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VOLUME OF REPRESENTATIONS AND MAPPING DEGREE

PIERRE DERBEZ, YI LIU, HONGBIN SUN, AND SHICHENG WANG

ABSTRACT. Given a connected real Lie group and a contractible homogeneous properG–
space X furnished with a G–invariant volume form, a real valued volume can be assigned
to any representation ρ : π1(M) → G for any oriented closed smooth manifold M of
the same dimension as X . Suppose that G contains a closed and cocompact semisimple
subgroup, it is shown in this paper that the set of volumes is finite for any givenM . From a
perspective of model geometries, examples are investigated and applications with mapping
degrees are discussed.

1. INTRODUCTION

Let G be a connected real Lie group and H be any maximal compact subgroup of
G. After fixing a G–invariant volume form on the homogeneous G–space X = G/H , a
volume volG(M,ρ) ∈ R can be assigned to any oriented closed smooth manifoldM of the
same dimension as X with respect to a representation ρ : π1(M)→ G, [24]. The value

V(M,G) = sup
ρ
|volG(M,ρ)|

in [0,+∞] is called theG–representation volume ofM . This invariant has been introduced
and studied by R. Brooks and W. Goldman [6, 7, 24] as a geometrical analogue of the
celebrated simplicial volume of orientable closed manifolds due to M. Gromov [25, 42].
During the past few years, much has been known about the (S̃L2(R)×ZR)–representation
volume (the Seifert volume) and the PSL(2,C)–representation volume (the hyperbolic
volume) for 3–manifolds and their finite covers [18, 19, 16, 20, 17]. Those invariants
have demonstrated to be useful in studying nonzero degree maps between 3–manifolds,
especially when the simplicial volume vanishes. Now it seems a right time to consider
higher dimensions, and to give a comprehensive treatment of the theory under reasonably
general hypotheses.

In this paper, we are primarily interested in the representation volume for Lie groups
that contain closed and cocompact semisimple subgroups. We formulate all the results
in the smooth category to avoid technicalities. Our main conclusion is that in this case,
the representation volume is a finite and nontrivial invariant for closed orientable smooth
manifolds of the applicable dimension:

Theorem 1.1. Suppose that G is a connected real Lie group which contains a closed
cocompact connected semisimple subgroup. Let X = G/H be a homogeneous space
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furnished with a G–invariant volume form, where H is a maximal compact subgroup of G.
Then for any oriented closed smooth manifold M of the same dimension as X , the volume
function

volG : R(π1(M), G)→ R
takes only finitely many values on the space of representations R(π1(M), G). Moreover,
there exists some closed aspherical manifolds M for which volG is not constantly zero.

We restrict ourselves to closed manifoldsM so as to speak of volume of representations
for any connected real Lie groupG, (see Section 2). For certain noncompact manifolds and
more restricted Lie groups, some authors have established rigidity or flexibility results for
generalized volume of representations. For example, when M is a complete hyperbolic
n–manifold of finite volume and G is SO+(n, 1), the same conclusion as in Theorem 1.1
holds in a general sense for n ≥ 4, but fails for n = 2, 3 in the cusped case, see [10, 36].

On the other hand, the assumptions on G in Theorem 1.1 are quite natural from the
perspective of maximal geometries with compact models. According to W. Thurston [42],
a geometry of dimension n is a pair (X,G) where X is a simply-connected smooth man-
ifold of dimension n and G is a real Lie group that acts transitively and effectively on X
by diffeomorphisms with compact isotropy at every point. It is a maximal geometry if G
cannot be extended to any larger groups, and it is a (compact) model geometry if there
is a closed n–manifold locally modeled on (X,G). Two geometries are considered to be
equivalent if there is an equivariant diffeomorphism between the spaces with respect to the
structure groups. For classifications of geometries of dimension at most 5, we refer the
reader to [41, 29, 23]. Furnishing X with a G–invariant volume form ωX , we can speak
of the representation volume of closed orientable smooth n–manifolds with respect to the
identity component G◦ of G.

Corollary 1.2. Let (X,G′) be an n–dimensional geometry whereX is contractible andG′

is semisimple. For any geometry (X,G) that extends (X,G′) and any G–invariant volume
form ωX , the G–representation volume is a homotopy-type invariant of closed orientable
smooth n–manifolds, which takes values in [0,+∞) and does not always vanish.

The hyperbolic plane (H2, Iso(H2)) is a well-known nontrivial example in dimension
2. With respect to the hyperbolic metric, it yields the PSL(2,R)–representation volume
which equals −2πχ(Σ) for any orientable closed surface Σ of genus at least 2, or 0 other-
wise. Higher dimensional hyperbolic spaces (Hn, Iso(Hn)) gives rise to the SO+(n, 1)–
representation volume. It recovers the usual hyperbolic volume for orientable closed hy-
perbolic n–manifolds, whereas for other n–manifolds the volume may be trivial or not.
Other symmetric spaces of noncompact types provide geometric models that yield the
representation volume for semisimple Lie groups without compact normal subgroups. In
dimension 3, the (S̃L2(R)×Z R)–representation volume arises from the Seifert-space ge-
ometry (S̃L2(R), Iso(S̃L2(R)). It can be greater than the S̃L2(R)–representation volume
in general.

In dimension 5, there is another interesting family which are non-symmetric spaces,
namely, the maximal model geometries (S̃L2(R) ×α S̃L2(R), Iso(S̃L2(R) ×α S̃L2(R)))
for α ∈ Q∗. The identity component of the structure group is isomorphic to

(S̃L2(R)×Z R)× (S̃L2(R)×Z R)/{(t, αt) ∈ R× R : t ∈ R},

which is 7 dimensional. If one regards the Seifert-space geometry S̃L2(R) as an affine
real line bundle over the hyperbolic plane via the fibration S̃O(2) → S̃L2(R) → H2, the
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contractible homogeneous space S̃L2(R)×α S̃L2(R) can be observed as an affine real line
bundle over H2×H2, where the fibers are modelled on the quotient of the affine real plane
S̃O(2) × S̃O(2) by translations parallel to the (1, α) direction. When α ∈ R is irrational,
one could also define 5–dimensional geometries with the identity component constructed
by the same expression. The corresponding maximal analytic semisimple subgroup is no
longer closed. Nevertheless, we do not know if the irrational cases admit compact models
anyways, so there is a chance that they only yield vanishing representation volumes.

As a classical application, representation volumes can be used to study mapping de-
grees. We say that a closed orientable smooth n–manifold N has Property D if for all
closed orientable smooth manifold M of the same dimension, the set of mapping degrees

D(M,N) = {|deg(f)| : f ∈ C∞(M,N)}

is always finite. In dimension 2, manifolds with Property D are those of the geometry
H2, by considering the simplicial volume. In dimension 3, manifolds with Property D are
those which contain non-geometric prime factors, or prime factors of the geometry H3 or
S̃L2(R), by [17, Corollary 1.6].

By Corollary 1.2 and the domination inequality of representation volumes (Corollary
3.2), we immediately infer the following:

Theorem 1.3. If (X,G) is a geometry where X is contractible and G is semisimple, then
every orientable closed manifold locally modeled on (X,G) has Property D.

Note that X is a symmetric space of non-compact type when G has trivial center. In
that case, the result has been proved by Besson–Courtois–Gallot [1] in rank one and by
Connell–Farb [14] in higher ranks (with a few exceptions), and it also follows from a
stronger result that such manifolds have positive simplicial volume by Lafont–Schmidt
[38] combined with Savage [40] and Bucher-Karlsson [8]. Both [14] and [38] extend the
barycenter method of [1] from rank one to higher ranks. In other cases, Theorem 1.3 is
actually talking about a virtual (hyper-)torus bundle over a locally symmetric space, so the
simplical volume has to vanish [25, Section 3.1].

In fact, except for the impossible dimensions 1 and 2 and the unknown dimension 4,
there are always n–manifolds with Property D which cannot be detected by the simplical
volume, see [7] in dimension 3 for S̃L2(R). This result has recently been established by
Fauser and Loeh [22, Theorem 1.3]. In our terms, their examples are product manifolds
P ×Q such that P and Q are manifolds with Property D, and they show that P ×Q must
also have Property D. If we take P to be locally modeled on Hn−3, and Q to be locally
modeled on S̃L2(R), then P × Q is locally modeled on Hn−3 × S̃L2(R) which satisfies
the assumptions of Theorem 1.3, and we obtain an alternate proof of that result.

We make some remarks about Theorem 1.1 before we close the introduction. Although
there are some earlier results of special cases, such as Goldman [24] for Iso(H2) and
Hartnick–Ott [26] for Hermitian simple Lie groups with finite center, the prototype of
Theorem 1.1 is undoubtedly the case of (S̃L2(R)×Z R)–representations, as established by
Brooks–Goldman [6, 7]. Their original proof is essentially reduced to the rigidity of cer-
tain characteristic class associated with certain PSL(2,R)–representations, (precisely the
Godbillon–Vey class of the associated transversely–RP 1 foliated circle bundles). After
their work, generalizations in various directions and alternate approaches are obtained for
many semisimple Lie groups G. Generalizations include rigidity of characteristic classes
for transversely G–homogeneous foliations, and G–representation volumes for lattices,
see [27, 3]. One of the new approaches related to 3–dimensional geometries identifies
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representation volumes for PSL(2,C) and S̃L2(R) with the Cheeger–Chern–Simons in-
variants [12, 11], see [37, 35, 16] and their references. This relation is first pointed out by
Thurston for discrete and faithful representations in PSL(2,C) of hyperbolic 3-manifold
groups [43]. Another new approach is due to Besson–Courtois–Gallot [2] based on the
method they established in [1]. The Lie groups considered there are the structure groups
of rank-one symmetric spaces of non-compact type, and a rigidity theorem for Iso+(Hn)
is obtained.

Compared to the previous rigidity results the main difficulty of our contribution is that
we allow the semisimple Lie groups to have infinite centre (whose rank correponds to the
rank of the homogeneous space X as vector bundle over a symmetric space). In this case
the representation variety has no longer finitely many components and the usual argument
”local rigidity implies global rigidity” does not hold. In order to solve this problem and
to find model geometries which naturally gives rise to representation volume, we have to
consider cocompact coextensions of the semisimple Lie groups. This allows us in particu-
lar to compare the volume of representations which belong to different components of the
original variety.

A significant part of our argument provides more or less a classification of those groups
as assumed by Theorem 1.1, (Proposition 8.1). Using that, we can reduce the proof of
Theorem 1.1 to a more concrete family, namely, the full central extension of real connected
semisimple Lie groups with torsion-free center, (see Section 5). The core argument for the
central extension case is contained in the proof of Theorem 7.1. The proof of Theorem 1.1
is summarized in Section 9.

Whitney’s theorem on real affine algebraic varieties and Culler’s lifting criterion are
employed, for describing the structure of the associated representation variety (Proposition
5.1). Structure theory for general Lie groups and Borel’s Density Theorem play crucial
roles in our characterization of cocompact coextensions of semisimple Lie groups (Propo-
sition 8.1). Based on well-known vanishing theorems, we prove a vanishing lemma for
some particular relative cohomology of reductive Lie algebras in some particular dimen-
sion (Lemma 7.4).

The organization of this paper is reflected by the table of contents. Efforts have been
made to keep the exposition easily accessible to non-experts of Lie groups, and the argu-
ments as self-contained as possible.

Acknowledgement. We thank Jinpeng An for pointing us to a useful reference during the
development of this paper.
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2. VOLUME OF REPRESENTATIONS

In this preliminary section, we revisit this concept and scrutinize the construction in a
natural setting.

Let G be any connected real Lie group. Let X be a contractible homogeneous proper
G–space, namely, a contractible smooth manifold equipped with a transitive, proper action
ofG by diffeomorphisms. Suppose that ωX is aG–invariant volume form onX . Given any
such triple (G,X, ωX), for any closed oriented smooth manifoldM of the same dimension
asX , a real-valued function called volume can be defined over theG–representation variety
R(π1(M), G) of π1(M).

We confirm in this section that the volume function is continuous with respect to a natu-
ral topology ofR(π1(M), G), namely, the algebraic-convergence topology. Moreover, the
volume function is essentially determined by G, up to a nonzero scalar factor proportional
to the volume form.

In the literature, the G–space X is usually taken to be G/H where H is any maximal
compact subgroup ofG, so aG–invariant volume form ωX can be given by anyG–invariant
Riemannian metric. We first point out the equivalence of that more concrete approach with
our abstract setting.

Lemma 2.1. Let G be any connected real Lie group and let X be a contractible homoge-
neous proper G–space. Then

(1) the point stabilizers of X are maximal compact subgroups of G. Hence X is
determined by G up to a G–equivariant diffeomorphism,

(2) there exists a G–invariant volume form ωX on X . Moreover, it is unique up to a
signed rescaling.

Proof. Recall that the action of a topological group G on a topological space X is said
to be proper if the mapping G × X → X × X given by (g, x) 7→ (x, g · x) is proper,
namely, such that the preimage of any compact subset is compact. Since the G–action on
X is assumed to be proper, point stabilizers Gx for any x ∈ X are compact subgroups
of G, and the homogeneity assumption implies that X is isomorphic to G/Gx as a G–
space. As any maximal compact subgroup is a topologically deformation retract of G, X
is homotopy equivalent to a closed manifold H/Gx, for some maximal compact subgroup
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H that contains Gx. However, the assumption that X is contractible forces H/Gx to be
a point, so Gx is a maximal compact subgroup of the Lie group G. As maximal compact
subgroups of G are conjugate to each other, different G–spaces X as assumed are G–
equivariantly diffeomorphic to each other. This proves statement (1).

To prove statement (2), we may now take X to be G/H as usual, where H is any
maximal compact subgroup ofG. In this case, it is well-known that there exists a complete
G–invariant Riemannian metric on G/H . For example, one may first take an arbitrary
inner product 〈·, ·〉′o on the tangent space ToX at the point o ∈ X which corresponds to the
coset H . Then average the inner product over H by defining

〈V,W 〉o =

∫
H

〈h∗V, h∗W 〉′o dµH(h),

for all V,W ∈ ToX , where µH denotes the normalized Haar measure of H . After that,
a claimed G–invariant Riemannian metric can be obtained by translating the H–invariant
inner product at ToX over X by the action of G. The associated volume form ωX is
hence G–invariant as claimed. To see the uniqueness of the G–invariant volume form up
to rescaling, it suffices to observe that any such form is determined by its restriction at o,
namely, ωX |o, which lies in ∧dimXT ∗oX

∼= R. As ωX |o must be nonzero, any pair of
G–invariant volume forms over X differ only by a multiplication of some nonzero real
scalar. This proves statement (2). Note that, however, G–invariant Riemannian metrics
on X are not necessarily proportional, unless the isotropy representation of H on ToX is
irreducible. �

Let (G,X, ωX) be any triple as assumed. For any oriented (connected) closed smooth
manifold M of the same dimension as X , we regard π1(M) as the (discrete) deck trans-
formation group of the universal cover M̃ of M .

Denote byR(π1(M), G) the G–representation variety of π1(M). In this paper, for any
finitely generated group π, we understand the G–representation varietyR(π,G) as the set
of all homomorphisms of π into G. This set is inherited with the algebraic-convergence
topology, which can be characterized by the property that a sequence {ρn}n∈N converges
to ρ∞ inR(π,G) if and only if {ρn(g)}n∈N converges to ρ∞(g) in G for every g ∈ π.

The volume function

volG,X,ωX : R(π1(M), G)→ R

can be defined as follows. For any representation

ρ : π1(M)→ G,

denote by

M ×ρ X

the associated G–flat X–bundle space over M . It is the quotient of the product space
M̃ ×X by the diagonal freely discontinuous action of π1(X), namely, σ · (m,x) = (σ ·
m, ρ(σ) · x) for all σ ∈ π1(X). The bundle projection M ×ρ X → M is induced by
the projection of M̃ × X onto the first factor; the flat structure is the induced horizontal
foliation on M ×ρ X with holonomy in G. The pull-back form of ωX on M̃ × X , via
the projection onto the second factor, is invariant under the diagonal action of π1(M), so
there is a naturally induced form ωρX on M ×ρ X . Take s : M → M ×ρ X to be any
C1–differentiable section of the bundle.
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We define the volume of (M,ρ) with respect to the triple (G,X, ωX) to be

(2.1) volG,X,ωX (ρ) =

∫
M

s∗ωρX .

There is a natural way to translate between sections and developing maps. Specifically,
every section s : M → M ×ρ X induces a unique lift s̃ : M̃ → M̃ ×X , after choosing a
base point lift of M into M̃ . Then the projection of s̃ to the second factor gives rise to an
equivariant map with respect to ρ : π1(M)→ G,

Dρ : M̃ → X,

which is called a developing map. Conversely, the graph of any developing map Dρ in
M ×X is invariant under the action of π1(M), so IdM ×Dρ induces a section s. In terms
of a developing map Dρ, we may therefore write

(2.2) volG,H,ωX (ρ) =

∫
F
D∗ρωX ,

where F ⊂ M̃ is any fundamental domain of π1(M).
The dependence of the definition on our auxiliary choices can be summarized by the

following:

Lemma 2.2. With the notations and assumptions above, the following statements are true:
(1) A C1–differentiable section s of M ×ρ X exists and any such section yields one

and the same value
volG,X,ωX (ρ) ∈ R.

(2) For any two G–invariant volume forms ωX and ω′X , the associated volume func-
tions agree up to a nonzero scalar factor. Namely, there exists λ ∈ R∗ such that

volG,X,ωX (ρ) = λ volG,X,ω′X (ρ)

for all M and all ρ ∈ R(π1(M), G).

Proof. Since X is contractible, the bundle M ×ρ X admits a continuous section and any
two sections s, s′ : M → M ×ρ X are homotopic. Using standard approximation tech-
niques in differential topology, the sections and homotopy can be approximated by Cr–
differentiable ones, for arbitrary 1 ≤ r ≤ ∞, (see [30, Chapter 2, Section 2, Exercise 3]).
The induced form ωρX is closed as is ωX . So the integral over M against the pull-backs of
ωρX via s and s′ are equal. This proves statement (1).

Statement (2) follows immediately from Lemma 2.1 (2). �

The following proposition shows that the volume function is well behaved. The con-
tinuity is essentially a consequence of the properness assumption about the G–action on
X .

Proposition 2.3. The function volG,X,ωX : R(π1(M), G) → R is conjugation-invariant
and continuous.

Proof. Given a developing map Dρ : M̃ → X for a representation ρ ∈ R(π1(M), G), it
is straightforward to check that g ◦ Dρ is a developing map for any conjugation τg(ρ) ∈
R(π1(M), G), defined by τg(ρ)(σ) = gρ(σ)g−1. The volume function is invariant under
conjutation of representations by the G–invariance of the volume form ωX .

It remains to show the continuity. Fix a finite generating set of π1(M) induced by a
finite cellular decomposition of M , and denote by F a fundamental domain which is a
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connected union of lifted cells in M̃ . By the properness of the G–action on X , we can fix
a G–invariant Riemannian metric of X , as argued in Lemma 2.1. Fix a Riemannian metric
gM of M .

Suppose that {ρj}j∈N is any sequence of representations which converges to a repre-
sentation ρ∞. Take a C1–differentiable developing map D∞ : M̃ → X of ρ∞. Then the
algebraic convergence allows us to construct a sequence of C1–differentiable developing
maps Dn : M̃ → X which converge to D∞ uniformly over F in the C1–norm. For exam-
ple, a sequence of C1–uniformly convergent developing maps {Dj}j∈N can be built first
over a neighborhood of the 0–skeleton of F , and then extended ρj–equivariantly over a
neighborhood of the 0–skeleton of M̃ , and inductively over neighborhoods of higher di-
mensional skeleta of M̃ . Moreover, as D∞ is C1–differentiable, we can require that in
each step of the induction, the maps Dj are constructed to be C1–uniformly convergent
to D∞ on the considered neighborhood of the skeleton. Provided with such a sequence of
developing maps {Dj}j∈N, given any constant ε > 0, and for all sufficiently large j, we
have the following estimation by the Stokes Formula:

|volG,X,ωX (ρj)− volG,X,ωX (ρ∞)| < Cε,

where C is a constant determined by the Lipschitz constant of D∞, and the area of ∂F
with respect to gM . As ε > 0 is arbitrary, we have

lim
j→∞

volG,X,ωX (ρj) = volG,X,ωX (ρ∞).

This completes the proof. �

When one wishes to compute the volume for a G–representation, it is important to keep
in mind that the exact value depends on a particular normalization of the volume measure.
In certain cases, there are canonical ways to specify a normalization. For example, for vol-
ume of representations in PSL(2,C), the normalization is customarily taken as the volume
form of hyperbolic geometry H3 (of constant curvature−1); for volume of representations
in S̃L2(R)×Z R, the normalization used by Brooks and Goldman [6] is specified in terms
of the Godbillon–Vey invariant of the naturally associated transversely–RP 1 foliated cir-
cle bundle. However, there is no natural way to specify a canonical normalization to any
connected Lie group in general.

On the other hand, sometimes one may only be concerned with the ratio between volume
values. In other words, only those normalization-free qualities of the volume function are
considered to be interesting. The discussion of this paper is of the latter flavor. For this
reason, we often adopt the following simpler and more conventional

Notation 2.4. For any connected real Lie group G, we speak of volume of representations
with a triple (G,X, ωX) implicitly assumed as the following. The contractible proper ho-
mogeneousG–spaceX is taken to beG/H whereH is a fixed maximal compact subgroup
of G. The G–invariant volume form is chosen and fixed. For any oriented closed smooth
manifold M , and any representation ρ : π1(M) → G, we only retain the subscript G and
write

volG(M,ρ) ∈ R
for the volume of representation volG,X,ωX (ρ).

Definition 2.5. Adopting Notation 2.4, we define the G–representation volume of M to
be

V(M,G) = sup
ρ∈R(π1(M),G)

|volG(M,ρ)|,
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which is valued in [0,+∞].

Remark 2.6. Notice that a necessary condition to define the G-representation volume is
that the geometry is aspherical, admits a compact quotient M and that D(M,M) is finite.

As a consequence, in dimension ≤ 4, the isometry groups of the possible geometries
always contain a closed cocompact semisimple subgroup.

For dimension 5, the existence of compact quotients seems to be unknown for irrational
fiber products of Seifert geometries and the Heisenberg-by-Seifert geometry so that we
kept our discussion for that dimension focused only on examples.

3. COMPARISON OF VOLUMES

We consider the behavior of the volume of representations under variation of the mani-
folds and the Lie groups.

Proposition 3.1. The following formulas hold for volume of representations.
(1) Let G be a connected real Lie group which acts properly and transitively on a

contractible homogeneous G–space X with a G–invariant volume form ωX . Let
M be any closed oriented smooth manifold of the same dimension as X . For any
smooth map f : M ′ → M where M ′ is a closed oriented smooth manifold M ′ of
the same dimension as X , and any representation ρ : π1(M)→ G,

volG(M ′, f∗(ρ)) = deg(f) · volG(M,ρ),

where deg(f) ∈ Z denotes the signed mapping degree of f .
(2) Let (G,X, ωX) and M be the same as above. For any connected real Lie group

G′ and any homomorphism φ : G′ → G with compact kernel and with closed
and cocompact image, the induced action of G′ on X is proper and transitive and
preserves ωX . Moreover, for any representation ρ′ : π1(M)→ G′,

volG(M,φ∗(ρ
′)) = volG′(M,ρ′).

(3) Let (G,X, ωX) be the same as above and let I be a finite set. For all i ∈ I ,
let Mi be a closed oriented smooth manifold of the same dimension as X , and
ρi : π1(Mi)→ G be a representation. Then

volG(#iMi,
∨
i

ρi) =
∑
i

volG(Mi, ρi).

(4) Let I be a finite set and for all i ∈ I , let (Gi, Xi, ωXi) be triples similar as
above. Let Mi be closed oriented smooth manifolds of the same dimension as
Xi, and let ρi : π1(Mi) → Gi be representations. Then with respect to the triple
(
∏
iGi,

∏
iXi,

∏
i ωXi),

vol∏
iGi

(∏
i

Mi,
∏
i

ρi

)
=
∏
i

volGi(Mi, ρi).

Proof. To prove (1), we observe that if a developing map Dρ : M̃ → X defines the section
s : M →M ×ρ X , then the composed map Dρ ◦ f̃ : M̃ ′ → M̃ → X is a developing map
for f∗(ρ), which defines a section s′ : M ′ → M ′ ×ρ◦f] X . The form (s′)∗ω

ρ◦f]
X on M ′

is induced by the pull-back of ωX to M̃ ′ via Dρ ◦ f̃ , and it coincides with (s ◦ f)∗ωρX by
definition. Turning the expression (2.1) into pairing between homology and cohomology
classes, we have

volG(M ′, f∗(ρ)) = 〈[M ′], (s′)∗[ωρ◦f]X ]〉 = 〈[M ′], (s ◦ f)∗[ωρX ]〉 = 〈f∗[M ′], s∗[ωρX ]〉.
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As f∗[M ′] = deg(f)[M ], we have

volG(M ′, f∗(ρ)) = deg(f) · 〈[M ], s∗[ωρX ]〉 = deg(f) · volG(M,ρ).

To prove (2), denote by K the kernel of φ. Take H to be a maximal compact sub-
group of G, for example, the isotropy group of the action of G on X . Since K is as-
sumed to be compact, and φ(G′) is assumed to be closed in G, H ′ = φ−1(H) is com-
pact in G. This means that G′ acts properly on X via φ. Moreover, the maximality of
H implies that H ′ must be a maximal compact subgroup of G. In particular, if we nat-
urally identify X with the coset space G/H , the subspace φ(G′)H/H is an embedded
closed contractible subspace of X . Here φ(G′)H denotes the double coset contained in
G which consists of elements of the form φ(g′)h for all g′ ∈ G′ and h ∈ H . By homo-
topy equivalences G/φ(G′) ' G/φ(H ′) ' H/φ(H ′), we can count the cohomological
dimension of the compact spaces H , φ(H ′), and G/φ(G′) by our assumption. Then we
have dimG/φ(G′) = dimH − dimφ(H ′). This means φ(G′)H/H equals X , or in other
words, G′ acts transitively on X via φ. Of course the induced action of G′ on X preserves
the volume form ωX .

Observe that for any representation ρ′ : π1(M)→ G′, any φ∗(ρ′)–equivariant develop-
ing map M̃ → X is by definition a ρ′–equivariant developing map for the induced action
of G′, so

volG(M,φ∗(ρ
′)) = volG′(M,ρ′).

To prove (3), we take a developing map which sends the spheres that the connected sum
identifies along to points in X , then the claimed formula follows immediately from the
formula 2.2.

To prove (4), we take a developing map of the form
∏
iDρi :

∏
i M̃ →

∏
iXi, and

again we apply the formula 2.2 to derive the claimed formula. �

Corollary 3.2. The following comparisons hold for the representation volume of mani-
folds:

(1) (Domination Inequality). Given any f : M ′ →M as of Proposition 3.1 (1),

V(M ′, G) ≥ |deg(f)| ·V(M,G).

(2) (Induction Inequality). Given any φ : G′ → G as of Proposition 3.1 (2),

V(M,G′) ≤ V(M,G).

(3) (Connected-Sum Inequality). Given any (G,X, ωX) andMi as of Proposition 3.1
(3),

V(#iMi, G) ≤
∑
i

V(Mi, G).

(4) (Product Inequality). Given any (Gi, Xi, ωXi) and Mi as of Proposition 3.1 (4),

V

(∏
i

Mi,
∏
i

Gi

)
≥ max
σ∈S(I)

{∏
i

V
(
Mi, Gσ(i)

)}
,

where S(I) is the permutation group of the finite set I of indices, and the volume
V(Mi, Gσ(i)) is considered to be 0 if the dimension of Mi mismatches that of
Xσ(i).

None of the above inequalities are equalities in general. In fact, the following examples
show that each of them can fail to be equal under certain circumstances. One can certainly
find tons of such examples, some of which may be trickier to verify. To avoid technicalities,
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we only sketch the key points to verify our examples. The reader may safely skip this part
for the first reading.

Example 3.3.

(1) Take G to be either PSL(2,C) or S̃L2(R). By [16, Corollary 1.8], there exists a
closed oriented 3–manifold M with vanishing V(M,G), whereas V(M ′, G) > 0
holds for some finite coverM ′ ofM . So a strict domination inequality V(M ′, G) >
|deg(f)|V(M,G) holds for the covering map f : M ′ →M .

(2) Take G to be S̃L2(R) and G′ to be S̃L2(R)×Z R. Consider an oriented closed 3–
manifold M which is a Seifert fibered space with the symbol (2, 0; 3/2). The base
2–orbifold is a closed oriented surface of genus 2 and with a cone point of order 2,
so it has Euler characteristic χ = −5/2. The (orbifold) Euler number of the Seifert
fibration equals e = 3/2. Then V(M,G′) = 4π2 × (−5/2)2/|3/2| = 50π2/3
by the formula of Seifert volume in this case, (see [16, Section 6.2]). For any
representation ρ : π1(M) → S̃L2(R) of nonzero volume, it can be calculated by
[16, Proposition 6.3] that ρ must send the regular fiber h to a generator sh(±1) of
the center {sh(n) ∈ S̃L2(R) : n ∈ Z}. Then V(M,G) = 4π2×12×(3/2) = 6π2.
So a strict induction inequality V (M,G′) < V (M,G) holds for this case.

(3) Take G to be PSL(2,C) and Γ be a torsion-free uniform lattice of G. Denote by
M = H3/Γ be the closed hyperbolic 3–manifold with the induced orientation.
By Theorem 1.1, the set of volumes for all representations of π1(M) ∼= Γ in
G consists of finitely many real values v1 < v2 < · · · < vs. If we require
further that M admits no orientation-reversing self-homeomorphism, it is implied
by the volume rigidity that vs = VolH3(M) and |v1| < vs, [2, Theorem 1.4].
Note that the set of volumes of the orientation-reversal −M consists of −vs <
· · · < −v2 < −v1. Then the set of volumes for the connected sum M#(−M)
consists of all the values vi − vj , and V(M#(−M), G) = |vs − v1| < 2vs.
As V(M,G) = V(−M,G) = vs, we obtain a strict connected-sum inequality
V(M#(−M), G) < V(M,G) + V(−M,G) in this case.

(4) Take G to be S̃L2(R) × PSL(2,C). Let S be the unit tangent bundle of a closed
oriented hyperbolic surface, and H be a closed oriented hyperbolic 3–manifold.
Let MS = S × S and MH = H ×H .

We argue that V(MS , G) must be zero. This means that volG(MS , ρ) = 0
holds for every representation ρ : π1(MS) → G. Every ρ is of the form (σ, η)

where σ : π1(MS) → S̃L2(R), and η : π1(MS) → PSL(2,C). Via any sec-
tion s = (u, v) : MS → MS ×(σ,η) (S̃L2(R) × H3), the pull-back of the prod-
uct volume form can be regarded as a cup product [u∗ωσ

S̃L2(R)
] ^ [v∗ωηH3 ] in

H6(MS ;R), where [u∗ωσ
S̃L2(R)

] and [v∗ωηH3 ] are the 3–dimensional factor forms

lying in H3(MS ;R). Note that H3(MS ;R) ∼=
⊕3

i=0(H3−i(S;R))⊗Hi(S;R)).
Moreover, the (3, 0)–summand is generated by the 3–cycle S × pt; the (2, 1)–
summand is generated by all the 3–cycles of the form Tα × β where Tα is any
vertical torus of S over a non-separating simple closed curve of the base, and β is
any loop of S that projects to a non-separating simple closed curve of the base; the
(1, 2)–summand and the (0, 3)–summand can be described similarly. The eval-
uation of [u∗ωηH3 ] on any of the above cycles is nothing but the volume of the
PSL(2,C)–representations of their fundamental groups induced by η, so it is al-
ways trivial by a direct argument. It follows that [u∗ωηH3 ] = 0 in H3(MS ;R), so



12 PIERRE DERBEZ, YI LIU, HONGBIN SUN, AND SHICHENG WANG

[u∗ωσ
S̃L2(R)

] ^ [v∗ωηH3 ] = 0 in H6(MS ;R). Therefore, volG(MS , ρ) = 0 holds
as claimed.

However, it is obvious that V(MS ×MH , G×G) > 0. Then we obtain a strict
product inequality V(MS ×MH , G×G) > V(MS , G)×V(MH , G) in this case.

We observe the following consequence of the domination inequality:

Corollary 3.4. For any connected Lie groupG, theG–representation volume is a homotopy-
type invariant for orientable closed smooth manifolds.

4. REAL SEMISIMPLE LIE GROUPS

In this section, we recall some standard facts about real semisimple Lie groups. See
[32, 28] for general references.

Let G be a connected real Lie group. Denote by g the Lie algebra of G, regarded as
the tangent space of G at its neutral element. Denote by GL(g) the Lie group of invertible
R–linear transformations of g. The Lie algebra gl(g) of GL(g) can be naturally identified
with the Lie algebra of R–endomorphisms End(g). The adjoint action of G on g, denoted
as

Ad: G→ GL(g),

is defined for any h ∈ G as the derivation (at the neutral element) of the inner automor-
phism σ(h)(g) = hgh−1, for all g ∈ G. The derivation of Ad is hence a Lie algebra
homomorphism

ad: g→ End(g).

For any X ∈ g, ad(X) can be explicitly given by the Lie bracket, namely, ad(X)(Y ) =
[X,Y ] for all Y ∈ g.

Recall that a Lie algebra g is said to be simple if it is nonabelian and contains no ideals
other than {0} and g. It is said to be semisimple if it is a direct sum of simple Lie algebras.
A Lie group G is said to be semisimple if its Lie algebra g is semisimple.

4.1. Cohomology. Semisimple Lie algebras can be characterized by cohomology through
the following [13, Theorem 24.1]. See Section 6 for a review of Lie algebra cohomology.

Theorem 4.1. Let g be a finite dimensional Lie algebra over any field of characteristic
0. Then g is semisimple if and only if H∗(g;V ) = 0 holds for all irreducible nontrivial
g–modules V .

In particular, H∗(g; g∗) = 0 for real semisimple Lie algebras. Moreover, the semisim-
plicity of g implies that any (finite dimensional) g–moduleW is a direct sum of irreducible
factors. It follows from Theorem 4.1 that H∗(g;W ) is a direct sum of finitely many (pos-
sibly zero) copies of H∗(g). In low dimensions, it can be computed that H0(g) = R, and
Hk(g) = 0 for k = 1, 2, 4. However, there is a canonical nonvanishing class of H3(g)
given by the 3–form B([·, ·], ·) in ∧3g∗, where B(X,Y ) = tr(ad(X)ad(Y )) is the Killing
form. See Chevalley–Eilenberg [13].

The following relative version of the vanishing result [13, Theorem 28.1] is needed in
the rest of this paper.

Theorem 4.2. Let g be a finite dimensional Lie algebra over any field of characteristic
0 and h be a Lie subalgebra. If g is semisimple, then H∗(g, h;V ) = 0 holds for all
irreducible nontrivial g–modules V .
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4.2. Center and linearity. There are semisimple groups which are not linear, such as
S̃L2(R). However, it is well known that linearity holds after factoring out the center:

Theorem 4.3. Let Z(G) be the center of a connected real semisimple Lie group G. Then
the following statements hold true:

(1) The quotient group G/Z(G) is isomorphic to the identity component of Aut(g) as
a Lie group.

(2) The quotient homomorphism G→ G/Z(G) is a covering projection.
(3) The center Z(G) is finitely generated.

Here Aut(g) denotes the group of Lie algebra automorphisms of g, which is contained
in the real general linear group GL(g) as a closed (and Zariski closed) subgroup. In
fact, the isomorphism of the first statement can be induced by the adjoint representation
Ad: G → GL(g), which is trivial on Z(G). The kernel of Ad is exactly Z(G) and the
image is the entire identity component of Aut(g) when G is semisimple, see [28, Chapter
II, Corollary 5.2 and Corollary 6.5]. The second statement is an immediate consequence of
the semisimplicity of G that the closed normal subgroup Z(G) has to be 0–dimensional,
and hence discrete. It follows that Z(G) is a quotient of the fundamental group π1(G),
so the finite generation property of the third statement holds by the fact G is homotopy
equivalent to any maximal compact subgroup of itself.

Remark 4.4. There is a much stronger result asserting that every connected Lie group
G admits a universal linear quotient. When G is semisimple, the result can be stated as
follows. Let π : G̃ → G denote the universal covering of G and let σ : G̃ → GC be the
complexification of G̃. Then every linear representation of G factors through G/π(kerσ)
and there exists a faithful linear representation of G/π(kerσ), which is therefore the uni-
versal linear quotient of G. See [32, Chapter XVII, Theorem 3.3] and [31].

4.3. Lattices. The existence of torsion-free uniform lattices in any connected semisimple
Lie group is a celebrated theorem due to A. Borel [4, Theorem B], which can be para-
phrased by the following:

Theorem 4.5. Let G be a connected real semisimple Lie group and H be a maximal
compact subgroup ofG. ThenG has a discrete subgroup Γ which acts freely discontinuosly
on the homogeneous G–space G/H with compact quotient.

In fact, given any torsion-free uniform lattice Γ of G by Borel’s theorem, the discrete-
ness of Γ and the compactness of H implies that the action of Γ on G/H is properly
discontinuous. Moreover, Γ ∩ H has to be finite, and therefore trivial as Γ contains no
torsion. The cocompactness of the action is equivalent to the uniformity of Γ as H is
compact.

5. CENTRAL EXTENSION

Let G be a connected semisimple Lie group. We assume for this section that the center
Z of G is torsion-free. Denote by H a maximal compact subgroup of G and X the homo-
geneous space G/H . In this section, we consider a natural non-splitting central extension
GR of G, which contains a maximal compact subgroup HR extending H . The associated
homogeneous space GR/HR can be identified with X , but there are more transformations
coming from the enlarged group GR. In our applications, passage from G to GR allows us
more room to deform a representation.
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Note that by our assumption and Theorem 4.3, the center Z of G is a finitely generated
free abelian group. Denote by ZR the (additive) torsion-free abelian Lie group Z ⊗ R,
which is isomorphic to Rrk(Z) and contains Z naturally as the integral lattice.

Define the full central extension of G to be

GR = G×Z ZR,

namely, the quotient of G× ZR by the Z–action

z · (g, x) 7→ (gz, x− z ⊗ 1)

for all z ∈ Z. It is clear thatGR naturally containsG as a closed subgroup, which intersects
the center ZR in the naturally embedded Z. Denote byG the quotient groupG/Z. We have
the following commutative diagram of Lie group homomorphisms:

{0} // Z //

��

G //

��

G //

id

��

{1}

{0} // ZR // GR // G // {1}

where the rows are exact sequences.

5.1. Representation varieties and lift obstruction. For any finitely generated group π,
there are maps between the representation varieties

R(π,G) // R(π,GR) // R(π,G)

which are naturally induced by the group homomorphisms

G // GR // G.

Proposition 5.1. Suppose that G is a connected real semisimple Lie group with torsion-
free center Z. There is a characteristic class for G–representations of finitely generated
groups, namely, a natural assignment

eZ : R(π,G)→ H2(π;Z)

for any finitely generated group π. Moreover, the following statements are true:

(1) The space of representations R(π,G) is a finite union of path-connected compo-
nents of an affine real algebraic variety. The characteristic class eZ is constant
over each path-connected component ofR(π,G).

(2) The space of representations R(π,G) is an H1(π;Z)–principal bundle over the
union of the path-connected components ofR(π,G) on which eZ is trivial.

(3) The space of representations R(π,GR) is an H1(π;ZR)–principal bundle over
the union of the path-connected components ofR(π,G) on which eZ is torsion.

Proof. For any finitely generated group π and any G–representation η of π, the character-
istic class eZ(η) ∈ H2(π;Z) can be constructed concretely as follows:

Take any CW complex K which realizes the Eilenberg–MacLane space K(π, 1). De-
note by Pη the associated G–principal bundle K ×η G over K. Let {Uα}α∈A be a locally
finite open cover of K over which Pη is locally trivialized by sections sα : Uα → Pη|Uα .
The transition functions gαβ ∈ G are given by sβ = sαgαβ over anyUα∩Uβ , which satisfy
the cocycle condition gαβgβγgγα = 1 over any Uα∩Uβ∩Uγ . Take a lift g̃αβ ∈ G for each
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transition function in such a way that g̃αβ = g̃−1
βα . It follows that over each Uα ∩Uβ ∩Uγ ,

the lift determines an element
g̃αβ g̃βγ g̃γα ∈ Z

It is easy to check that this determines a Z–valued Čech 2–cocycle which represents a
cohomology class

eZ(η) ∈ Ȟ2(K;Z) ∼= H2(π;Z)

which depends only on the isomorphism class of the bundle, which means that eZ(η)
depends only on η and it is functorial with respect to homomorphisms between finitely
generated groups.

To prove statement (1), we first observe that eZ is by definition constant as the rep-
resentation η varies continuously, so it is constant on each path-connected component of
R(π,G). This follows from the fact that when η varies continuously the corresponding
bundles are isomorphic so eZ is constant. To bound the number of the path-connected
components, we apply Theorem 4.3 about semisimple Lie groups. Denote by g the Lie
algebra of G. The adjoint representation Ad: G → Aut(g) induces an embedding of G
as the identity component of Aut(g). Note that for any continuous path of representations
ρt : π → Aut(g), the image of every element of π must remain in some component of
Aut(g) all the time. It follows that R(π,G) can be identified with those path-connected
components ofR(π,Aut(g)) which consist of all the representations into the identity com-
ponent of Aut(g). Since Aut(g) is a Zariski closed subset of GL(g), (thus an affine real
algebraic group,)R(π,Aut(g)) is an affine real algebraic variety (namely, a Zariski closed
subset of RN for some large N ). By H. Whitney [44, Theorem 3], R(π,Aut(g)) has at
most finitely many path-connected components, so the same holds for R(π,G). Note that
G is an analytic linear group but not an algebraic group in general.

To prove statement (2), regard any element α ∈ H1(π;Z) as a homomorphism α : π →
Z. For any representation ρ : π → G, we can twist ρ by α, namely, setting α · ρ : π → G
by (α ·ρ)(g) = α(g)ρ(g). This induces an action ofH1(π;Z) onR(π,G) which is clearly
free. Note thatZ(G) is discrete by Theorem 4.3, so the action is discontinuous with respect
to the algebraic-convergence topology, as can be easily checked on a finite set of gener-
ators. This action endows R(π,G) with a H1(π;Z)–principal bundle structure. Every
fiber of R(π,G) is clearly projected to a single point of R(π,G). As G/Z is connected
and covered by G, by M. Culler [15, Theorem 4.1], any continuous path of representations
in R(π,G/Z) can be lifted to R(π,G) provided that some representation of the path can
be lifted. Therefore, R(π,G) are projected onto a sub-union of path-connected compo-
nents of R(π,G/Z). By the construction of eZ , a G–representation η can be lifted to a
G–representation exactly when eZ(η) ∈ H2(π;Z) vanishes.

Statement (3) can be proved in a similar way. In fact, since eZ is constant on the
components of R(π,G), which are at most finitely many, we may take D to be the least
common multiple of the orders of those eZ–values which are torsion. Using a finite central
extension GD−1Z = G ×Z (Z ⊗ D−1Z) instead of G, we see that all the eZ–torsion
components of R(π,G) are projected onto by R(π,GD−1Z), and hence by R(π,GR).
Representations of the other components of R(π,G) cannot be lifted to R(π,GR) since
eZ survives inH2(π;ZR). TheH1(π;ZR)–principal bundle structure ofR(π,GR) follows
from the same argument as in (2). This completes the proof. �

5.2. Associated homogeneous space. From the proper action of G on its associated con-
tractible homogeneous space X = G/H , one can extract a concrete model of the central
extension GR as follows.
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Proposition 5.2. Let G be a connected semisimple Lie group. Assume that the center Z of
G is torsion-free. Let H be a maximal compact subgroup of G. There exists a connected
closed torsion-free abelian subgroup R of G with the following properties:

• The subgroup of G generated by H and R is a direct product HR.
• The intersection of R and Z is a lattice of R and a finite-index subgroup of Z.
• The center Z of G is contained in HR.
• The quotientHR/Z is embedded as a maximal compact subgroup ofG as induced

by the projection.
Therefore, the center Z ofG is embedded as a lattice ofHR/H via the quotient projection,
and there is a uniquely induced isomorphism

GR ∼= G×Z (HR/H).

Proof. Let H be a maximal compact subgroup of G. Let K be a maximal compact sub-
group of G which contains the projected image of H . Denote by K the preimage of K in
G. Since maximal compact subgroups are topologically deformation retracts of any virtu-
ally connected Lie group, we have homotopy equivalences H ' G and K ' G via the
inclusions. Therefore, we have H ' K ' G via the inclusions because K is the covering
space of K that corresponds the subgroup π1(G) of π1(G). Moreover, K and K are both
connected as K is homotopy equivalent to the connected group G.

By the structure theory of compact Lie groups, the universal covering group K̃ of the
connected compact Lie group K is isomorphic to a direct product K̃1 × · · · × K̃m × Rn
where K̃i are simply-connected simple compact Lie groups, [33, Theorem 6.6]. The center
Z(K̃) of K̃ is the direct product of the finite centers Z(K̃i) and the abelian factor Rn. The
kernel of the covering projection K̃ → K can be identified with Z(G̃) by the homotopy
equivalenceK ' G. Denote by LK the kernel of K̃ → K. There is an induced short exact
sequence of discrete abelian groups

{0} // LK // Z(G̃) // Z // {0},

which splits as Z is assumed to be torsion-free. It follows that the intersection of LK with
Rn is a finite index subgroup of LK which is contained in a unique R–subspace VK of
Rn. Take any lift Z̃ of Z into Z(G̃). The intersection between Z̃ and the factor subgroup
Rn is a finite index subgroup of Z̃, and it is contained in a unique R–subspace R̃ of Rn.
However, note that Z(G̃) may not be a subgroup of the connected component Rn of Z(K̃),
even if it is torsion-free, so one might not be able to make Z̃ contained in Rn. The fact that
K is compact implies the relation

dimVK + dim R̃ = dimZ(K̃),

or more concretely, there is a direct-sum decomposition VK + R̃ = Rn. We take the
claimed abelian subgroup R of G to be the projected image of R̃.

Note that the preimage ofH in K̃ is exactly H̃ = K̃1×· · ·×K̃m×VK , which contains
the kernel LK of K̃ → K. Since R̃ meets H̃ trivially and centralizes H̃ , the double coset
HR forms a subgroup of G which is the direct product of H and R. The intersection
of Z and R is a finite-index subgroup of Z and a lattice of R because the same holds
for Z̃ and R̃. The fact that Z is contained in HR follows from that Z̃ is contained in
Z(G̃) ⊂ Z(H̃)R̃. The quotient HR/Z is a maximal compact subgroup of G because it is
exactly H̃R̃/Z(G̃) = K̃/Z(G̃) = K. Therefore, we have verified the claimed properties
about R.
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To complete the proof, we see that Z is embedded into HR/H as a lattice because it is
torsion-free and it meets R in a finite index subgroup. The induced isomorphism

GR ∼= G×Z (HR/H)

is immediately implied by the unique isomorphism

ZR ∼= HR/H

which respects the inclusions of Z. �

In the following, we keep the notation HR/H even though it is canonically isomorphic
to R. We denote the elements of HR/H as cosets rH where r ∈ R. In this way, we
remind ourselves that Z is not automatically contained in R as subgroups of G.

The homogeneous space X = G/H is equipped with a proper transitive action

G×Z (HR/H)→ Diff(X)

defined by

(g, rH) · (xH) = (gxr−1)H.

In this concrete model, there is a distinguished point

OX ∈ X,

namely, the coset H ∈ X . The stabilizer of OX , or the isotropy group of the action, is the
image of the diagonal embedding

∆: HR/Z → G×Z (HR/H)

defined by ∆(hrZ) = (hr, rH) mod Z. We denote the isotropy group as

HR = ∆(HR/Z),

while we identify GR with G×Z (HR/H). Therefore, we have an identification between
homogeneous spaces

X ∼= GR/HR

via the induced equivariant diffeomorphism.

5.3. Representations and reduction of bundles. Let M be a connected closed smooth
manifold. Denote by M̃ the universal cover of M . For any representation ρ : π1(M) →
GR, after choosing a ρ–equivariant smooth developing map Dρ : M̃ → X , there is an
induced principal HR–bundle HR(M̃,Dρ) over M̃ , namely, the pull-back of the canonical
principal HR–bundle GR → X via Dρ. The bundle space is the fiber product

HR(M̃,Dρ) = M̃ ×Dρ GR,

which consists of those points (m̃, g) ∈ M̃ ×GR such that Dρ(m̃) = g ·OX . The bundle
projection takes any point (m̃, g) to m̃. Moreover, HR(M̃,Dρ) is equipped with a natural
action of π1(M) given by σ · (m̃, g)→ (σ · m̃, ρ(σ) · g), which commutes with the bundle
projection, so the quotient by the action yields a principal HR–bundle HR(M,Dρ) over
M . This is a model of the HR–reduction of the flat principal GR–bundle M ×ρ GR over
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M , induced by the section s of M ×ρ X → M that corresponds to Dρ, in the sense that
the following diagram of maps commutes:

HR(M,Dρ)
incl. //

��

M ×ρ GR

��
M

s // M ×ρ X

The isomorphism type of HR–reductions of flat principal GR–bundles M ×ρ GR over
M depends only on the path-connected component of ρ ∈ R(π1(M), GR). However, the
models are different as ρ varies. In the following, we exhibit a construction that turns a
smooth path of representations into a smoothly varying family of HR–reductions tied to
a fixed model. The procedure should be routine and easy in principle, but we need to
properly formulate and examine a few details.

To keep concrete, we say that a path of representations ρt inR(π1(M), GR) is smooth if
at every element σ ∈ π1(M), the path ρt(σ) is smooth inGR. According to the description
of R(π1(M), GR) from Proposition 5.1, any pair of representations on a path-connected
component of R(π1(M), GR) can be connected by a piecewise smooth path of represen-
tations

ρt : π1(M)→ GR,

parametrized by t ∈ [0, 1].

Lemma 5.3. Given a smooth path of representations ρt : π1(M)→ GR, parametrized by
t ∈ [0, 1], there exists a path of smooth developing maps

Dt : M̃ → X

which is ρt–equivariant for each t and which varies smoothly with respect to t.

Proof. Suppose that ρt is a smooth path of representations. Write M[0,1] for the product
[0, 1]×M , and Mt for any slice {t}×M . We take the induced smooth bundle over M[0,1]

with fibers diffeomorphic to X , denoted as M[0,1] ×ρ X . The total space is the quotient of
[0, 1]×M̃×X by the induced action of π1(M), namely, σ ·(t, m̃, x) = (t, σ ·m̃, ρt(σ) ·x).
The bundle projection is induced by the projection of the universal cover onto the first
two factors. Since the fiber X is contractible, the bundle admits a continuous section,
which can be perturbed to be a smooth section s : M[0,1] → M[0,1] ×ρ X by standard
techniques of approximations [30, Chapter 2, see Section 2, Exercise 3]. Any elevation
s̃ : [0, 1] × M̃ → [0, 1] × M̃ ×X gives rise to a path of developing maps Dt : M̃ → X
such thatDt(m̃) is theX–component of s̃(t, m̃). It follows thatDt(σ ·m̃) = ρt(σ)·Dt(m̃)
for all deck transformations σ ∈ π1(M) and Dt varies smoothly for t ∈ [0, 1]. Therefore,
Dt is a smooth path of ρt–equivariant smooth developing maps, as claimed. �

Proposition 5.4. For every path-connected component C of R(π1(M), GR), there is a
unique principal HR–bundle

HR(M)C →M

whose pull back HR(M̃)C → M̃ over M̃ satisfies the following property:
Given any smooth path of ρt–equivariant developing maps Dt : M̃ → X with respect

to a smooth path of representations ρt on C, parametrized by t ∈ [0, 1], there exists a path
of π1(M)–equivariant isomorphisms of principal HR–bundles

φt : HR(M̃)C → HR(M̃,Dt)
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which is smooth in the sense that coordinate functions of the following composed maps

HR(M̃)C
φt−→ HR(M̃,Dt)

incl.−→ M̃ ×GR.

vary smoothly with respect to t in any local coordinates in M̃ ×GR.

Proof. Given any smooth path of ρt–equivariant developing maps Dt : M̃ → X with
respect to a smooth path of representations ρt, parametrized by t ∈ [0, 1], the principal
HR–bundles HR(M̃,Dt) can be put together as a smooth principal HR–bundle

HR(M̃[0,1], D[0,1])→ M̃[0,1],

where M̃[0,1] is the product [0, 1] × M̃ . The bundle space HR(M̃[0,1], D[0,1]) consists of
the points (t, m̃, g) of [0, 1] × M̃ × GR with the property that Dt(m̃) = g · OX , and the
bundle projection takes (t, m̃, g) to (t, m̃). As π1(M) acts freely on HR(M̃[0,1], D[0,1]) by
σ · (t, m̃, g) = (t, σ · m̃, ρt(σ)g), which commutes with the bundle projection, there is an
induced smooth principal HR–bundle

HR(M[0,1], D[0,1])→M[0,1],

where M[0,1] is the product [0, 1] ×M . There exists a smooth isomorphism of principal
HR–bundles

[0, 1]×HR(M,D0)
Ψ //

��

HR(M[0,1], D[0,1])

��
[0, 1]×M id // M[0,1]

which can be constructed as follows.
Observe that both [0, 1]×HR(M,D0) andHR(M[0,1], D[0,1]) restricts to beHR(M,D0)

over the 0–slice M0 of the base space. As M0 is a deformation retract of M[0,1], there is
a continuous isomorphism Ψ of principal HR–bundles which fits into the claimed commu-
tative diagram. We can modify Ψ to be smooth by the following argument: Cover M by
compact disksU1, · · · , UN , such that eachUi is contained in an open regular neighborhood
U ′i . The product of Ui and U ′i with [0, 1] are denoted as Ui,[0,1] and U ′i,[0,1] accordingly.

Then the smooth principalHR–bundlesHR(M̃[0,1], D[0,1]) and [0, 1]×HR(M̃,D0) can be
trivialized over U ′i,[0,1] by smooth local sections si,[0,1] and id[0,1] × si,0 accordingly, such
that the HR–valued transition functions on overlaps are all smooth for both bundles. With
the local trivializations given by the local sections, the continuous bundle-isomorphism Ψ
is determined by its local functions hi : Ui,[0,1] → HR. Those functions are defined by the
relation

Ψ
(
(id[0,1] × si,0)(t, m̃)

)
= si,[0,1](t, m̃) · hi(t, m̃),

where the right action of hi(t, m̃) applies only to the GR–component by right multiplica-
tion. Using the standard approximation techniques [30, Chapter 2], we can slightly perturb
h1 over U ′1,[0,1] to make it smooth in an open neighborhood of U1. Modify Ψ accordingly
over U ′1,[0,1]. Proceeding inductively, we can modify the next hi over U ′i,[0,1] without af-
fecting the already modified Ψ on U1∪· · ·∪Ui−1. After finitely many steps, we eventually
obtain a modified bundle-isomorphism Ψ which is smooth.

In particular, we see that the restriction of Ψ to the t–slice {t} ×HR(M,D0) induces a
smooth path of smooth isomorphisms of principal HR–bundles over M :

Ψt : HR(M,D0)
∼=−→ HR(M,Dt).
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After passing to covering spaces, it gives rise to a smooth path of smooth π1(M)–equivariant
isomorphisms of principal HR–bundles over M̃ :

ψt : HR(M̃,D0) ∼= HR(M̃,Dt).

To conclude the proof, it suffices to show that given any path-connected component C
of R(π1(M), GR), any representation ρC and a smooth ρC–equivariant developing map
DC : M̃ → X , the isomorphism class of the principal HR–bundle HR(M,DC) depends
only on C. Taking this fact for granted for the moment, we can fix any such model as
the claimed HR(M)C . In fact, given any smooth path of ρt–equivariant developing maps
Dt : M̃ → X with respect to a smooth path of representations ρt on C, parametrized by
t ∈ [0, 1], the claimed smooth path of π1(M)–equivariant isomorphisms φt can be taken
as the following path of composed isomorphisms

HR(M̃)C
∼=−→ HR(M̃,D0)

ψt−→ HR(M̃,Dt),

where the first isomorphism does not depend on t.
To see that the isomorphism class of HR(M,DC) depends only on C, we argue as

follows. For any fixed ρC of C, different choices of smooth ρC–equivariant developing
maps can be joined by a smooth path of ρC–equivariant developing maps, for example,
using the argument of Lemma 2.2 and the developing map interpretation of sections. So
the isomorphism type of HR(M,DC) depends only on ρC . For any other choice ρ′C of
C, and any D′C accordingly, there is a piecewise smooth path connecting ρC and ρ′C . So
by Lemma 5.3 applied to each smooth piece, and the induced isomorphism ψ1 constructed
above, we obtain an isomorphism between HR(M,DC) and HR(M,D′C), through a finite
sequence of intermediate isomorphisms. Therefore, the isomorphism type of HR(M,DC)
depends only on C. This completes the proof. �

6. COHOMOLOGY OF LIE ALGEBRAS

Cohomology of Lie algebra supplies a useful device for computation of volume for
representations. From the level of forms it can be derived through several standard opera-
tions associated with the exterior algebra. The constructions that we recall in this section
apparently work for arbitrary ground fields, but we specialize our discussion to real Lie
algebras.

6.1. Operations on forms. Let g be a real Lie algebra. The exterior algebra

A∗(g) =
⊕
k

∧kg∗

is a graded algebra over R. We regard any exterior k–form over g as an antisymmetric
R–multilinear function of k variables in g and valued in R. More generally, given any
g–module V , namely, a R–vector space with a Lie algebra homomorphism g→ End(V ),
we can consider V –valued exterior k–forms over g. Such twisted forms constitute

A∗(g;V ) =
⊕
k

Hom(∧kg, V ),

which is a graded left A∗(g)–module with respect to the wedge product. Elements of
Hom(∧kg, V ) are regarded as antisymmetric R–multilinear maps f : g× · · · × g→ V .

On any A∗(g;V ) there are three natural operations, namely, the differential, Lie deriva-
tives, and the interior product. The differential δ : Ak(g;V ) → Ak+1(g;V ) is defined



VOLUME OF REPRESENTATIONS AND MAPPING DEGREE 21

by

(δf)(X1, · · · , Xk+1) =
∑
i

(−1)i+1Xi · f(X1, · · · , X̂i, · · · , Xk+1) +∑
i<j

(−1)i+jf([Xi, Xj ], X1, · · · , X̂i, · · · , X̂j , · · · , Xk+1).

The differential ofA∗(g) is denoted particularly as d, and there the first summation is gone.
Given any X ∈ g, the Lie derivative LX : Ak(g;V )→ Ak(g;V ) is defined by

(LXf)(X1, · · · , Xk) = X · f(X1, · · · , Xk) +
∑
i

f(X1, · · · , [Xi, X], · · · , Xk),

and the interior product iX : Ak(g;V )→ Ak−1(g;V ) is defined by

(iXf)(X1, · · · , Xk−1) = f(X,X1, · · · , Xk−1).

Recall that LX , iX and δ are related by

(6.1) LX = δ ◦ iX + iX ◦ δ.

If we take a basis e1, · · · , en of g and let e∗1, · · · , e∗n denote the dual basis of g∗, then
the usual differential can be calculated by

(6.2) 2dω =
∑
i

e∗i ∧ Leiω,

for ω ∈ A∗(g), [5, Ch. I, Sec. 1.1, Formula (7)]. In particular, if ω is a 1–form, then

(6.3) dω =
∑
i<j

ω([ej , ei]) e
∗
i ∧ e∗j .

Here and throughout this paper, we adopt the wedge product notation

e∗i1 ∧ · · · ∧ e
∗
ik

=
∑
σ∈Sk

sgn(σ) e∗iσ(1) ⊗ · · · ⊗ e
∗
iσ(k)

.

6.2. Relative cohomology with module coefficients. With the notations above, it can be
checked that (A∗(g;V ), δ) becomes a cochain complex over R, and the induced cohomol-
ogy is denoted by

H∗(g;V ) = H∗(A∗(g;V )).

When V is trivially R, the cohomology is usually called the cohomology of the Lie algebra
g, denoted simply by H∗(g).

More generally, suppose that h is a Lie subalgebra of g. We denote by

A∗(g, h;V ) ⊂ A∗(g;V )

the forms that are annihilated by both LX and iX for every X ∈ h. Note that A∗(g, h;V )
is closed under δ by the formula (6.1), so δ restricts to be a differential on A∗(g, h;V ).
This allows us to define the relative cohomology:

H∗(g, h;V ) = H∗(A∗(g, h;V )).

If (g, h) are the Lie algebras of a real Lie group G and a connected closed subgroup H ,
the relative cohomology H∗(g, h) can be identified with the cohomology of G–invariant
differential forms of the homogeneous space X = G/H . Namely, denote by A∗(X)G
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the graded algebra of G–invariant differential forms of X , and by H∗(A∗(X)G) its cor-
responding cohomology. The evaluation at the origin yields an isomorphism A∗(X)G →
A∗(g, h) that commutes with the differential, so it induces an identification

H∗(A∗(X)G) ∼= H∗(g, h),

see [5, Chapter 1, Section 1.6].

6.3. The coadjoint module. The dual vector space g∗ can be endowed with a coadjoint
representation

−ad∗ : g→ End(g∗)

to become a g–module. The action g× g∗ → g∗ is therefore defined by

(6.4) (X,ω) 7→ LXω = ω([·, X]).

Remark 6.1. Some authors adopt a different convention, using the coaction ad∗ of g on
g∗. The difference is that −ad∗ : g → End(g∗) is a Lie algebra homomorphism which
preserves the Lie bracket. In fact, the Jacobi identity implies that

ad∗([X,Y ]) = ad∗(Y ) ◦ ad∗(X)− ad∗(X) ◦ ad∗(Y ).(6.5)

For this reason, our formula of the differential δ is not the same as [13, (23.1), page 115],
but the convention here agrees with [5, Chapter 1].

There exists a natural homomorphism of graded R–modules of degree −1:

J : A∗(g)→ A∗−1(g; g∗)

defined by the formula:

(6.6) (Jω)(X1, · · · , Xk−1)(X) = iX(ω(·, X1, · · · , Xk−1)) = ω(X,X1, · · · , Xk−1),

for any ω ∈ Ak(g).

Lemma 6.2. The homomorphism J satisfies the following commutative relations:

δ ◦ J = −J ◦ d(6.7)
iX ◦ J = −J ◦ iX(6.8)
LX ◦ J = J ◦ LX(6.9)

Proof. Assuming the first two relations, we can derive the third relation by:

LX ◦ J = (δ ◦ iX + iX ◦ δ) ◦ J = J ◦ (d ◦ iX + iX ◦ d) = J ◦ LX .
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For any ω ∈ Ak(g), the first two relations can be verified directly as follows. For any
X1, · · · , Xk, Y ∈ g, we compute:

((δJω)(X1, · · · , Xk)) (Y )

=
∑
i

(−1)i+1
(
−ad∗(Xi) · ((Jω)(X1, · · · , X̂i, · · · , Xk))

)
(Y ) +

∑
i<j

(−1)i+j
(

(Jω)([Xi, Xj ], X1, · · · , X̂i, · · · , X̂j , · · · , Xk)
)

(Y )

=
∑
i

(−1)i+1ω([Y,Xi], X1, · · · , X̂i, · · · , Xk) +∑
i<j

(−1)i+jω(Y, [Xi, Xj ], X1, · · · , X̂i, · · · , X̂j , · · · , Xk)

= (−1)×
∑
i

(−1)1+(i+1)ω([Y,Xi], X1, · · · , X̂i, · · · , Xk) +

(−1)×
∑
i<j

(−1)(i+1)+(j+1)ω([Xi, Xj ], Y,X1, · · · , X̂i, · · · , X̂j , · · · , Xk)

= −(dω)(Y,X1, · · · , Xk)

= − ((Jdω)(X1, · · · , Xk)) (Y ).

This shows δ ◦ J = −J ◦ d. For any X,X1, · · · , Xk−1, Y ∈ g, we compute:

((iXJω)(X1, · · · , Xk−1)) (Y ) = ((Jω)(X,X1, · · · , Xk−1)) (Y )

= ω(Y,X,X1, · · · , Xk−1),

and

((J iXω)(X1, · · · , Xk−1)) (Y ) = (iXω)(Y,X1, · · · , Xk−1)

= ω(X,Y,X1, · · · , Xk−1).

This shows iX ◦ J = −J ◦ iX . �

As an immediate consequence, for any Lie subalgebra h of g, there is an induced homo-
morphism of differential graded R–modules of degree −1:

J : A∗(g, h)→ A∗−1(g, h; g∗),

and an induced homomorphism of graded R–modules of degree −1:

J ′ : H∗(g, h)→ H∗−1(g, h; g∗).

7. VOLUME RIGIDITY OF REPRESENTATIONS

In this section, we prove that for the full central extension of a connected real semisim-
ple Lie group with torsion-free center, the volume of representations for any given manifold
is locally constant.

Theorem 7.1. Let G be a connected real semisimple Lie group. Suppose that the center
Z of G is torsion-free, and denote by GR the full central extension of G. For any closed
oriented smooth manifold M , the volume of representations

volGR : R(π1(M), GR)→ R

is constant on every path-connected component of the representation spaceR(π1(M), GR).
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The rest of this section is devoted to the proof of Theorem 7.1. Fix a maximal compact
subgroup H of G and denote by X = G/H the associated contractible homogeneous G–
space. We identify the proper action of GR on X , following Proposition 5.2, so that the
extended isotropy group is a maximal compact subgroup HR of GR. Fix a GR–invariant
volume form ωX of X . Therefore, the volume of representations of this section are con-
sidered with respect to the triple

(GR, X, ωX)

in accordance with Notation 2.4. Suppose thatM is a closed oriented manifold of the same
dimension as X , as in other dimensions the volume is constantly zero by our convention.

Let C be any path-connected component of the representation space R(π1(M), GR).
According to the description ofR(π1(M), GR) from Proposition 5.1, any pair of represen-
tations on C can be connected by a piecewise smooth path of representations. Therefore,
it suffices to show that volGR is constant restricted to any smooth path of representations
on C.

7.1. Derivative of developing paths. Suppose that

ρt : π1(M)→ GR

is a smooth path of representations on C, parametrized by t ∈ [0, 1]. By Lemma 5.3, there
exists a smooth path of smooth ρt–equivariant developing maps

Dt : M̃ → X.

It follows that there is an induced path of homomorphisms between differential graded
R–algebras:

D]
t : A∗(X)GR → A∗(M̃)π1(M),

namely, R–linear homomorphisms which preserve the wedge product, the exterior differ-
ential, and the grading. The GR–invariant differential forms on X are naturally identified
with exterior forms on the tangent space THX at the coset H of the homogeneous space
X = G/H , where the isotropy group isHR. The π1(M)–invariant differential forms on M̃
are naturally identified with the pull-backs of the differential forms on M via the covering.
Therefore, the induced path of homomorphisms between differential graded R–algebras
can be identified as

D]
t : A∗(gR, hR)→ A∗(M)

This path path is smooth with respect to t in the sense that the coordinate functions of the
image of D]

t are smooth in t for any local coordinates in M . The derivative of D]
t with

respect to t gives rise to a smooth path of homomorphisms between differential graded
R–modules

Ḋ]
t : A∗(gR, hR)→ A∗(M).

On any open subset U of M with local coordinates (u1, · · · , um),

D]
t(ω) =

∑
i1<···<ik

fωi1,··· ,ik(t, u1, · · · , um) dui1 ∧ · · · ∧ duik ,

where the coefficient functions are linear in ω ∈ Ak(gR, hR) and smooth in (t, u1, · · · , um),
and

Ḋ]
t(ω) =

∑
i1<···<ik

∂fωi1,··· ,ik
∂t

∣∣∣∣
(t,u1,··· ,um)

dui1 ∧ · · · ∧ duik .

It follows that there are induced homomorphisms of graded R–algebras

D∗t : H∗(gR, hR)→ H∗(M ;R),
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and homomorphisms of graded R–modules

Ḋ∗t : H∗(gR, hR)→ H∗(M ;R).

Lemma 7.2. Given a class [ω] ∈ H∗(gR, hR), the smooth path of classesD∗t [ω] is constant
in H∗(M ;R) if and only if the derivative classes Ḋ∗t [ω] vanishes for all t.

Proof. It is obvious from the local expression that derivation and integration with respect
to t commute with the differentials of the differential graded R–modules A∗(gR, hR) and
A∗(M). As it can be checked completely locally, the conclusion is a simple fact of multi-
variable calculus. �

7.2. Factorization of derivatives.

Lemma 7.3. Given any smooth path of representations ρt ∈ R(π1(M), GR), parametrized
by t ∈ [0, 1], and any smooth path of smooth ρt–equivariant developing maps Dt : M̃ →
X , there exists a factorization of Ḋ]

t as a composition of homomorphisms, of degree −1
and +1, between differential graded R–modules

A∗(gR, hR)
J−→ A∗−1(gR, hR; g∗R)

Ḟt−→ A∗(M).

Therefore, there exists a factorization of Ḋ∗t accordingly

H∗(gR, hR)
J′−→ H∗−1(gR, hR; g∗R)

Ḟ ′t−→ H∗(M).

Proof. Denote by C the path-connected component ofR(π1(M), GR) which contains the
path ρt. Denote by HR(M,Dt) → M the principal HR–bundles which are the HR–
reductions induced by Dt, of the flat GR–bundles M ×ρt X →M with fiber X , (Subsec-
tion 5.3).

Fix a model of the HR–reduction associated with C, namely, a principal HR–bundle
HR(M)C → M as asserted by Proposition 5.4. With the pull-backs to M̃ denoted
by HR(M̃)C and HR(M,Dt) accordingly, there are smooth isomorphisms of π1(M)–
equivariant principal HR–bundles φt, as guaranteed by Proposition 5.4, which fit into the
following sequence of smooth morphisms of π1(M)–equivariant principal HR–bundles:

HR(M̃)C
φt //

��

HR(M̃,Dt)
incl. //

��

M̃ ×GR
proj. //

��

GR

��
M̃

id // M̃
id×Dt // M̃ ×X

proj. // X

(The action of π1(M) on any GR or X factors are understood as by ρt.) The composition
along the lower row of the commutative diagram is nothing but the developing maps Dt.
We denote by

∆t : HR(M̃)C → GR

the maps obtained by composition along the upper row, which are therefore ρt–equivariant,
and vary smoothly as parametrized by t ∈ [0, 1]. The induced maps of invariant differential
forms

∆]
t : A∗(GR)GR → A∗(HR(M̃)C)π1(M)

can be identified with the homomorphisms between differential graded R–algebras

∆]
t : A∗(gR)→ A∗(HR(M)C).
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The derivative of ∆]
t with respect to t are homomorphisms between differential graded

R–modules
∆̇]
t : A∗(gR)→ A∗(HR(M)C).

Via the bundle projection of the principal HR–bundles, the derivatives Ḋ]
t can be identi-

fied with the restriction of ∆̇]
t, as seen by the commutative diagram of homomorphisms

between differential graded R–modules

A∗(gR)
∆̇]
t // A∗(HR(M)C)

A∗(gR, hR)
Ḋ]t //

OO

A∗(M)

OO

where the vertical homomorphisms are inclusions, and forms ofA∗(M) are identified with
forms of A∗(HR(M)C) that are HR–horizontal and HR–invariant.

Note that HR(M)C is a principal HR–bundle. For any X ∈ hR, the flow on HR(M)C
given by the right action of the 1–parameter subgroup exp(sX) gives rise to a vector
field of HR(M)C , still denoted as X for simplicity. Then the interior product iX and Lie
derivative LX are operators onA∗(HR(M)C). Therefore, a form ofA∗(HR(M)C) isHR–
horizontal if and only if it is annihilated by iX for all X ∈ hR, and HR–invariant if and
only if it is annhilated by LX .

There is a natural factorization of ∆̇]
t into homomorphisms between differential graded

R–modules
A∗(gR)

J−→ A∗−1(gR; g∗R)
Ft−→ A∗(HR(M)C),

which is just the Leibniz rule of derivatives. More precisely, the homomorphism J is
the canonical homomorphism introduced in Subsection 6.3, (Formula 6.6). Identifying
Ak−1(gR; g∗R) with (∧k−1g∗R)⊗ g∗R, the homomorphism Ft is defined by specifying

Ft(ξ ⊗ ω) = ∆̇]
t(ω) ∧∆]

t(ξ).

The factorization is readily checked by

∆̇]
t(ω1 ∧ · · · ∧ ωk) =

k∑
i=1

∆]
t(ω1) ∧ · · · ∧ ∆̇]

t(ωi) ∧ · · · ∧∆]
t(ωk)

=

k∑
i=1

(−1)i+1∆̇]
t(ωi) ∧∆]

t (ω1 ∧ · · · ∧ ω̂i ∧ · · · ∧ ωk)

= Ft(J(ω1 ∧ · · · ∧ ωk)).

Furthermore, it is easy to verify that

d ◦ Ft = −Ft ◦ δ,

and that for any X ∈ h,
iX ◦ Ft = −Ft ◦ iX ,

and
LX ◦ Ft = Ft ◦ LX .

This means that Ft is indeed a homomorphism of differential graded R–modules, and its
restriction induces a homomorphism of differential graded R–modules

Ft : A
∗−1(gR, hR; g∗R)→ A∗(M).
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The restriction of J is a homomorphism of differential graded R–modules

J : A∗(gR, hR)→ A∗(gR, hR; g∗R),

(Subsection 6.3). Passing to the restrictions, therefore, we obtain a factorization of the
derivative Ḋ]

t into homomorphism of differential graded R–modules

A∗(gR, hR)
J−→ A∗−1(gR, hR; g∗R)

Ft−→ A∗(M),

as claimed. The cohomological factorization is an immediate consequence of the factor-
ization on the form level. This completes the proof. �

7.3. A vanishing lemma.

Lemma 7.4.
Hdim(X)−1(gR, hR; g∗R) = 0.

Proof. We compute the cohomology H1(gR, hR; gR) directly and derive the claimed van-
ishing by Poincaré duality. Here the coefficient gR is considered as the gR–module with
the adjoint action.

First observe that
H1(g, h) = 0.

In fact, for any ω ∈ A1(g, h) we have (dω)(X,Y ) = −ω([X,Y ]). If dω = 0, the
semisimplicity of g implies [g, g] = g, so ω = 0. Using the decomposition of gR into the
center and the simple factors,

gR = z(gR)⊕ g1 ⊕ · · · ⊕ gr,

we obtain an induced decomposition of H1(g, h; gR) into the direct sum of H1(g, h) ⊗R
z(gR) and H1(g, h; gi), which are all trivial by the above observation and Theorem 4.2.
Therefore,

H1(g, h; gR) = 0.

The cohomology classes of H1(gR, hR; gR) are by definition represented by R–linear
maps

f : gR → gR

with the property that
iX(f) = f(X) = 0

for all X ∈ hR and

(δf)(X,Y ) = [X, f(Y )]− [Y, f(X)]− f([X,Y ]) = 0

for all X,Y ∈ gR and

LX(f)(Y ) = [X, f(Y )]− f([X,Y ]) = 0

for all X ∈ hR and Y ∈ gR. For any such f , the restriction of f to g is a 1–cocycle of
A1(g, h; gR).

When h is nontrivial, the restriction of f to g is 0 because A0(g, h; gR) is trivial and
H1(g, h; gR) = 0. Then f is trivial on gR since it is also trivial on hR.

When h is trivial, the vanishing cohomology H1(g; gR) = 0 implies that there exists
some 0–cochain U ∈ gR, and

f(X) = [X,U ]

for all X ∈ g. We argue that f(X) = 0 if X lies in the center z(gR). In fact, the formula
of δf implies that [Y, f(X)] = 0 for all Y ∈ gR if X ∈ z(gR). So f(X) ∈ z(gR). On
the other hand, recall that hR is the diagonal of the subalgebra r ⊕ z(gR), where r is the



28 PIERRE DERBEZ, YI LIU, HONGBIN SUN, AND SHICHENG WANG

Lie algebra of the subgroup R of G, according to the description of HR from Proposition
5.2. It follows that for any X ∈ z(gR), there exists some X ′ ∈ r such that X + X ′ ∈ hR.
So we have f(X) = −f(X ′) = −[X ′, U ], which lies in g. It follows that f(X) lies in
z(gR) ∩ g = {0} whenever X lies in z(gR). This shows

f(X) = [X,U ] = (δU)(X)

for all X ∈ gR. In other words, any 1–cocycle f is a coboundary δU of some 0–cochain
U .

Therefore, H1(gR, hR; gR) always vanishes. By the Poincaré duality [5, Chapter I,
Proposition 1.5],

Hdim(X)−1(gR, hR; g∗R) ∼= H1(gR, hR; gR)∗ = 0,

which completes the proof. �

7.4. Proof of Theorem 7.1. We summarize the discussion so far and finish the proof
of Theorem 7.1. Let G be a connected semisimple Lie group with torsion-free center Z.
Adopt the notations (GR, X, ωX) as before. For any closed oriented smooth manifoldM of
the dimension the same asX , and for any path-connected componentC ofR(π1(M), GR),
it suffices to show that volGR(M,ρt) is constant for every smooth path of representations
on C, as we have argued at the beginning of this section.

Take a smooth path of ρt–equivariant developing maps Dt : M̃ → X as in Subsection
7.1. Adopting the notations there, we have

volGR(M,ρt) =

∫
F
D∗tωX = 〈D∗t [ωX ], [M ]〉.

Here the integral is over a fixed fundamental domain F of M̃ , and the pairing is the canon-
ical pairing between the top-dimensional cohomology and homology ofM . The derivative
homomorphism

Ḋ∗t : Hdim(X)(gR, hR;R)→ Hdim(X)(M ;R)

is constantly zero as it factors through Hdim(X)−1(gR, hR; g∗R) = 0, by Lemmas 7.3 and
7.4. It follows that the classes D∗t [ωX ] in Hdim(X)(M ;R) are constant independent of t,
(Lemma 7.2). Therefore, the volume volGR(M,ρt) is constant as t varies.

This completes the proof of Theorem 7.1.

8. COCOMPACT COEXTENSION

In this section, we study the structure of connected real Lie groups that contain closed
cocompact connected semisimple Lie subgroups.

Proposition 8.1. Let G be a connected real Lie group. Suppose that G contains a closed
cocompact connected semisimple Lie subgroup, then there exists an exact sequence of
homomorphisms of Lie groups

{0} −→ Z(G)tor −→ G −→ ĜR −→ T −→ {0}

where Z(G)tor is the maximal compact central subgroup of G, T is a connected compact
abelian Lie group, and ĜR is the full central extension of a connected semisimple Lie group
Ĝ with torsion-free center.
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In fact, the Lie groups ĜR, and T are determined by G up to isomorphism, as the proof
indicates. Note also that the maximal compact central subgroup Z(G)tor is a possibly
disconnected closed normal subgroup of G. Before we prove Proposition 8.1, we point out
a partial converse as the following:

Lemma 8.2. Suppose that G is a real connected Lie group that fits into an exact sequence
as of Proposition 8.1. If Z(G)tor is finite, then G contains a closed cocompact connected
semisimple normal subgroup.

Proof. Since Ĝ is a closed cocompact connected semisimple normal subgroup of ĜR,
which necessarily lies in the image of G by the exact sequence, the identity component
of the preimage of Ĝ in G yields a closed cocompact connected semisimple normal sub-
group of G as claimed. �

The rest of this section is devoted to the proof of Proposition 8.1. To this end, suppose
that G1 is a closed connected semisimple Lie subgroup of a real Lie group G, such that the
coset space G/G1 is compact.

We first show that G has a reductive Lie algebra, and that the commutator subgroup
[G,G] is a connected closed cocompact semisimple Lie subgroup of G. Then we derive
the exact sequence by studying the universal covering G̃→ G.

By the structure theory of Lie groups, the universal covering group G̃ of G is a Lie-
group semidirect product of its maximal connected solvable subgroup with a maximal
simply-connected semisimple subgroup, as induced by the Lie-algebra decomposition as a
semidirect product, (see [32, Chapter XII, Theorem 1.2, and Chapter XI]). The kernel of
the covering is a discrete central subgroup of G̃ [32, Chapter I, Exercise 1]. Therefore, the
maximal normal solvable subgroup Gsol of G is closed, and possibly disconnected, and
the quotient group Gss is a connected semisimple real Lie group with trivial center.

Denote byG1 the image ofG1 inGss. The preimage ofG1 inG is obviously the double-
coset GsolG1, which forms a subgroup of G that contains Gsol. We have a commutative
diagram of Lie-group homomorphisms

{1} // Gsol
// G // Gss

// {1}

{1} // Gsol
//

id

OO

GsolG1
//

OO

G1
//

OO

{1}

where the horizontal arrows have closed image and the rows are short exact sequences.
The following lemma implies that vertical arrows are all closed maps as well.

Lemma 8.3. The subgroup G1 of Gss is closed and cocompact.

Proof. The intersection of G1 ∩ Gsol is a closed normal solvable subgroup of G1. It is
necessarily discrete and central in G1, because the Lie algebra of that subgroup has to be
the trivial ideal by the semisimplicity of G1. It follows that G1 is a connected (analytic)
semisimple subgroup of Gss. Since Gss is semisimple with trivial center, it is a closed real
algebraic linear group (Theorem 4.3). In this case, it is known that G1 must be a closed
subgroup of Gss, [28, Chapter II, Exercise and Further Results D.4]. �

Lemma 8.4. The maximal solvable normal subgroupGsol ofG is abelian. In other words,
the Lie algebra of G is reductive.
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Proof. By Lemma 8.3, the subgroup GsolG1, which equals the preimage of G1 in G,
is a closed subgroup of G. By the assumption, G1 is a closed subgroup of G, so the
projection of G onto the coset space G/G1 is an analytic open mapping, [28, Chapter II
Section 4]. It follows that the image (GsolG1)/G1 is closed in G/G1. By the assumption,
G/G1 is compact, so (GsolG1)/G1 is a compact (possibly disconnected) manifold without
boundary. The component of (GsolG1)/G1 that contains the identity coset G1 can be
identified with the coset space G◦sol/(G

◦
sol ∩ G1), where G◦sol the identity component of

Gsol.
Observe that G◦sol ∩ G1 is virtually central in G◦sol, or in other words, a finite-index

subgroup of G◦sol ∩ G1 is central in G◦sol. In fact, the adjoint action induces a linear
representation α : G1 → Aut(gsol), and any element of G◦sol ∩ G1 is central in G◦sol if
and only if it lies in the kernel of α. However, as G1 is semisimple, the kernel of α meets
the center of G1 in a finite-index subgroup of that center, by [32, Chapter XVII Theorem
3.3 and Theorem 2.1]. Since G◦sol ∩ G1 is central in G1, some finite-index subgroup of
G◦sol ∩G1 is central in G◦sol.

Therefore, G◦sol ∩ G1 is a cocompact discrete virtually central subgroup of G◦sol, and
the coset space G◦sol/(G

◦
sol ∩ G1) is a quotient Lie group. The universal cover G̃◦sol is a

simply-connected solvable Lie group, which is in particular contractible. It follows from
the structure of compact Lie groups thatG◦sol/(G

◦
sol∩G1) is abelian. In particular, the Lie

algebra of the maximal solvable normal subgroup Gsol of G is abelian, so the Lie algebra
of G is reductive. �

By Lemma 8.4, the commutator subgroup of G is the semisimple part of G, namely, it
is the maximal semisimple analytic subgroup of G. We denote

Gss = [G,G].

Note that Gss covers Gss under the projection of G. Denote by K the maximal compact
connected normal subgroup of Gss, and by K its projected image in Gss. We also observe
that G1 is contained in Gss, since the corresponding Lie algebras satisfy

g1 = [g1, g1] ≤ [g, g] = gss.

The double coset KG1 forms a subgroup of G as K is normal.

Lemma 8.5. The commutator subgroup Gss of G equals KG1. Therefore, Gss is closed
and cocompact in G.

Proof. We observe that the subgroup KG1 is closed and cocompact in G. In fact, since
G1 is closed and K is compact, (KG1)/G1 is compact in the coset space G/G1, so KG1

is closed in G. Since G1 is cocompact in G, the subgroup KG1 is cocompact as well.
Therefore, it suffices to show that the Lie algebra ofKG1 equals the Lie algebra ofGss,

or equivalently, that KG1 equals Gss.
Because G1 is closed in Gss (Lemma 8.3), and K is compact in Gss, the coset space

(KG1)/G1 is compact in Gss/G1. It follows that KG1 is a closed and cocompact sub-
group of Gss. Since K is normal and compact, it suffices to show that the quotient Lie
group (KG1)/K equals Gss/K.

In other words, possibly after passing to the quotient, we may assume that the semisim-
ple Lie group Gss contains no compact normal subgroups. We must show under this as-
sumption that any connected cocompact closed semisimple subgroup G1 equals Gss. This
is a consequence of Borel’s Density Theorem. In fact, consider the adjoint representation
Ad: Gss → Aut(gss). Since the subspace g1 is invariant under the action of G1, Borel’s
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Density Theorem [39, Theorem 5.28] implies that g1 is invariant under the action of Gss.
This means that g1 is an ideal of gss, or equivalently, G1 is a normal subgroup of Gss.
The quotient Lie group Gss/G1 has to be trivial, since otherwise it would be a semisimple
Lie group of noncompact type, which is impossible provided that G1 is cocompact in Gss.
This shows that G1 equals Gss, which completes the proof. �

Therefore, we see that G has a reductive Lie algebra, and its commutator subgroup is
closed and cocompact.

Lemma 8.6. The quotient Lie group G/Z(G)tor has a reductive Lie algebra, and its
commutator subgroup is closed and compact. Furthermore, the center of G/Z(G)tor is
torsion-free.

Proof. The center of G/Z(G)tor is obviously torsion-free, otherwise Z(G)tor would not
be the maximal compact central subgroup. The Lie algebra of G/Z(G)tor is reductive as
the quotient only factors out some abelian ideal of the Lie algebra of G. The preimage of
the commutator subgroup of G/Z(G)tor in G is the double coset Z(G)torGss. Note that
Z(G)torGss forms a subgroup of G since Z(G)tor is normal. Moreover, it is the preimage
of the image of Z(G)tor in the coset space G/Gss, so the cocompactness of Gss implies
that Z(G)torGss is closed in G. It is cocompact in G since Gss is already cocompact.
Therefore, the image of (Z(G)torGss)/Z(G)tor in the quotient group G/Z(G)tor is a
closed and cocompact subgroup as asserted. �

With Lemma 8.6, we may argue for G/Z(G)tor instead of G, so the claimed exact
sequence can be obtained by the following lemma.

Lemma 8.7. Suppose in addtion that the center of G is torsion-free. Then there exists a
homomorphism of Lie groups

G→ ĜR

where ĜR is the full central extension of a connected real semisimple Lie group Ĝ with
torsion-free center. Moreover, the homomorphism is injective and the image is a closed
and cocompact normal subgroup of ĜR that contains Ĝ.

Proof. Denote by G̃ the universal covering Lie group of G, and by Λ the kernel of the
covering projection, which is a discrete, central subgroup of G̃. Denote by G′ the commu-
tator subgroup of G, which is closed and cocompact in G. Since the Lie algebra of G is
reductive, G̃ is the Lie-group direct product of the identity component of the center Z◦(G̃)

and the universal covering Lie group G̃′ of G′. Note that G̃′ can be identified with the
commutator subgroup of G̃, and it is the maximal connected semisimple subgroup of G̃,
which is a direct product of simply-connected simple Lie subgroups.

By the assumption that G has no central torsion, the identity component of the center
Z◦(G̃) is isomorphic to Rdim(Z◦(G̃)). Moreover, Λ contains the torsion subgroup Z(G̃′)tor
of the center Z(G̃′) of G̃′. Note that Z(G̃′) is a finitely generated abelian group. We take

G̃′free = G̃′/Z(G̃′)tor,

namely, the characteristic free abelian covering group ofG′. Note that the center Z(G̃′free)

is discrete and torsion-free. It follows from the above description that the quotient of G̃ by
Z(G̃′)tor is a direct product G̃′free × Z◦(G̃).

The kernel of the covering projection G̃′free×Z◦(G̃)→ G is the free central subgroup,

Λfree ⊂ Z(G̃′free)× Z◦(G̃),
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namely, the quotient group Λ/Z(G̃′)tor. Again by the assumption that G has no central
torsion, the quotient of Z(G̃′free) × Z◦(G̃) by Λfree is torsion-free abelian. This implies
that the projection of Λfree to Z(G̃′free) is a direct summand of Z(G̃′free). The assumption
that G′ is closed and cocompact in G implies that the projection of Λfree to Z◦(G̃) is
discrete and cocompact in Z◦(G̃), or in other words, the projection is a lattice of Z◦(G̃).
This implies a direct-sum decomposition

Z(G̃′free) = A⊕B ⊕ C

such that A⊕B is isomorphic with Λfree via the projection Λfree → Z(G̃′free) and that B
is identified with the kernel of the projection Λfree → Z◦(G̃). Note that B is contained in
Λfree, and the rank of A equals dim(Z◦(G̃)). We take a connected semisimple Lie group

Ĝ = G̃′free/B,

which covers G′ and has torsion-free center isomorphically projected to A⊕C. The above
description shows that there exists an isomorphism of Lie groups

G ∼= Ĝ×A (A⊗ R).

The right-hand side can be canonically embedded into Ĝ×A⊕C ((A⊕C)⊗R), which is the
full central extension ĜR of Ĝ. It is clear that this embedding has closed and cocompact
image. It is normal because it already contains Ĝ. Therefore, the Lie group Ĝ is as desired.

�

By Lemmas 8.6 and 8.7, we obtain an exact sequence

{1} −→ G/Z(G)tor −→ ĜR −→ T −→ {0},
where T is the connected compact abelian Lie group which is the cokernel of the homo-
morphism in the middle. Combining with the canonical short exact sequence

{0} −→ Z(G)tor −→ G −→ G/Z(G)tor −→ {1},
we obtain the exact sequence as claimed. This completes the proof of Proposition 8.1.

9. VOLUME FINITENESS AND NONTRIVIALITY

In this section, we prove Theorem 1.1, namely, the finiteness and nontriviality of the
volume function for real connected Lie groups that contain a closed cocompact semisimple
subgroup.

Proof of Theorem 1.1. SinceG contains a closed and cocompact semisimple Lie subgroup
G1 we can take a torsion-free uniform lattice Γ of G1, by Borel’s theorem on the existence
of uniform lattices (Theorem 4.5). Then Γ is also uniform in G. Take M to be the orbit
space of X quotiented by Γ. Note that M is aspherical as it is covered by a contractible
space X . The inclusion ρ0 : Γ → G is a discrete faithful representation of π1(M) ∼= Γ,
and

volG(M,ρ0) =

∫
M

ωX > 0.

Therefore, the volume function volG is nontrivial for some closed oriented smooth mani-
fold M .

It remains to show that volG takes only finitely many values for any M . By the formula
for the volume of induced representations (Proposition 3.1 (2)) and the characterization of
G (Proposition 8.1), it suffices to show that volGR takes only finitely many values for the
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full central extension GR of any real connected semisimple Lie group G with torsion-free
center.

In this case, by Proposition 5.1, there are at most finitely many path-connected com-
ponents of the space of representations R(π1(M);GR). By Theorem 7.1, the volume
function is constant on every path-connected component. Therefore, the volume function
volGR takes only finitely many values. This completes the proof. �

10. CONCLUSIONS

In conclusion, for any connected Lie group that contains a closed cocompact semisimple
subgroup, the representation volume of that group is a finite nontrivial homotopy-type
invariant for closed orientable smooth manifolds. In this case, the representation volume
is virtually essentially the representation volume associated to the semisimple subgroup of
the considered Lie group. For semisimple Lie groups with infinite center, the associated
representation volumes are useful invariants to detect Property D for certain manifolds with
vanishing simplicial volume.

In the following we propose a few further questions.

Question 1. In every dimension n ≥ 4, is there an orientable closed aspherical smooth
n–manifold M with Property D, whereas the representation volume V(M ′, G) vanishes
for every possible Lie group G and every finite cover M ′ of M? Here we require that G
defines a finite representation volume V (−, G) in the dimension n.

For dimension 3, any orientable closed 3–manifold with property D has a finite cover
with nonvanishing Seifert volume, see [17]. In dimension 4, the similar question for the
simplicial volume is open [22]. On the other hand, surface bundles over surfaces are known
to have the simplicial volume ‖X‖ at least 6χ(X) = 6χ(F )χ(B) > 0, provided that
χ(F ) < 0 and χ(B) < 0 for the fiber F and the base B, [34] and [9]. However, very little
is known about their virtual representations.

Question 2. Are there simply-connected closed manifolds of any dimension that have
Property D?

Highly connected manifolds tend to fail Property D. For example, it is known that any
(n−1)–connected 2n–manifoldM admits self-maps of nonzero degree, [21]. In particular,
admissible self-maping degrees of any simply-connected 4–manifold are all the perfect
squares 0, 1, 4, 9, 16, · · · . For simply-connected manifolds, representation volumes are by
definition zero so they provide no obstruction.

Question 3. What is the largest class of connected Lie groups that define nontrivial repre-
sentation volumes?
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