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Coherence among rotational ion channels during photoionization is exploited to

control the anisotropy of the resulting photoelectron angular distributions at specific

photoelectron energies. The strategy refers to a robust and single parameter control

using two ultra-short light pulses delayed in time. The first pulse prepares a super-

position of a few ion rotational states, whereas the second pulse serves as a probe

that gives access to a control of the molecular asymmetry parameter β for individual

rotational channels. This is achieved by tuning the time delay between the pulses

leading to channel interferences that can be turned from constructive to destructive.

The illustrative example is the ionization of the E(1Σ+
g ) state of Li2. Quantum wave

packet evolutions are conducted including both electronic and nuclear degrees of

freedom to reach angle-resolved photoelectron spectra. A simple interference model

based on coherent phase accumulation during the field-free dynamics between the

two pulses is precisely exploited to control the photoelectron angular distributions

from almost isotropic, to marked anisotropic.

PACS numbers: 33.80.-b, 03.65.Yz, 42.50.Hz
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I. INTRODUCTION

Quantum interference is one of the most reliable tools for controlling molecular dynamics

both for electronic and nuclear degrees of freedom [1–3]. Laser-induced interference pro-

cesses can be produced by a single pulse [2], but also using two-pulse scenarii, as realized

very often in coherent control strategies [1]. Time-resolved photoelectron angular distribu-

tions bring a very rich physical content based on an intricate combination of interference

involving temporal and angular information whose control lead to challenging applications

in electron-nuclear entanglement issues and photoelectron imaging, relevant in modeling bi-

ological processes [4]. At that respect, formal developments for calculating time-resolved

photoelectron differential cross-sections owe much to the seminal work of T. Seideman and

co-workers [5]. More precisely, pure rotational [6] and ro-vibrational motions [7] have succes-

sively been introduced in complete treatments of angular distributions of diatomic systems,

in terms of time and energy-dependent asymmetry parameter β. Even more challenging has

been a full numerical implementation of such models to the study of non radiative transitions

in pyrazine, a complex polyatomic molecule, by additionally including electronic relaxation,

through the well-known (S2 → S1) internal conversion mechanism [8, 9]. In these works, the

dynamical description involves a short pump excitation, probed by a time-delayed ionization

pulse and the role played (in alignment purpose for instance) of the pump field intensity, is

appropriately accounted for by a non-perturbative treatment. Concurrently, time-resolved

photoelectron spectra offer the possibility for quantum interference together with electron-

nuclear entanglement through the ionization of rovibrational wave packets. Such schemes

have been illustrated on the prototype alkali dimer Li2 to which numerous experimental [12–

14] and theoretical [15–19] studies have been devoted. In particular, photoelectron kinetic

energy distributions may be probed to reveal electron-nuclei entanglement resulting from

the anisotropy of the diatomic molecule and transferring the rotational phase information

in the photoelectron spectrum [18]. The control mechanism rests on an interference induced

by a picosecond pulse (long enough duration as compared with the rotational period) in-

volving different rotational channels of the ion. Searching for a systematic exploration of

possible control achievements in photoelectron spectra, we have recently examined the role

played by the pulse duration (or equivalently its bandwidth) from the pico- to femtosecond

range, putting the emphasis on angular distributions rather than kinetic energies [19]. More
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precisely, it has been shown how the behavior of the asymmetry parameter β is sensitive to

the pulse duration and how this can be explained by a seemingly incoherent average over ion

rotational channels. Still another two-color (ω and 2ω) laser induced electronic-vibrational

coherence dynamics has very recently been successfully measured and interpreted in the case

of the nitric oxide NO molecule [10]. The interference in play corresponds to three-photon

(ω + ω + ω) and two-photon (ω + 2ω) ionization processes creating a coherent superposi-

tion between two excited electronic states, and the control parameter is the relative phase

of the pulses [11]. This last work shows how the angular resolved photoelectron spectrum

encodes the information of the time-dependent superposition molecular state and confirms

the experimental feasibility of such control achievements.

The present work is devoted to a complete analysis of an interference scenario to provide

control strategies based on specific constructive versus destructive schemes of photoelectron

angular distributions of Li2 referring to a train of two ultra-short (femtosecond) linearly

polarized light pulses, the control knob being merely the time delay τ between them. Full

quantum calculations are interpreted using a simple analytical model describing the inter-

ference between accessible ion rotational channels, including the phase accumulated over τ

during the evolution between the pulses. We ultimately show that this single parameter τ

can be used to exert an efficient and robust control on the molecular asymmetry param-

eter β varying it in a wide range, from values close to β = 2, signature of an anisotropic

distribution pointing along the polarization axis, to values close to β = 0, typical for an

isotropic distribution. We also show that this control can be used to disentangle the nor-

mally mixed contributions due to the different ion rotational states involved. As molecular

one-photon ionization experiments with varying pulse duration is becoming an important is-

sue in High Order Harmonic Generation [20–24] and in large-scale free-electron laser (FEL)

experiments [25], these results fall within the expanding field of ultra-fast photoelectron

spectroscopy.

The paper is organized as follows: In Section II, we briefly recall the salient features of the

quantum model describing the Li2 dimer excited by two-pulses acting on both electronic and

nuclear dynamics. This section is also devoted to the development of the simplified analytical

model which will later be used to reach a complete rationalization of the role played by ion

rotational channels in the interference process affecting photoelectron energy and angular

distributions. Section III presents the study of kinetic energy and angular distributions
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at specific energies, with a complete description of the coherent control strategy of the

asymmetry parameter β. Conclusions and some new perspectives are finally presented in

Section IV.

II. THE MOLECULE-PLUS-FIELD MODEL

A. The three-step ionization process

In this study, Li2 photoionization proceeds through a three-step excitation [12–14, 18],

namely: (i) A linearly polarized continuous wave (cw) resonant light field launches the

initial ground rovibrational level (vX = 0, NX = 0) of the ground electronic state X(1Σ+
g )

on the first excited A(1Σ+
u ) electronic state, preparing the rovibrational level (vA = 0, NA =

NX + 1 = 1) ; (ii) A second cw laser resonantly prepares one of the two rovibrational levels

(vE = 0, NE = NA±1 = 0, 2) of a second excited state E(1Σ+
g ). Note that the symmetries and

Franck-Condon overlaps are favorable for such transitions, which were already observed [27–

30]. In the following we assume well-separated dynamics from each of these rotational

states, namely NE = 0 and NE = 2 ; (iii) The third step corresponds to the ionizing

probe preparing a superposition of rotational channels in the continuum of the Li+2 ground

electronic state X(2Σ+
g ). These channels are labeled by the rotational quantum number

N+ of the ion resulting from a photon absorption from the rotational state NE and from

the ejection of a p-electron. Considering the fact that both a photon absorption and a p-

electron escape modify the angular momentum by ±1, the ion rotational channels which

are ultimately reached are N+ = 0, 2 for the initial state NE = 0, or N+ = 0, 2, 4 for the

initial state NE = 2. The corresponding rotational levels are separated by 6B for N+ = 0, 2,

and by 20B for N+ = 0, 2, 4, B being the ion rotational constant for v+ = 0, taken as

B ' 0.5 cm−1 [19].

The total energy brought in the system by the probe pulse is shared among the ion

rovibrational energy and the photoelectron kinetic energy. Fig. 1 displays the potential

energy curves of the E(Li2) and X(Li+2 ) electronic states together with the rotational levels

in consideration. Due to similar values of the equilibrium position and vibrational frequency

of these states, a Franck-Condon vertical launching of the initial vibrationless wave function

does not change the corresponding vibrational levels; i.e., vX = vA = vE = v+ = 0. The
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probe field illustrated in the inset of Fig. 1 is built from two ultra-short identical sine-square

pulses, both of full width at half maximum (FWHM) T = 50 fs, delayed by a tunable time

τ , typically in the femtosecond to picosecond range. More precisely, the pulsed electric field

is written as

E(t) = E(t) ê = E0

[
f(t) + f(t− τ)

]
cos(ωt) ê , (1)

with the individual pulse envelop

f(t) = sin2

(
πt

2T

)
∀t ∈ [0, 2T ] , (2)

where f(t) = 0 for t 6 0 and t > 2T . The pulses are linearly polarized along the unit vector

ê, with a peak amplitude E0 weak enough to remain in the linear excitation regime. It is

worth noting that such ultra-short pulses have a bandwidth ∆ω large enough to encompass

all accessible rotational levels N+, since ∆ω � 20B. They can thus induce interfering

ionization paths among the corresponding channels. In the following, the space-fixed z-axis

is taken to be along the field polarization vector.

Hereafter we focus on the last step of the excitation process leading to two separated

ionization routes starting either from NE = 0 or NE = 2, taken independently. The possible

interference mechanism rests on the phase accumulation, due to the time delay τ , affecting

the different ion rotational channels N+.

B. Multichannel close-coupled equations formalism

The time evolution of the wave packet takes place on the two electronic states, E(1Σ+
g ) of

Li2 (involving a component ΦE) and X(2Σ+
g ) of {Li+2 +1e−} (with a component Φ+), written

as

Ψ(re,R; t) = ΦE(re,R; t) + Φ+(re,R; t) , (3)

where re = {rc, r} collectively stands for the electronic coordinates, and R for the nu-

clear ones. The escaping electron is described by its coordinate r, the remaining core

electrons being accounted for by rc. Each component ΦE and Φ+ is given in terms of a

Born-Oppenheimer (BO) product

ΦE(re,R; t) = χE(R; t) ψ̃E(re;R) (4a)

Φ+(re,R; t) = χ+(r,R; t) ψ̃X(rc;R) (4b)



6

2 4 6 8 10 12 14

R (a.u.)

2

3

4

5

6

7
P

o
te

n
ti

al
 E

n
er

g
y
 (

eV
)

0 100 200 300 400

t (fs)

0.0

0.5

1.0

E
(t

) 
(a

rb
. 
u
n
it

s)X(
 2

Σ
g

+ 
)

E(
1
Σ

g

+ 
)

hν

e
-

N
E
 = 0, 2

τ

N
+
 = 0, 2, 4

Li(2s) + Li(3s)

Li(2s) + Li
+

FIG. 1. (Color online) Potential energy curves of the Li2 E(1Σ+
g ) and Li+2 X(2Σ+

g ) electronic states

describing the third step of the excitation process, in blue and red solid lines respectively. The

corresponding rotational levels are indicated by horizontal lines. The inset illustrates the envelope

of the two ultra-short pulses delayed by τ .

of the time-independent electronic wavefunctions ψ̃E(re;R) or ψ̃X(rc;R) resulting from a

fixed internuclear distance scheme, with time-dependent wave packets χE(R; t) or χ+(r,R; t)

to be further calculated.

As usual, the electronic wavefunction ψ̃E is expressed in the molecular frame with an

angular part for the 3sσ Rydberg electron described by the ground state spherical harmonic

ψ̃E(re;R) = ψE(rc, r;R)Y00(r̂) . (5)

As for ψ̃X(rc;R) in Eq. (4b), it is nothing but the BO electronic wavefunction of the Li+2

(X) state depending solely on core electrons, whereas the escaping p-electron dynamics

(coordinate r, angular momentum ` = 1) is accounted for by χ+(r,R; t). Moreover, the
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escaping electron is appropriately described in the laboratory frame, leading to an expansion

on the time-independent electronic continuum basis

ψ`m(r, ε;R) = ψ`(r, ε;R)Y`m(r̂) , (6)

which reads as

χ+(r,R; t) =
∑
m

∫
dε χ+

`m(R, ε; t)ψ`m(r, ε;R) , (7)

with time-dependent nuclear wave packets χ+
`m(R, ε; t) to be calculated. In the following the

electron angular momentum ` is fixed to ` = 1 because of the emission of a p-type electron,

and we could therefore omit this index but we decided to keep it in order to conserve a general

formalism. The summation in Eq. (7) is actually limited to m = −1, 0,+1, projections of `

in the laboratory frame. ε is the escaping electron kinetic energy.

Finally, the angular parts of the nuclear wave packets are expressed in terms of Wigner

rotation matrices DNMΛ(R̂) [26]

χE(R; t) = χNE
M (R; t)DN

∗
E

M,0 (R̂) , (8a)

χ+
`m(R, ε; t) =

∑
N+

χN
+

M+(R, ε; t)DN+ ∗

M+,0(R̂) , (8b)

where M and M+ are the projections of the molecular rotational angular momenta of Li2

and Li+2 on the polarization axis with

M+ = M −m. (9)

Note that in our study we start from NX = 0 and therefore from MX = 0. In addition, M is

conserved during the resonant multiphoton excitation process proposed here. In Eq. (8) M

is therefore limited to the value M = 0 and M+ can take the values M+ = −m = +1, 0,−1.

The time-dependent Schrödinger equation

i~∂tΨ(re,R; t) = ĤΨ(re,R; t) (10)

is solved by introducing the expansion of Eq. (3) and projecting on the electronic and rota-

tional basis sets, which results in the following set of close-coupled equations written in the

length gauge as

i~∂t χNE
M = HE

NE
χNE
M − E(t)

∑
N+,m

WN+

m χN
+

M+ (11a)

i~∂t χN
+

M+ =
(
HX
N+ + ε

)
χN

+

M+ − E(t)WN+∗
m χNE

M (11b)
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The nuclear Hamiltonians are given as

Hα
N = − ~2

2µ

[ ∂2

∂R2
− N(N + 1)

R2

]
+ Vα(R) , (12)

with α = E (for Li) or X (for Li+). The evaluation of the coupling terms WN+

m requires a

unitary molecule-to-laboratory frame transformation involving short-range quantum defects

µΛ=0,1, together with Hönl-London rotational factors [31–35]. A full derivation has been

given in our previous work [18] resulting in

WN+

m = CN+

m d`(ε, R) , (13)

where CN+

m is a proportionality factor build in terms of Wigner 3-j coefficients [26] and the

above mentioned frame transformation matrix elements. It is crucial to take into account

the rotational dynamics for angle resolved photoelectron distributions, and this is introduced

through Wigner matrices in the basis set representation of the wave functions in Eqs. (8a)

and (8b). The initial state chosen does not assume any pre-alignment of the molecule. All

degrees of freedom are thus considered through basis set expansions, except the internuclear

distance R which is dynamically treated through close-coupled equations (11a) and (11b).

As for the, in principle energy and R-dependent ionization dipole d`(ε, R), it is given by the

integral

d`(ε, R) =
〈
ψ` ψX

∣∣∣ r ∣∣∣ψE〉
r,rc
. (14)

Restricting to some limited range of photoelectron energies and internuclear distances, a

Condon-type approximation is used hereafter to fix d(ε, R) merely as a constant.

C. Photoelectron spectra and interference patterns

The time propagation of the nuclear wave packets χNE
M (R; t) and χN

+

M+(R, ε; t) is achieved

using a third-order split operator technique [36, 37] together with initial conditions at t = 0

involving a single ro-vibrational state for χNE
M (R; 0) (with vE = 0, NE = 0 or 2 and M = 0),

and χN
+

M+(R, ε; 0) = 0. The initial ro-vibrational state is calculated using the Numerov al-

gorithm [38]. The integration of the coupled time-dependent Schrdinger equations (11a)

and (11b) is performed following Refs. [18] and [37], using the split-operator method in the

rotating-wave approximation with the time step δt = 4 fs. Photoelectron angular distribu-

tions are obtained by projecting χ+(r,R; tt) at the final time tf = 2T + τ corresponding
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to the switch-off of the two-pulse sequence, on energy-normalized out-going waves, in the

k ≡ (k, k̂) direction. More precisely these states are written in terms of their angular part

expanded on spherical harmonics as

Φ`(k, r;R) = ie−iξ
∑
m

Y ∗`m(k̂)ψ`m(r, ε;R) , (15)

where the momentum k is related to the asymptotic electron kinetic energy ε by ~2k2 = 2mε.

Note also that for the exit channel N+ energy conservation yields the following relation:

εN+ = ENE
+ ~ω − EN+ between the photoelectron energy εN+ , the energy of the initial

rovibrational state ENE
, the photon energy ~ω and the energy of the final rovibrational state

EN+ . This relation is strictly valid in the cw regime. In Eq. (15) ξ denotes the Coulomb

phase-shift of the ` = 1 outgoing wave. As a consequence, the angle and energy-resolved

photoelectron distribution is given by [18]

P (ε, k̂) =

∫
dR

∣∣∣∣∫ Φ∗`(k, r;R)χ+(r,R; tf ) dr

∣∣∣∣2 . (16)

This last equation can be further simplified using orthogonality rules, resulting ultimately

in [18]

P (ε, k̂) ∝
∑
N+,m

∣∣∣Y`m(k̂)
∣∣∣2 ∫ dR

∣∣∣χN+

M+(R, ε; tf )
∣∣∣2 . (17)

As for the total photoelectron spectrum we have to sum over the electron ejection angle

k̂ = (θk, φk), giving

P (ε) ∝
∑
N+,m

∫
dR
∣∣∣χN+

M+(R, ε; tf )
∣∣∣2 . (18)

It has already been pointed out that the seemingly incoherent sums in Eq. (18) may still

reveal interference effects when an exit rotational channel N+ is reached from different

initial states NE [18]. Pursuing the objective of clearly depicting the interference mechanism

which is the salient point of this study, we wish to disentangle different coherent processes.

This is why we are addressing separately a single initial level NE = 0 or NE = 2 instead

of a coherent superposition of several ro-vibrational levels NE, which remains a realistic

choice when considering an initial preparation achievable by resonant cw excitation. The

interference scheme we are hereafter referring to has therefore a different origin: a phase

accumulation during the field-free evolution between the two ultra-short pulses depicted in

the inset of Fig. 1.
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More precisely, if we define the ionization amplitude AN+(ε) corresponding to the ion-

ization by a single pulse, from a given initial state NE to the ionized state N+ with a

photoelectron energy ε, the photoelectron spectrum obtained with two delayed identical

pulses is nothing but a coherent superposition of this amplitude and the same amplitude

from the second pulse with a phase ϕ(ε, τ) = (ε− εN+)τ/~ accumulated during τ , given as

P (ε, τ) =
∣∣AN+(ε) +AN+(ε) e−iϕ(ε,τ)

∣∣2 (19a)

= 4
∣∣AN+(ε)

∣∣2 cos2

[
(ε− εN+)τ

2~

]
. (19b)

It thus appears that P (ε, τ) presents an oscillatory behavior as a function of both the

electron kinetic energy ε and the delay τ between the two pulses. When this time is taken

as a control knob, a constructive interference is therefore expected at a specific energy ε̄ for

the delay

τ c
n = 2n τ ∗N+(ε̄) with n = 0, 1, 2..., (20)

where

τ ∗N+(ε̄) =
π~

|ε̄− εN+ |
. (21)

For this delay τ c
n the photoelectron spectrum is given by

P
(
ε, τ c

n

)
= 4
∣∣AN+(ε)

∣∣2 cos2
[
nπ
(ε− εN+

ε̄− εN+

)]
. (22)

It oscillates as a function of the electron kinetic energy ε and it reaches indeed a maximum

of 4|A(ε̄)|2 for the particular kinetic energy ε = ε̄.

Symmetrically, a destructive interference is expected at the energy ε̄ for the delay

τd
n = (2n+ 1) τ ∗N+(ε̄) with n = 0, 1, 2... (23)

yielding

P
(
ε, τd

n

)
= 4
∣∣AN+(ε)

∣∣2 cos2
[
(2n+ 1)

π

2

(ε− εN+

ε̄− εN+

)]
(24)

For this time delay τd
n the photoelectron spectrum is still expected to oscillate with ε, but

it reaches a minimum at the energy ε = ε̄, with P
(
ε̄, τd

n

)
= 0.

The ionization amplitude AN+(ε) seen in Eqs. (19), (22) and (24) is, in principle, specific

to each exit channel N+ and according to Eq. (18) the total photoelectron spectrum is given

by an incoherent sum over all ion rotational levels N+. One may expect that such an

incoherent sum could wash out the regular oscillation patterns predicted in Eqs. (22) and



11

(24) by the interference model that we have developed previously for a single exit channel.

However, for a pulse duration T much shorter than the rotational period π~/B ' 33 ps one

can consider that the different photoelectron energies εN+ associated with these exit channels

are almost degenerate. In such a case we expect that the interference model developed

previously will still hold. For the implementation of this model we will hereafter simply

use Eqs. (19), (22) and (24), replacing εN+ with the particular value obtained for N+ = NE

and replacing the envelop |AN+(ε)|2 with the photoelectron spectrum P (ε) calculated for a

single pulse. In summary, it is worthwhile mentioning that we are considering two models:

(i) the first one dealing with the full quantum description of the ionization dynamics from

t = 0 to tf , as given by Eq. (18);

(ii) the second one consisting in the interference model we have developed using an inter-

pulse phase accumulation. This last model makes use, through Eq. (19b), of the envelop

|AN+(ε)|2 calculated with the first model (i) using a single pulse.

III. RESULTS: FROM INTERPRETATION TO CONTROL

This section separately addresses the interpretation and control of photoelectron energy

and angular distributions. The electronic potential energy curves are taken from Ref. [39].

The reduced mass is µ = 3.4695 Da. In weak fields the ionization dipole of Eq. (14), together

with the electric field amplitude enter as simple scaling factors and their values need not

be specifically defined. The pulse duration T and the rotational constant (which is very

close for the E and X electronic states) have already been defined, whereas the delay τ is

considered as a tunable control parameter.

Starting from the initial level NE = 0, the photoelectron energies associated with the

ion rotational levels are: ε0 = 4671.6 cm−1 for N+ = 0 and ε2 = 4668.6 cm−1 for N+ = 2.

Starting from the initial level NE = 2 yields the following energies: ε0 = 4674.6 cm−1 for

N+ = 0, ε2 = 4671.6 cm−1 for N+ = 2 and ε4 = 4664.6 cm−1 for N+ = 4.

A. Photoelectron kinetic energy distributions

The angle-resolved photoelectron spectra resulting from the full time evolution model (i)

based on Eq. (17) for the initial rotational state NE = 0, when referring to a single pulse



12

 

(a) t = 0 fs (b) t = 150 fs 

FIG. 2. (Color online) Angle (θ) and energy (ε) resolved normalized photoelectron spectra as

obtained from the full quantum model of Eq. (17), for the initial rotational state NE = 0 when

referring to either a single pulse (case labeled τ = 0), on the left panel or two-pulses delayed by

τ = 150 fs, on the right panel.

or two-pulses with a typical delay of τ =150 fs, are illustrated in Fig. 2. One observes a θ-

dependence well peaked at θ = 0 or 180 degrees, symmetrical with respect to 90 degrees. The

oscillating pattern obtained for τ = 150 fs can be analyzed and interpreted by appropriately

summing over angles θ (following Eq. (18)) to end up in total photoelectron spectra, as the

ones illustrated in Fig. 3 for a collection of inter-pulse time delays τ . When τ is zero, the

resulting single ultra-short pulse has a bandwidth of the order of 2π/T ' 660 cm−1, much

larger than the N+ = 0, 2 rotational levels separation which amounts to 6B ' 3 cm−1.

The corresponding photoelectron spectrum therefore presents a single broad peak with a

maximum positioned around ε0 = 4671.6 cm−1. Actually, the anisotropy of the E and

X electronic states being relatively small [18], the exit channel N+ = 0 is favored in the

branching ratio between the N+ = 0 and N+ = 2 ionization channels. In addition, increasing

τ gives rise to an oscillatory interference patterns, as predicted by the interference model

derived in Eq. (19b).

For the ultimate goal of controlling the ionization dynamics, we now want to decipher

this interference scheme. In particular, for the initial state NE = 0, the probability for

a photoelectron to be emitted with the asymptotic energy ε̄0 = ε0 + ∆ is proportional to

cos2[∆τ/(2~)]. The time delay τ can thus be chosen in such a way to reduce to zero this

probability, producing a fully destructive interference. The appropriate choice would be
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FIG. 3. (Color online) 3D view of the normalized photoelectron energy distributions as obtained

from the full quantum model of Eq. (18), for the initial rotational state NE = 0 and for a collection

of inter-pulse time delays τ .

τ = π~/∆. A completely similar analysis can be conducted for the initial state NE = 2 at

the energy ε̄2 = ε2 + ∆. This would lead to the same delay for a destructive interference

since τ ∗0 (ε̄0) = τ ∗2 (ε̄2).

We need of course to check the relevance and accuracy of this model as compared with an

exact calculation. The results are displayed in Fig. 4. The single pulse spectra corresponding

to τ = 0 are indicated in solid black lines and are very broad compared to the rotational

spacing. Panels (a) and (b) illustrate, for the initial states NE = 0 and NE = 2 respectively,

the case of destructive interferences as obtained with ∆ = 254.6 cm−1 leading to τ = 65 fs.

The full quantum calculation of model (i) is displayed as a dashed red line, whereas the

interference model of Eq. (19b) is illustrated by blue square symbols. As can be judged

by Fig. 4, an excellent agreement is obtained between these two simulations, validating

the accuracy of the interference model. In panel (a) the destructive interference totally

suppressing the ionization signal at the energies ε0 ±∆, leads to a main peak positioned at

ε0 = 4671.6 cm−1, together with two satellites originating from the oscillations of the cosine
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FIG. 4. (Color online) Photoelectron energy distributions for the two initial states NE = 0 panel

(a) and NE = 2 panel (b). The solid black line is for the single pulse result. The red dashed

line is for the full quantum calculation (i) with two pulses, whereas the blue squares are for the

simplified interference model of Eq. (19b). The inter-pulse delay chosen, τ = 65 fs, produces a

fringe separation of 2∆ = 509.2 cm−1.

square function. Panel (b) illustrates the symmetric situation for NE = 2. The main peak

is at ε2 = 4671.6 cm−1. It corresponds to a constructive interference for the N+ = 2 exit

channel and to a destructive interference at the photoelectron energies ε2 ±∆.

In summary, by appropriately tuning the time delay between the two ultra-short pulses,

we can accurately alter the photoionization dynamics through an efficient interference effect

seen in kinetic energy distributions. The choice of the control parameter, namely the inter-

pulse delay τ , is provided through a simple reduced interference model. This model turns

out to be robust and accurate when checked against the exact calculation.

B. Photoelectron angular distributions

A more refined analysis of the photoionization can be carried out by examining photoelec-

tron angular distributions as given by Eq. (17) prior to the integration over electron ejection
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angles. Such distributions can be examined either integrated over all electron kinetic en-

ergies, or at specifically chosen energies. It is worth noting that, with linear polarization

the only direction-dependence of P (ε, k̂) is through the azimuth angle θ. From now on we

will thus refer to P (ε, θ) instead of P (ε, k̂) and the study will be conducted, as usually

done, by referring to a single asymmetry parameter β defined from the angular differential

photoionization cross-section

dσ

dΩ
=

σ

4π

[
1 + βP2(cos θ)

]
, (25)

where σ is the total ionization cross-section over the full solid angle Ω = 4π. P2(x) denotes

the second order Legendre polynomial with P2(x) = (3x2−1)/2. Note that Eq. (25) assumes

a weak field linear response: it only takes into account single photon ionization processes.

β can be obtained unambiguously by recasting the photoelectron angular distributions as

P (ε, θ) = A(ε) +B(ε) cos2 θ , (26)

and by identifying the corresponding terms in cos θ of Eq. (25). One finally gets the asym-

metry parameter

β(ε) =
2B(ε)

3A(ε) +B(ε)
(27)

which characterizes the overall shape of photoelectron angular distributions. More precisely,

peaked anisotropic distributions along or perpendicular to the polarization direction ê cor-

respond to β = 2 and β = −1 respectively, whereas a full isotropic distribution (no angular

dependence) is characterized by β = 0.

In a recent work, we have examined the energy and pulse duration dependence of β [19]

for a single ionizing pulse. In particular, we were able to assign a well defined value of β

for each individual N+ channel reached by photoionization, even with an extremely short

pulse of bandwidth much larger than the rotational spacing. If we start from the initial state

NE = 0, in the cw limit the N+ = 0 exit channel is characterized by a peaked anisotropy with

β = 2, whereas a quasi-isotropic β = 1/5 angular distribution is reached for N+ = 2 [19].

The present work is devoted to a double-pulse control of the interference scenario be-

tween the ionization pathways referring to the excitation scheme illustrated in Fig. 1. The

observable is the energy and time delay dependent asymmetry parameter β. The results

are once again interpreted in terms of the simplified model depicted in Eq. (19b), where the

proportionality factor |AN+(ε)|2 is now also considered as θ-dependent.
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1. Analysis for a fixed time delay τ

For the initial state NE = 0, a complete interpretation for the asymmetry parameter β

is provided in terms of contributions of the two ionization channels N+ = 0 and 2. This

is achieved starting with a single pulse excitation (or equivalently, τ = 0) leading to the

photoelectron spectrum illustrated in Fig. 3 at the energies ε0 = 4671.6 cm−1 for N+ = 0

and ε2 = 4668.6 cm−1 for the N+ = 2 ionization channel. The asymmetry parameter β

calculated from the full time evolution model (i) amounts to be β(ε0) ' β(ε2) ' 1.69. We

interpret this as a mixed contribution of both ionization channels N+ = 0 and N+ = 2

at the two very close energies ε0 and ε2. A second calculation is then conducted for an

arbitrarily chosen time delay, say τ = 7 ps for instance. As depicted by the dashed green

lines of Fig. 5 we get β(ε0) ' 1.93 for N+ = 0 and β(ε2) ' 1.09 for N+ = 2, a result closer

to the respective values 2 and 1/5 expected in the cw limit when compared to the identical

values β(ε0) ' β(ε2) ' 1.69 obtained with a single pulse. We rationalize this finding by

enhanced contributions of channel N+ = 0 at the energy ε0 and of channel N+ = 2 at the

energy ε2 in an interference mechanism among the two ionization pathways created by the

interaction with two time-delayed ionization pulses.

2. Control strategy

This claim is now supported by a control strategy aiming at a complete constructive

vs. destructive interference scheme targeting the channels N+ = 0 and N+ = 2, through

an appropriate choice of the time delay. The choice for an optimal τ is done through the

interference model (ii). The results are gathered in Fig. 5. The solid orange and dashed

blue lines correspond to the variations of β as a function of τ calculated at the energies ε0

and ε2 associated with the channels N+ = 0 and N+ = 2.

Three inter-pulse time delays τa = 5.45 ps, τb = 10.9 ps and τc = 16.35 ps present a

specific interest for the interference control strategy and are retained in the upper (for

N+ = 0) and lower (for N+ = 2) rows which display polar-angle plots of the corresponding

photoelectron angular distributions in each individual channel. These pulse delays were

chosen because they correspond to τa = τ ∗0 (ε2) = τ ∗2 (ε0) = π~/(6B), τb = 2τ1 = π~/(3B)

and τ3 = 3τ1 = π~/(2B). τa is therefore the first delay time associated with a destructive
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FIG. 5. (Color online) Asymmetry parameter β and associated angular distributions as a function

of the inter-pulse time delay τ for the initial state NE = 0. The middle row displays the asymmetry

parameter as a function of the time delay, as evaluated at the specific energies ε0 of the N+ = 0

(orange solid line) and ε2 of the N+ = 2 (dashed blue line) exit channels. Polar representations of

the photoelectron angular distributions for time delays corresponding to constructive and destruc-

tive interferences for three optimal values of τ are given in the upper and lower rows, for N+ = 0

and 2, respectively. The values of β obtained for the specific delay time τ = 7 ps are highlighted

by additional dashed green lines.

interference as defined in Eq. (23) for n = 0. Similarly, τb is the first non-zero delay time

associated with a constructive interference as defined in Eq. (20) (for n = 1). Finally, τc is

the second delay time associated with a destructive interference.

It is worthwhile emphasizing that a photoelectron probability at a given energy is build up

from the incoherent contributions of both the N+ = 0 and the N+ = 2 channels with appro-

priate weighting coefficients. According to Eq. (24), a time delay associated to a destructive
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interference such as τa and τc imposes that, at the energy ε0, the weighting coefficient of the

N+ = 2 component is zero, whereas the one of the other component N+ = 0 is one. For the

same time delay, at the energy ε2 the weighting coefficient of the N+ = 0 component is zero,

whereas the one of N+ = 2 is one. This clear separation of the respective contributions of the

N+ = 0 and N+ = 2 channels at their respective energies ε0 and ε2 happens for τ = τa and

for τ = τb due to a destructive interference induced by a controlled double pulse excitation.

On the contrary, the interference is constructive at the intermediate delay time τb, yielding

a mixed contribution of the two components N+ = 0 and 2 at both energies. We see in

Fig. 5 that this particular time delay τb, characterized by β = 1.69 in both channels, leads

to two identical angular distributions at the energies ε0 and ε2, with a marked anisotropy

similar to the one of the dominant N+ = 0 ionization channel in the cw limit. The only

noticeable difference is that at θ = ±π/2 (perpendicular to the polarisation axis), the two

loops of the polar plots are topologically not strictly closed. Returning back to the time

delays τa and τc, the induced double pulse interference now gives rise at the energy ε0 (upper

row) to a β parameter strictly equal to 2 and therefore to the anisotropic polar plot which

is the one expected for N+ = 0 using cw light. Reciprocally, the resulting double pulse

interference at the energy ε2 (lower row) goes with a β parameter equal to 1/5 and with a

quasi-isotropic polar plot, identical to the one expected for the N+ = 2 exit channel in the

cw limit. The destructive interference predicted for the time delays τa and τc is therefore

clearly observed. This interference effect leads, for the specific time delays τ = (2n + 1) τa,

to a clear separation of the different exit channels at their associated energies and therefore

to an angular distribution which is the one expected in the cw limit even with extremely

short pulse.

3. Application to another initial state

It is of course important to check the physical relevance of this double pulse control

strategy through an appropriate choice of the time delay τ , by exploring its application to

the ionization process starting from an initial rotational state different from NE = 0. In this

sub-section we are therefore exploring the case NE = 2. A single photon absorption followed

by a p-type electron ejection now leads to the creation of three ion rotational states N+ = 0,

2, 4, energetically distant by 6B for the pair {0, 2}, 14B for the pair {2, 4} and 20B for the
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FIG. 6. (Color online) Asymmetry parameter β and associated angular distributions as a function

of the inter-pulse time delay τ for the initial state NE = 2. The middle row displays the asymmetry

parameter as a function of the time delay, as evaluated at the specific energies ε0 of the N+ = 0

(green solid line), ε2 of the N+ = 2 (orange dash-dotted line) and ε4 of the N+ = 4 (blue dashed

line) exit channels. Polar representations of the photoelectron angular distributions associated

with these three different energies are given in the upper row at four specific delays τ = 5.45, 10,

11.9 and 16.5 ps using the same color code. The time delays (2n + 1)τ ′a and (2n + 1)τ ′b where a

destructive interference is predicted are indicated by blue and green vertical dotted lines (see text

for details).

pair {0, 4}. Ultra-short large bandwidth pulses are such that all these channels can be mixed

during the ionization process. Once again referring to the interference model (ii) and to the

fact that the expected oscillation patterns associated with each exit channel N+ should

be added incoherently, it could be expected that the regular succession of constructive vs.

destructive interferences observed in Fig. 5 for the simpler case NE = 0 could be washed out
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in the present and more complex case with three different allowed exit channels. However,

it is important to remember that the anisotropy of Li2 is relatively weak in the electronic

state E(1Σ+
g ) and as a consequence the exit channel N+ = 2 is favored for the initial state

NE = 2. Out of the three pairs of ion rotational states mentioned above, the two that will

give rise to a significant interference effect are therefore the pairs {0, 2} and {2, 4}. Their

energy splittings are 6B and 14B, respectively. The time delays associated with the first

destructive interference events as defined in Eq. (23) are therefore

τ ′a = τ ∗2 (ε0) =
π~

ε4 − ε2

' π~
14B

' 2.38 ps (28)

for the pair {2, 4} and

τ ′b = τ ∗2 (ε4) =
π~

ε2 − ε0

' π~
6B
' 5.45 ps (29)

for the pair {0, 2}. The first seven destructive interference events are therefore expected

for the specific time delays τ ′a, τ
′
b, 3τ ′a, 5τ ′a, 3τ ′b, 7τ ′a and 9τ ′a corresponding to the values

τ = 2.38 ps, 5.45 ps, 7.15 ps, 11.92 ps, 16.35 ps, 16.68 ps and 21.45 ps.

The results of the numerical simulation are displayed in Fig. 6 where the variations of

β, calculated at the energies ε0 (green solid line), ε2 (orange dash-dotted line) and ε4 (blue

dashed line) corresponding to the three possible exit channels, are plotted against τ . The

first seven destructive interference events discussed above are highlighted by blue (for the

pair {2, 4}) and green (for the pair {0, 2}) vertical dotted lines. They all correspond to a

minimum of β, very close to 1/5, as expected for theN+ = 0 andN+ = 4 ionization channels.

The corresponding photoelectron angular distribution are shown as polar-angle plots in the

upper row of Fig. 6 for each individual channel. They confirm the very strong influence

of the interference effect on the secondary ionization channels N+ = 0 and N+ = 4. An

interesting circumstance concerns the critical time delays which are common odd multiples

of the periods τ ′a and τ ′b, such that the values of the asymmetry parameter β on both channels

N+ = 0 and 4 are simultaneously minimum. This mathematically amounts to search integer

values (na, nb) such that (2na + 1)τ ′a = (2nb + 1)τ ′b. From Eqs. (28) and (29) we see that

a possible couple of integers is found for na = 3 and nb = 1, leading to a critical time

delay close to 7τ ′a ' 3τ ′b ' 16.5 ps. The polar representations of the angular distributions

calculated for this particular time delay are shown in the upper row of Fig. 6. They confirm

the simultaneous destructive interference predicted by the reduced model (ii) in the two
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FIG. 7. (Color online) Polar plots of the photoelectron angular distributions as a function of

the inter-pulse time delay τ for an initial state NE = 2 at the energies ε0 (left side in green),

ε2 (middle column in orange) and ε4 (right side in blue) corresponding to the three possible exit

channels N+ = 0, 2 and 4. The polar plots are calculated with increasing values of τ (every

1 ps) and are vertically packed, as indicated by the three vertical axes. The angular distributions

in channels N+ = 0 and N+ = 4 affected by a destructed interference (see the corresponding

behaviors of β in Fig. 6) are emphasized as red-filled surfaces. See text for details.

secondary ionization channels. We also see from Fig. 6 that for a randomly chosen delay

time such as τ = 10 ps all accessible ionization channels are mixed and their associated

angular distributions are characterized by an anisotropic shape similar to the one of the

dominant channel N+ = 2. Fig. 7 illustrates and summarizes the kind of control which is

exerted in the three exit channels N+ = 0, 2 and 4 by varying the control parameter τ . This

is given in terms of polar views of photoelectron angular distributions vertically packed with

increasing τ , every 1 ps. The conclusion is that, except in the dominant channel N+ = 2,

where the distributions are basically identical for all values of τ , specific values of the inter-

pulse delay time can be found (see Fig. 6), for which marked quasi-isotropic behaviors are

obtained in the secondary channels N+ = 0 and N+ = 4. These particular delay times are

emphasized in Fig. 7 as red-filled surfaces and correspond to the specific delay times τ ′a, τ
′
b,

3τ ′a, 5τ ′a, 3τ ′b, and 7τ ′a mentioned previously.
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Finally, this analysis confirms the validity of the simple model (ii) for the interpretation

and for the prediction of the influence of the interferences induced by a double-pulse ioniza-

tion of the molecule on the photoelectron angular distributions in the ultra-short regime.

4. Practical implications

For the purpose of practical implementation, four regimes are particularly interesting.

These are depicted in Fig. 6 with vertical blue and green dotted lines on top of which

polar diagrams of photoelectron angular distributions are displayed. Butterfly-like diagrams

correspond to anisotropic distributions along the polarization axis (β close to 2), while oblate

disks correspond to quasi-isotropic distributions with β close to 1/5. The variety of diagrams

illustrate the richness of the monitoring that can be achieved by changing the time delay

between the pump and the probe pulses.

The first regime appears for τ ' 5.45 ps, where the fast electrons associated with the

N+ = 0 ionization channel show a dramatic change in β downwards a quasi-isotropic dis-

tribution. In this regime, it will be possible to selectively detect these fast electrons in the

plane perpendicular to the polarization axis since the probability of electron emission from

the other channels is then minimum. The reciprocal behaviour happens for the slow elec-

trons associated with the channel N+ = 4 at τ ' 11.9 ps. Here again, a sharp discrimination

of this channel from the others is possible thanks to the net dip-like evolution of β, whereas

the two other channels produce peaked electron beam distributions along the polarization

axis. A third regime occurs around τ ' 10 ps. Here, all the photoionized electrons follow

the same quasi-linear path along the polarization direction. Finally, the regime that appears

around τ ' 16.5 ps, is particularly interesting. Indeed, it corresponds to a synchronisation

of the two stroboscopic interference effects where both fast and slow electrons follow quasi-

isotropic distributions, as illustrated with the two oblate disks on the top of the figure at

this particular value of the time delay. The same effect can be seen in Fig. 7, where red flat

disks emerge from the green (N+ = 0) and the blue (N+ = 4) vertical stacks in the region

16 ps 6 τ 6 17 ps. Moreover, these two ionization channels are in principle dominated by the

main channel N+ = 2, whose probability is much higher, but thanks to the aforementioned

synchronisation there is a chance to detect selectively the minority electron channels N+ = 0

and 4 in the perpendicular direction, where both contributions are added so that the signal
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will be enhanced and therefore measured more efficiently. This kind of experiment may also

be performed using refined time-of-flight techniques, where photoionization channels can be

detected separately, by collecting electrons and Li+2 residual ions in coincidence [40].

IV. CONCLUSIONS AND PERSPECTIVES

A detailed understanding and control of photoionization processes can be conducted

based on measurements of photoelectron spectra involving both electron kinetic energy and

angular distributions as observables. This can be achieved by using a train of two ultra-

short pulses separated by a time delay τ taken as a control knob. Considered individually,

due to their large bandwidth, each of these pulses leads to a single broad peak in the

resulting photoelectron spectrum, which comprises not yet resolved contributions of different

ion rotational channels. Phases accumulated during the inter-pulse time delay can however

produce interference behaviors among these exit channels with well resolved and controllable

oscillating patterns in photoelectron spectra. Such a control is based on constructive or

destructive interference mechanisms among the ion rotational channels, achieved in a robust

way through a single parameter τ , arguing thus in favor of experimental feasibility. Moreover,

molecular asymmetry parameters β associated with individual ion rotational channels can

be extracted and controlled, to reach desired angular distributions from quasi-isotropic to

highly anisotropic. It is worthwhile noting that such a situation is unexpected for a single

ultra-short pulse, with the challenge to address an asymmetry parameter β to individual ion

rotational channels.

Li2 is a theoretically and experimentally well documented illustrative example that we

have chosen for this study. However, the interference model and control strategy developed

in this work are generic enough to be transposable to other diatomic molecules and offer

the possibility of a detailed understanding of the ionization process in terms of coherent

dynamics among rotational exit channels. As future perspectives, the role of interfering

ion vibrational channels could be considered with similar strategies, eventually referring

to additional ultra-short pulses in the train with different time delays offering additional

flexibility to the control scheme. Moreover the model, which accounts for both electronic

and nuclear degrees of freedom, could be extended to mechanisms underlying dissociative

ionization and control strategies, with coincidence measurements as observables.
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