDF

0

10

20

30

40

SF 1 2 3 4 5

Re
sp
on

se
tim

e
(s)

(b) Q′2 TF-IDF

0

10

20

30

40

SF 1 2 3 4 5

Re
sp
on

se
tim

e
(s)

(c) Q′3 TF-IDF

0

10

20

30

40

SF 1 2 3 4 5

Re
sp
on

se
tim

e
(s)

(d) Q′4 TF-IDF

Fig. 8: TF-IDF: Top-k documents query comparison

schemes and ranking functions. The experiments done on different distributed systems prove
that TextBenDS is adequate for structured, semi-structured, and unstructured textual data.
Furthermore, our solution proves its portability, scalability, and relevance by its design.

We proved that our solution is portable, as it works on multiple distributed systems. For
this purpose, we compare the performance of several such systems, e.g. Hive - a distributed
DBMS, Spark - a distributed framework using a relational approach, and MongoDB - a
document-oriented DBMS. TextBenDS tests employ two different weighting schemes (TF-
IDF and Okapi BM25) for processing top-k keywords and documents.

To demonstrate the scalability of our solution, we introduced S F, the scaling factor
that introduces an incremental growth in the data volume for our experiments. The queries
complexity together with S F produces a linear increase in runtime for Hive and MongoDB,
while Sparks displays a constant execution time.

Another important property of TextBenDS is its relevance in performance analysis and
text mining. This is proven by the fact that our solution analysis the runtime performance
for ranking keywords and documents, techniques widely used in various text analystics and
retrieval tasks.

As expected, computing the top-k keywords with TF-IDF is generally faster than with
Okapi BM25, regardless of the deployed distributed system. However, the difference in
performance between TF-IDF and Okapi BM25 diverge from one system to another. When
using Hive, this performance gap between the two weighting schemes is between 1.2x
and 1.4x. Instead, for Spark the gap is diminishing up to a factor of 1.1x or less. This
is largely due to how fast the resources are allocated to the worker nodes by the Spark’s
resource manager. However, the largest performance gap for computing the top-k keywords

24 Ciprian-Octavian Truică et al.

0

10

20

30

40

SF 1 2 3 4 5

R
es

po
ns

e
ti

m
e

(s
)

(a) Q′1 Okapi BM25

0

10

20

30

40

SF 1 2 3 4 5

Re
sp
on

se
tim

e
(s)

(b) Q′2 Okapi BM25

0

10

20

30

40

SF 1 2 3 4 5

Re
sp
on

se
tim

e
(s)

(c) Q′3 Okapi BM25

0

10

20

30

40

SF 1 2 3 4 5

Re
sp
on

se
tim

e
(s)

(d) Q′4 Okapi BM25

Fig. 9: Okapi BM25: Top-k documents query comparison

is obtained with MongoDB and MapReduce framework. In this case the runtime increases
with a factor between 2x and 3x. We deduced that these performance outcomes are directly
influenced by the intermediate "Sort and Shuffle" phase of the MapReduce algorithm.

For the next set of experiments, focused on computing the top-k documents, the
performance gap between TF-IDF and Okapi BM25 is decreasing for all of the deployed
distributed systems. The smallest difference is found in running with Spark and MongoDB,
where the runtime gap reaches a factor of 1.1x, and even 1x.

As an analysis of the overall performance of the three distributed systems, it resulted
that the best outcomes are obtained in some cases by MongoDB with MapReduce, and in
other cases by Spark.

Although we evaluate TextBenDS on social media data, our benchmark is generic and
can be used on any textual data enhanced with metadata extracted through preprocessing
and Natural Language Processing techniques, e.g., part-of speech tagging, lemmatization,
hashtag extraction, etc.

As future work, we plan to improve the scalability of our solution by designing sampling
strategies and aggregation queries. The sampling methods will include constraints on tags
and named entities while boosting the performance by lowering the query selectivity and
complexity. Furthermore, we plan to expand TextBenDS’s dataset significantly to achieve a
big data-scale volume. Moreover, we considered in this paper TF-IDF and Okapi BM25 for
machine learning tasks. The next version of our benchmark should include other weighting
schemes, such as KL-divergence [33], to further improve the relevance of our solution.

TextBenDS: a generic Textual data Benchmark for Distributed Systems 25

References

1. Agrawal, D., Butt, A., Doshi, K., Larriba-Pey, J.L., Li, M., Reiss, F.R., Raab, F., Schiefer, B.,
Suzumura, T., Xia, Y.: Sparkbench – a spark performance testing suite. In: Performance Evaluation
and Benchmarking: Traditional to Big Data to Internet of Things, pp. 26–44. Springer International
Publishing (2016). DOI 10.1007/978-3-319-31409-9_3

2. Armbrust, M., Xin, R.S., Lian, C., Huai, Y., Liu, D., Bradley, J.K., Meng, X., Kaftan, T., Franklin,
M.J., Ghodsi, A., Zaharia, M.: Spark sql: Relational data processing in spark. In: ACM SIGMOD
International Conference on Management of Data, pp. 1383–1394. ACM Press (2015). DOI 10.1145/

2723372.2742797
3. Armstrong, T.G., Ponnekanti, V., Borthakur, D., Callaghan, M.: Linkbench: A database benchmark based

on the facebook social graph. In: Proceedings of the 2013 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’13, pp. 1185–1196. ACM (2013). DOI 10.1145/2463676.2465296

4. Bellot, P., Doucet, A., Geva, S., Gurajada, S., Kamps, J., Kazai, G., Koolen, M., Mishra, A., Moriceau, V.,
Mothe, J., Preminger, M., SanJuan, E., Schenkel, R., Tannier, X., Theobald, M., Trappett, M., Trotman,
A., Sanderson, M., Scholer, F., Wang, Q.: Report on inex 2013. SIGIR Forum 47(2), 21–32 (2013).
DOI 10.1145/2568388.2568393

5. Bifet, A., Frank, E.: Sentiment knowledge discovery in twitter streaming data. In: Discovery Science,
pp. 1–15. Springer Berlin Heidelberg (2010). DOI 10.1007/978-3-642-16184-1_1

6. Bouakkaz, M., Loudcher, S., Ouinten, Y.: OLAP textual aggregation approach using the google similarity
distance. International Journal of Business Intelligence and Data Mining 11(1), 31 (2016). DOI 10.1504/

ijbidm.2016.076425
7. Bringay, S., Béchet, N., Bouillot, F., Poncelet, P., Roche, M., Teisseire, M.: Towards an on-line analysis of

tweets processing. In: International Conference on Database and Expert Systems Applications (DEXA),
pp. 154–161 (2011). DOI 10.1007/978-3-642-23091-2_15

8. Chowdhury, B., Rabl, T., Saadatpanah, P., Du, J., Jacobsen, H.A.: A bigbench implementation in the
hadoop ecosystem. In: Advancing Big Data Benchmarks, pp. 3–18. Springer International Publishing
(2014). DOI 10.1007/978-3-319-10596-3_1

9. Crane, M., Culpepper, J.S., Lin, J., Mackenzie, J., Trotman, A.: A comparison of document-at-a-time
and score-at-a-time query evaluation. In: Proceedings of the Tenth ACM International Conference on
Web Search and Data Mining, pp. 201–210. ACM (2017). DOI 10.1145/3018661.3018726

10. Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters. Communications of
the ACM 51(1), 107–113 (2008). DOI 10.1145/1327452.1327492

11. Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing by latent semantic
analysis. Journal of the American Society for Information Science 41(6), 391–407 (1990). DOI 10.1002/

(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
12. Ferrarons, J., Adhana, M., Colmenares, C., Pietrowska, S., Bentayeb, F., Darmont, J.: Primeball: a

parallel processing framework benchmark for big data applications in the cloud. In: 5th TPC Technology
Conference on Performance Evaluation and Benchmarking (TPCTC 2013), LNCS1, vol. 839, pp. 109–
124 (2014). DOI 10.1007/978-3-319-04936-6_8

13. Gattiker, A.E., Gebara, F.H., Hofstee, H.P., Hayes, J.D., Hylick, A.: Big data text-oriented benchmark
creation for Hadoop. IBM Journal of Research and Development 57(3/4), 10:1–10:6 (2013). DOI
10.1147/JRD.2013.2240732

14. Ghazal, A., Ivanov, T., Kostamaa, P., Crolotte, A., Voong, R., Al-Kateb, M., Ghazal, W., Zicari, R.V.:
Bigbench v2: The new and improved bigbench. In: 2017 IEEE 33rd International Conference on Data
Engineering (ICDE), pp. 1225–1236 (2017). DOI 10.1109/ICDE.2017.167

15. Ghazal, A., Rabl, T., Hu, M., Raab, F., Poess, M., Crolotte, A., Jacobsen, H.A.: Bigbench: Towards
an industry standard benchmark for big data analytics. In: Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’13, pp. 1197–1208 (2013). DOI 10.1145/

2463676.2463712
16. Gray, J.: The Benchmark Handbook for Database and Transaction Systems (2nd Edition). Morgan

Kaufmann (1993)
17. Guille, A., Favre, C.: Event detection, tracking, and visualization in twitter: a mention-anomaly-based

approach. Social Network Analysis and Mining 5(1), 18 (2015). DOI 10.1007/s13278-015-0258-0
18. Hofmann, T.: Probabilistic latent semantic indexing. SIGIR Forum 51(2), 211–218 (2017). DOI 10.

1145/3130348.3130370
19. Huang, S., Huang, J., Dai, J., Xie, T., Huang, B.: The HiBench benchmark suite: Characterization of the

MapReduce-based data analysis. In: Workshops Proceedings of the 26th International Conference on
Data Engineering (ICDE 2010), pp. 41–51 (2010). DOI 10.1109/ICDEW.2010.5452747

20. Jia, Z., Zhan, J., Wang, L., Han, R., McKee, S.A., Yang, Q., Luo, C., Li, J.: Characterizing and subsetting
big data workloads. In: 2014 IEEE International Symposium on Workload Characterization (IISWC),
pp. 191–201 (2014). DOI 10.1109/IISWC.2014.6983058

26 Ciprian-Octavian Truică et al.

21. Krasnashchok, K., Jouili, S.: Improving topic quality by promoting named entities in topic modeling. In:
Annual Meeting of the Association for Computational Linguistics, pp. 247–253 (2018)

22. Kılınç, D., Özçift, A., Bozyigit, F., Yildirim, P., Yücalar, F., Borandag, E.: Ttc-3600: A new benchmark
dataset for turkish text categorization. Journal of Information Science 43(2), 174–185 (2017). DOI
10.1177/0165551515620551

23. Lavrenko, V., Croft, W.B.: Relevance-based language models. SIGIR Forum 51(2), 260–267 (2017).
DOI 10.1145/3130348.3130376

24. Lewis, D.D., Yang, Y., Rose, T.G., Li, F.: Rcv1: A new benchmark collection for text categorization
research. Journal of Machine Learning Research 5, 361–397 (2004). URL http://www.jmlr.org/
papers/v5/lewis04a.html

25. Li, M., Tan, J., Wang, Y., Zhang, L., Salapura, V.: Sparkbench: A comprehensive benchmarking suite for
in memory data analytic platform spark. In: Proceedings of the 12th ACM International Conference on
Computing Frontiers, CF ’15, pp. 53:1–53:8. ACM (2015). DOI 10.1145/2742854.2747283

26. Lin, J., Crane, M., Trotman, A., Callan, J., Chattopadhyaya, I., Foley, J., Ingersoll, G., Macdonald,
C., Vigna, S.: Toward reproducible baselines: The open-source ir reproducibility challenge. In:
Advances in Information Retrieval, pp. 408–420. Springer International Publishing (2016). DOI
10.1007/978-3-319-30671-1_30

27. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to information retrieval. Cambridge University
Press (2008)

28. Ming, Z., Luo, C., Gao, W., Han, R., Yang, Q., Wang, L., Zhan, J.: Bdgs: A scalable big data
generator suite in big data benchmarking. In: Advancing Big Data Benchmarks, pp. 138–154. Springer
International Publishing (2014). DOI 10.1007/978-3-319-10596-3_11

29. O’Shea, J., Bandar, Z., Crockett, K.A., McLean, D.: Benchmarking short text semantic similarity.
International Journal of Intelligent Information and Database Systems 4(2), 103–120 (2010). DOI
10.1504/IJIIDS.2010.032437

30. Paltoglou, G., Thelwall, M.: A study of information retrieval weighting schemes for sentiment analysis.
In: 48th Annual Meeting of the Association for Computational Linguistics, pp. 1386–1395 (2010). URL
http://dl.acm.org/citation.cfm?id=1858681.1858822

31. Partalas, I., Kosmopoulos, A., Baskiotis, N., Artières, T., Paliouras, G., Gaussier, É., Androutsopoulos,
I., Amini, M.R., Gallinari, P.: Lshtc: A benchmark for large-scale text classification. CoRR (2015). URL
http://arxiv.org/abs/1503.08581

32. Pirzadeh, P., Carey, M.J., Westmann, T.: Bigfun: A performance study of big data management system
functionality. In: 2015 IEEE International Conference on Big Data (Big Data), pp. 507–514 (2015).
DOI 10.1109/BigData.2015.7363793

33. Raiber, F., Kurland, O.: Kullback-leibler divergence revisited. In: Proceedings of the ACM SIGIR
International Conference on Theory of Information Retrieval, ICTIR ’17, pp. 117–124. ACM (2017).
DOI 10.1145/3121050.3121062

34. Ravat, F., Teste, O., Tournier, R., Zurfluh, G.: Top_keyword: an aggregation function for textual
document olap. In: 10th International Conference on Data Warehousing and Knowledge Discovery
(DaWaK), pp. 55–64 (2008). DOI 10.1007/978-3-540-85836-2_6

35. Saha, B., Shah, H., Seth, S., Vijayaraghavan, G., Murthy, A., Curino, C.: Apache tez: A unifying
framework for modeling and building data processing applications. In: ACM SIGMOD International
Conference on Management of Data, pp. 1357–1369. ACM, New York, NY, USA (2015). DOI
10.1145/2723372.2742790

36. Sangroya, A., Serrano, D., Bouchenak, S.: Mrbs: Towards dependability benchmarking for hadoop
mapreduce. In: Euro-Par 2012: Parallel Processing Workshops, pp. 3–12. Springer Berlin Heidelberg
(2013). DOI 10.1007/978-3-642-36949-0_2

37. Shu, K., Mahudeswaran, D., Wang, S., Lee, D., Liu, H.: Fakenewsnet: A data repository with news
content, social context and dynamic information for studying fake news on social media. arXiv preprint
arXiv:1809.01286 (2018)

38. Shu, K., Sliva, A., Wang, S., Tang, J., Liu, H.: Fake news detection on social media: A data mining
perspective. ACM SIGKDD Explorations Newsletter 19(1), 22–36 (2017). DOI 10.1145/3137597.
3137600

39. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The hadoop distributed file system. In: Symposium
on Mass Storage Systems and Technologies, pp. 1–10 (2010). DOI 10.1109/MSST.2010.5496972

40. Spärck Jones, K., Walker, S., Robertson, S.E.: A probabilistic model of information retrieval:
development and comparative experiments: Part 1. Information Processing & Management 36(6), 779 –
808 (2000). DOI 10.1016/S0306-4573(00)00015-7

41. Spärck Jones, K., Walker, S., Robertson, S.E.: A probabilistic model of information retrieval:
development and comparative experiments: Part 2. Information Processing & Management 36(6), 809 –
840 (2000). DOI 10.1016/S0306-4573(00)00016-9

http://www.jmlr.org/papers/v5/lewis04a.html
http://www.jmlr.org/papers/v5/lewis04a.html
http://dl.acm.org/citation.cfm?id=1858681.1858822
http://arxiv.org/abs/1503.08581

TextBenDS: a generic Textual data Benchmark for Distributed Systems 27

42. Thusoo, A., Sarma, J.S., Jain, N., Shao, Z., Chakka, P., Anthony, S., Liu, H., Wyckoff, P., Murthy, R.:
Hive: A warehousing solution over a map-reduce framework. VLDB Endowment 2(2), 1626–1629
(2009). DOI 10.14778/1687553.1687609

43. Transaction Processing Performance Council (TPC): TPC Express Benchmark HS Standard
Specification Version 1.4.2 (2016). URL http://www.tpc.org

44. Transaction Processing Performance Council (TPC): TPC-DS Decision Support Benchmark 2.10.1
(2019). URL http://www.tpc.org

45. Truica, C.O., Radulescu, F., Boicea, A.: Comparing different term weighting schemas for topic modeling.
In: 2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing
(SYNASC). IEEE (2016). DOI 10.1109/synasc.2016.055

46. Truică, C.O., Darmont, J.: T2K2: The twitter top-k keywords benchmark. In: Communications in
Computer and Information Science, pp. 21–28. Springer International Publishing (2017). DOI
10.1007/978-3-319-67162-8_3

47. Truică, C.O., Darmont, J., Boicea, A., Rădulescu, F.: Benchmarking top-k keyword and top-k document
processing with T2K2 and T2K2D2. Future Generation Computer Systems 85, 60–75 (2018). DOI
10.1016/j.future.2018.02.037

48. Vavilapalli, V.K., Murthy, A.C., Douglas, C., Agarwal, S., Konar, M., Evans, R., Graves, T., Lowe, J.,
Shah, H., Seth, S., Saha, B., Curino, C., O’Malley, O., Radia, S., Reed, B., Baldeschwieler, E.: Apache
hadoop yarn: Yet another resource negotiator. In: Annual Symposium on Cloud Computing, pp. 5:1–5:16
(2013). DOI 10.1145/2523616.2523633

49. Wang, L., Dong, X., Zhang, X., Wang, Y., Ju, T., Feng, G.: Textgen: a realistic text data content
generation method for modern storage system benchmarks. Frontiers of Information Technology &
Electronic Engineering 17(10), 982–993 (2016). DOI 10.1631/FITEE.1500332

50. Wang, L., Zhan, J., Luo, C., Zhu, Y., Yang, Q., He, Y., Gao, W., Jia, Z., Shi, Y., Zhang, S., Zheng, C.,
Lu, G., Zhan, K., Li, X., Qiu, B.: BigDataBench: A big data benchmark suite from internet services. In:
20th IEEE International Symposium on High Performance Computer Architecture (HPCA 2014), pp.
488–499 (2014). DOI 10.1109/HPCA.2014.6835958

51. Wang, X., Ah-Pine, J., Darmont, J.: Shcoclust, a scalable similarity-based hierarchical co-clustering
method and its application to textual collections. In: 2017 IEEE International Conference on Fuzzy
Systems (FUZZ-IEEE), pp. 1–6 (2017). DOI 10.1109/FUZZ-IEEE.2017.8015720

52. Yin, J., Chao, D., Liu, Z., Zhang, W., Yu, X., Wang, J.: Model-based clustering of short text streams.
In: ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2634–2642.
ACM Press (2018). DOI 10.1145/3219819.3220094

53. Zaharia, M., Xin, R.S., Wendell, P., Das, T., Armbrust, M., Dave, A., Meng, X., Rosen, J., Venkataraman,
S., Franklin, M.J., Ghodsi, A., Gonzalez, J., Shenker, S., Stoica, I.: Apache spark: A unified engine for
big data processing. Communications of the ACM 59(11), 56–65 (2016). DOI 10.1145/2934664

54. Zhang, D., Zhai, C., Han, J.: Topic cube: Topic modeling for OLAP on multidimensional text databases.
In: Proceedings of the 2009 SIAM International Conference on Data Mining, pp. 1124–1135. Society
for Industrial and Applied Mathematics (2009). DOI 10.1137/1.9781611972795.96

55. Zhang, D., Zhai, C., Han, J.: MiTexCube: MicroTextCluster cube for online analysis of text cells and its
applications. Statistical Analysis and Data Mining 6(3), 243–259 (2012). DOI 10.1002/sam.11159

http://www.tpc.org
http://www.tpc.org

	Introduction
	Related Works
	TextBenDS Specifications
	TextBenDS Distributed Implementation
	Experiments
	Conclusion

